FONDATIONS PROFONDES

Technologie

1. Classification suivant le mode d'exécution

(VOIR POLYCOPIE PAGE 27)

2. Classification suivant le mode de fonctionnement

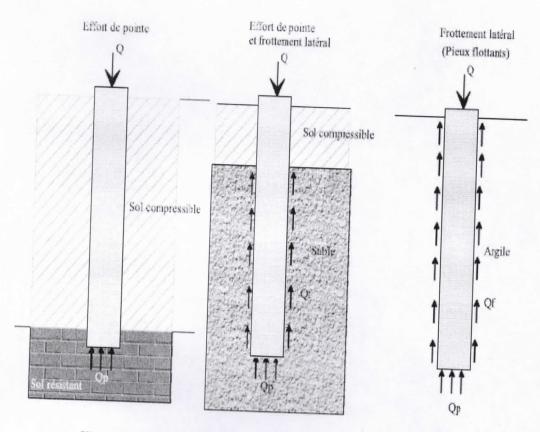


Figure 2-13: Classification suivant le mode de fonctionnement [20]

Évaluation de la charge limite d'un pieu isolé soumis à une force verticale

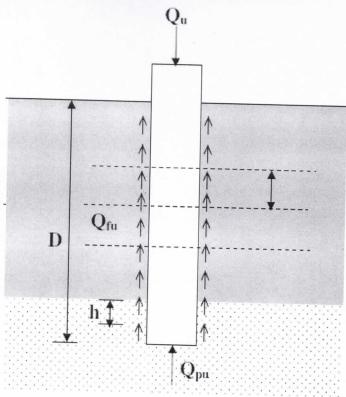


Figure 2-14 : Comportement général d'un pieu isolé soumis à une charge verticale.

$$Q_L = Q_P + Q_f \tag{2-1}$$

Qp: résistance de pointe Q_f: frottement latéral

2,7 < N (3,7

Methode de Calcul à partir des essais au laboratoin A: Methode statique (Théorie de la phasticile profeèle) Calcul de la charge de pointé 96 = 80 NO + 1,2 CNC Sp= Ap- 96 Ap section diroite BC32 cm Ng= 10 Nbg7 B < 32 N = 217

	ф°	α pour δ=φ	α pour φ=2/3φ		
	10	0,225	0,126		
	15	0,567	0,364		
	20	1,03	0,641		
3	25	1,81	1,10		
	30	3,21	1,28		
	35	5,85	3,27		
	40	11,3	5,90		
	45	23,7	11,4		

Tableau 2-2 : Valeurs de B'd'après Caquot Kérisel [6]

φ,	10	15	20	25	30	35	40	45
β'	1,6	2,06	2,70	3,62	5,01	7,27	10,36	17,97

Le charge nominale: QN= Qp + Qg

1.2 Méthodes basées sur l'interprétation d'essais in situ

1.2.1 Calcul par la méthode Pressiometrique

1.2.1.1 Détermination de la charge de pointe

Dans le cas des terrains homogènes « q_p » est obtenue à partir de la pression limite par la formule empirique suivante :

$$q_p = q_0 + k_p (P_L - P_0)$$

$$P_0 = k_0 (q_0 - u) + u$$

 \mathbf{q}_0 : Contrainte verticale totale au niveau de la pointe lorsque le pieu est en service,

P_L : Pression limite mesurée à ce même niveau

 P_0 : Contrainte horizontale totale mesurée à ce même niveau

u : Pression interstitielle au niveau considéré

 \mathbf{k}_0 : Coefficient de poussée des terres au repos, $k_0 = 1 - \sin \varphi = 0.5$

 k_p : facteur de portance

1.2.1.1.1 Détermination du facteur de portance k_{p}

La valeur de \mathbf{k}_p , facteur de portance, est fixée par le tableau ci-dessous en fonction de la **nature du sol et he** (voir fichier facteur de portance)

$$h_e = \sum \frac{h_i.P_{li}}{P_{le}} = \frac{1}{P_{le}}.\sum h_i.P_{li}$$

Dans le cas des terrains stratifiés (cas général), la pression limite « P_L » est remplacée par une pression limite équivalente « P_{Le} » obtenue par une moyenne géométrique mesuré mesurée entre le niveau « -3R et +3R » .

$$R = \frac{B}{2}$$
 (Rayon du pieu)

Si: 2R > 1m

$$P_{le} = \sqrt[n]{P_{l(-3R)}.P_{l(-2R)}......P_{l(1,R)}.P_{l(2,R)}.P_{l(3,R)}}$$

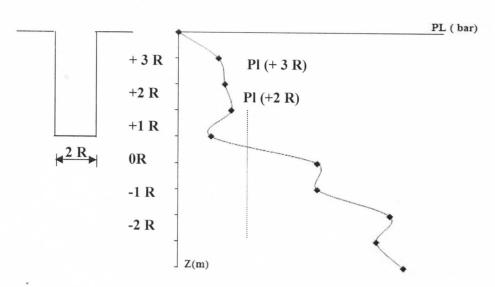


Figure Erreur! Il n'y a pas de texte répondant à ce style dans ce document.-1: Pression limite équivalente pour 2R > 1m

$$P_{le} = \sqrt{P_{l1}.P_{l2}.P_{l3}}$$

 P_{11} : Pression limite à 1 m au dessus de la base du pieu. P_{12} : Pression limite à 1 m au niveau de la base du pieu.

 P_{13} : Pression limite à 1 m au dessous de la base du pieu.

Profondeur d'encastrement he

$$h_e = \sum \frac{h_i . P_{li}}{P_{le}} = \frac{1}{P_{le}} . \sum h_i . P_{li}$$

Détermination du frottement latéral unitaire fu pour un élément de fondation à partir des essais au pressiomètre Menard

$$P_l^* = P_l - P_0$$

Calcul de la charge nominale Charge de pointe admissible :

$$Qp_a = Ap \left[q_0 + \frac{q_p - q_0}{3} \right]$$

F=3 coefficient de sécurité

Frottement latéral admissible :

$$Qf_a = \frac{p}{2} \sum f_{ui} . h_i$$

Ap : section droite de la pointe

P: périmètre du pieu