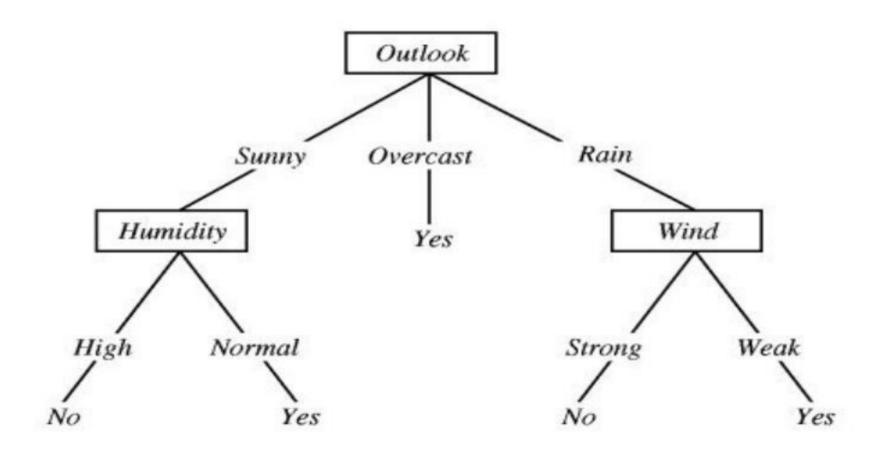
Chapitre II. . Elements d'analyse de Décision et décision sous risque


PARTIE II ARBRES DE DECISION

DR. DEKHICI L.

Outlook	Temperature	Humidity	Windy	PlayTennis
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Exemple Weather de data

Latifa.dekhici@univ-usto.dz Chapitre 2. Elements d'analyse de Décision et décision

Définition d'un arbre de décision

Decision tree

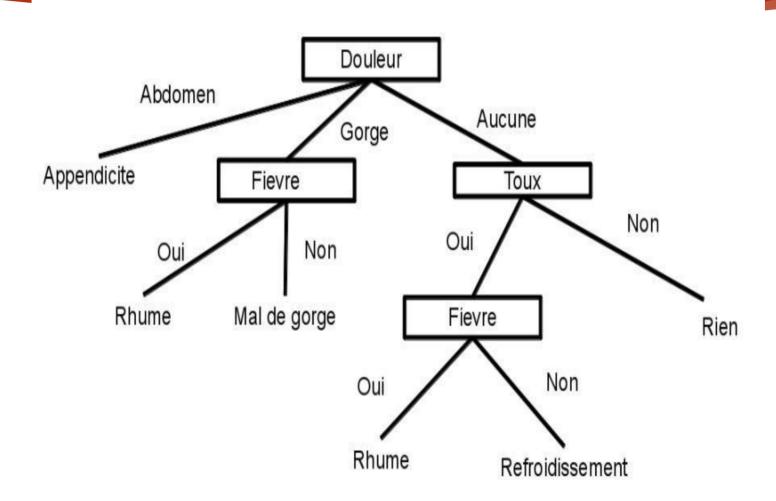
Applications

- Classification
- Apprentissage
- Prédiction

Les domaines sont ceux de datamining socio-

économique, industriel.... enrichi des domaines de la vie quotidienne nécessitant une stratégie tels

- que: les jeux de société et jeux stratégiques
 - les jeux de prédiction


Exemple, Maladie

Fievre	Douleur	Toux	Maladie(La classe, la décision)
oui	Abdomen	non	Appendicite
non	Abdomen	oui	Appendicite
oui	gorge	non	rhume
oui	gorge	oui	rhume
non	gorge	oui	mal de gorge

oui	non	non	aucune
oui	non	oui	rhume
non	non	oui	refroidissement
non	non	non	aucune

Un des arbres qu'on peut dessiner sans tenir compte des indicateurs, des probabilités et du type de nœud est le suivant :

Arbre de décision: Maladie

Choix de la bonne racine

Comment choisir la question racine pour diviser en 2 groupes de 2 les classes ci-dessus.

