

Ministère de l'Enseignement Supérieur et De La Recherche Scientifique Université des Sciences et de la Technologie d'Oran Mohammed Boudiaf Département de Génie Chimique et Département de Génie des Matériaux

Faculté de chimie L2 Méthodes Numériques

Fiche de TD 1(2020/2021)

"Notions d'erreurs et Résolution d'équations non linéaires f(x) = 0."

Exercice 01: 1. Effectuer les opérations suivantes en tenant compte des chiffres significatifs.

- a) S = 1,785m + 1,27m + 13,5m.
- b) $D = 1,14 \times 10^5 1,151 \times 10^3$.
- c) $Q = 0.010 \div 0.200$.
- 2. x = 35.97 et $x^* = 36,00$ (valeur approchée). Déterminer l'erreur absolue et relative de x.

Exercice 02: Soit la fonction $f(x) = xe^x - 1$.

- 1. Montrer que f admet une racines dans l'intervalle I = [0, 1].
- 2. En utilisant la méthode de la Dichotomie donner une valeur approchée de cette racine (donner les 4 premières itérations).
- 3. Quel est le nombre d'itération qui assure que l'erreur soit inférieur à $\epsilon=10^{-3}$

Exercice 03 : Soit l'équation $x - \frac{13}{x^2} = 0$ (E).

- (1) Montrer que l'équation (E) admet une racine dans [2,3].
- (2) Parmis les fonctions suivantes :

$$g_1(x) = \frac{13}{x^2}, g_2(x) = \frac{\sqrt{13}}{\sqrt{x}},$$

laquelle vérifie le théorème de convergence du point fixe sur [2,3] correspondant à l'équation (E). Puis résoudre l'équation (E) par la méthode du point fixe avec 3 itérations.

(3) Soit $f(x) = x - \frac{13}{x^2}$. a) Montrer que

$$x - \frac{f(x)}{f'(x)} = \frac{39x}{x^3 + 26}.$$

- b) Montrer que le théorème de convergence de la méthode de Newton-Raphson est vérifié. Puis résoudre l'équation (E) pour $x_0 = 2$ avec 3 itérations.
- (3) Si la solution exacte de (E) est $\bar{x} = \sqrt[3]{13}$ alors, quelle est la meilleur approximation?

Exercice supplémentaire 01 : Soit l'équation $e^{-x} - x = 0$.

- 1. Montrer que l'équation admet une racine dans [0.4, 0.7].
- 2. Appliquer la méthode de Newton-Raphson pour résoudre cette équation (Donner les trois premières itérations avec $x_0 = 0, 4$). Etudier la convergence de cette méthode.

Exercice supplémentaire 02 : Soit l'équation (E_2) $e^x - 4x^2 = 0$ avec $x \in \mathbb{R}$.

- 1. Montrer que (E_2) admet deux racines réelles de signe contraire. Localiser graphiquement les racines dans des intervalles de la forme [n, n+1] (n est un entier naturel).
- 2. Déterminer la racine négative (respectivement la racine positive sur [4,5]) en utilisant la méthode de point fixe avec une erreur inférieur à 10^{-2} .

Dr. I.Medjadj