- OA-t-il de cheveux longs ?
- A-t-il des lunettes ?
- oa-il les yeux fermés?

oaucune de ces questions ne peut diviser les classes en 2 groupes de 2.

Mesures d'exploration

L'arbre est dit aveugle si le choix de la racine est aléatoire. Toutefois, des mesures sont disponible tel que l'entropie, le gain.....etc. pour le choix de la racine et l'exploration efficace.

Discrétisation

Numérique— catégorie

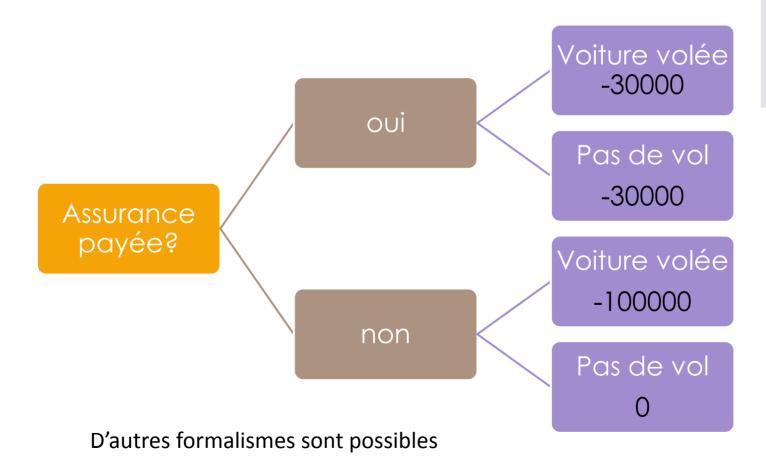
Par exemple le tableau d'origine de weather pour les décisions play tennis or not contenaient des température numériques et des taux d'humidité numériques.

Exemple banque

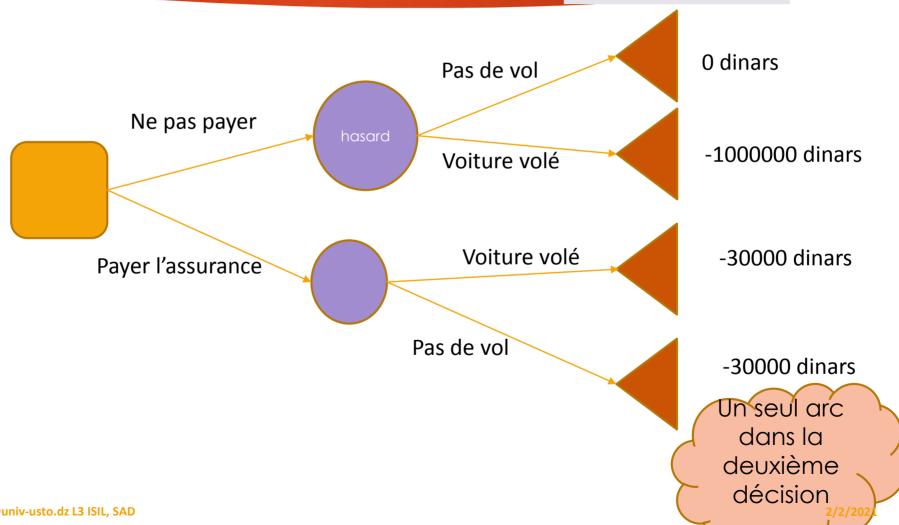
Trois attributs descriptifs sont retenus : l'âge (trois tranches : [18; 34], [35; 49] et [50 et plus]), le genre (H ou F), et le fait d'être ou non propriétaire de son logement (oui,non).

Age	Genre	Propriétaire	Intéressé
20	H	N	N
25	F	N	N
32	H	O	O
34	H	O	O
37	H	N	O
41	\mathbf{F}	O	N
45	H	O	O
45	F	O	N
52	H	O	N
60	\mathbf{F}	O	N
?	F	N	N
28	H	?	O
?	F	?	N

A partir d'une matrice de décision, Exemple d'Assurance,

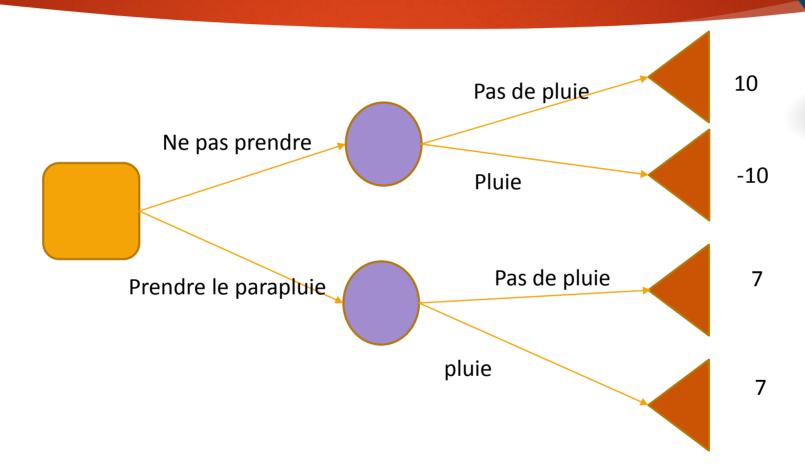


Exemple 1				
Décisions\ Etats	E1= voiture volée	E2= pas de vol		
		·		
D1= payer	-30000 DA	-3000DA		
l'assurance de vol				
D2= ne pas payer	-1000000 DA	0		
l'assurance				


De la décision vers les résultats

Avec d'autres formalismes

16


A partir d'une matrice de décision, Exemple 2

Exemple 2		
Décisions\ Etats	E1= pluie	E2= pas de pluie
D1= prendre mon parapluie	+Pas mouillée -Encombrée	+Pas mouillée -encombrée
D2= ne pas prendre mon parapluie	- mouillée	+Pas mouillée

L'utilité, valeur numérique

Exemple 2				
Décisions\ Etats	E1= pluie	E2= pas de pluie		
D1= prendre mon parapluie	+10 favorable -3 défavorable	+10 -3		
D2= ne pas prendre mon parapluie	-10	+10		

Avec d'autres formalismes

ARBRE DE DÉCISION AVEC RISQUE

Décision dans le Risque

- Décision dans l'incertitude : situations de choix où les résultats des actions ne peuvent être prévus avec certitude.
- On suppose que cette incertitude est probabilisée, c'est à dire que le résultat obtenu ne dépend que de la réalisation d'évènements de probabilités connues. On utilise alors le terme de « décision dans le risque »

Les états dans les matrices de décisions peuvent avoir une probabilités

Décision avec certitude

Quel kiosque ouvrir?

Utilité= 4000 DA/jours

Utilité= 1000 DA/jours

Décision sous risque

Quel kiosque ouvrir?

U=4000*0.3-0.7*1000=1200-700=400

Succes 0.3 Utilité= 4000 DA/jours

Echec 0.7

Utilité= -1000 DA/jours

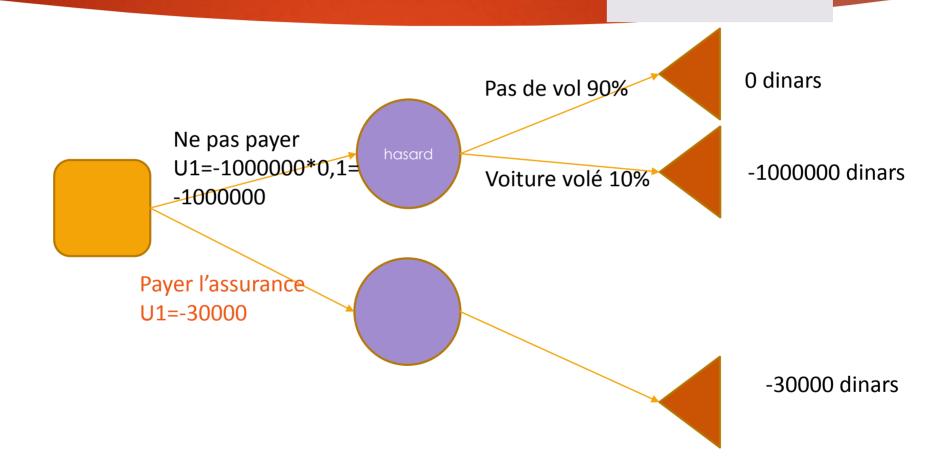
U=1000*0.9-0.1*200=900-20=880

Succes 0.9 Utilité= 1000 DA/jours

Echec 0.1 Utilité= -200 DA/jours

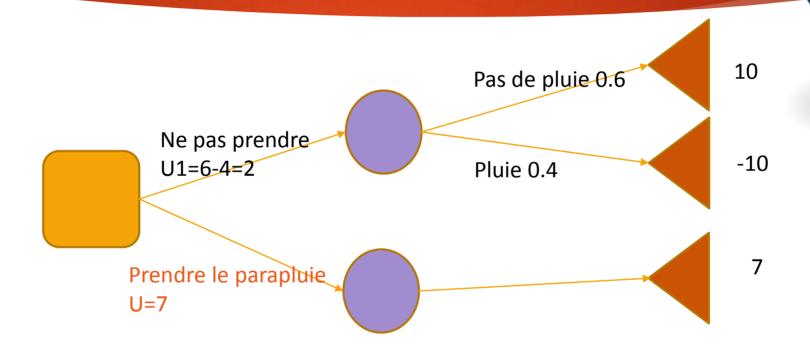
Utilité espérée (Excepted Utility)

- ► U(noeudj)=somme P(Ei)*U(Ei)
- Utilités pondérés par les probabilités des états


Utilité espérée Exemple d'Assurance

Exemple 1				
Décisions\ Etats	E1=	voiture	E2= pas de vol(90%)	
	volée(10%)			
D1= payer	-30000 DA		-3000DA	
l'assurance de vol				
D2= ne pas payer	-1000000 DA		0	
l'assurance				

Arbre sous risque



26

L'utilité, valeur numérique et etats propobilisés

Exemple 2				
Décisions\ Etats	E1= pluie (40%)	E2= pas de pluie(60%)		
D1= prendre mon parapluie	+10 favorable -3 défavorable	+10 -3		
D2= ne pas prendre mon parapluie	-10	+10		

Utilité espérée, exemple de parapluie

Construction des arbres avec indices

- On dénombre plusieurs algorithmes pour construire des arbres de décision, parmi lesquels: ID3 (Iterative Dichotomiser 3), C4.5, C5 (successeurs d'ID3), CHAID (CHi-squared Automatic Interaction Detector); CART (Classification And Regression Tree)
- Tous ces algorithmes se distinguent par le ou les critères de segmentation utilisés, par les méthodes d'élagages implémentées, par leur manière de gérer les données manquantes dans les prédicteurs.

Implémentation des arbres avec indices

Beaucoup de logiciels de fouille de données proposent des bibliothèques permettant d'implémenter un ou plusieurs algorithmes d'apprentissage par arbre de décision. Par exemple, le logiciel Open Source R contient plusieurs implémentations de CART, telles que rpart, party et randomForest, les logiciels libres Weka et Orange (et son module orngTree) ou encore la bibliothèque libre Python scikit-learn; mais également Salford Systems CART, IBM SPSS Modeler, RapidMiner, SAS Enterprise Miner, KNIME, Microsoft SQL Server.