Exercise series $N^{\circ}02$

Exercise 1:

Let A, B, C be three parts of a set E, and a, b, c, d, e, f, g, h elements of E. Are these assertions true or false: 1.

 $g \in A \cap B; \qquad 2. \ g \in A \cup B; \qquad 3. \ f \in C \setminus A; \qquad 4. \ e \in A \cap B \cap C; \qquad 5. \ \{h,b\} \subset A \cap B; \qquad \qquad 7. \ \{a,f\} \subset A \cup C.$

Exercise 2:

Let E be a set and A, B, C be three elements of $\mathcal{P}(E)$.

- 1. Prove that, if $A \cap B = A \cup B$, then A = B.
- 2. Prove that, if $A \cap B = A \cap C$ and $A \cup B = A \cup C$, then B = C.
- 3. Does $C \subset A \cup B$ imply $C \subset A$ or $C \subset B$?

Exercise 3:

Let $f: \mathbb{R}_+ \longrightarrow [1, +\infty[, g: [1, +\infty[\longrightarrow \mathbb{R}_+ \text{ such that } f(x) = x^2 + 1 \text{ and } g(x) = \sqrt{x-1}]$. Is $f \circ g = g \circ f$?

Exercise 4:

Let the following functions be: $f: \mathbb{N} \to \mathbb{N}$ with f(n) = n+2; $g: \mathbb{Z} \to \mathbb{Z}$ with g(n) = n+2.

- 1. Determine $f(\{0,1,2\}), f^{-1}(\{0\}), g^{-1}(\{1\}).$
- 2. Is the function f bijective? Justify.
- 3. Is the function g bijective? Justify.

Exercise 5:

Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by:

$$f(x) = x^2 - 1$$

- 1. Find the direct image $f(\{-1,1\})$. What can you conclude?
- 2. Find the inverse image $f^{-1}(\{-2\})$. What can you conclude?
- 3. Prove that $f([0,\infty)) = [-1,\infty)$.

4. Let $g:[0,\infty)\to[-1,\infty)$ be the function defined by g(x)=f(x). Prove that g is bijective and determine its inverse g^{-1} .

Exercise 6:

Let $f: \mathbb{R} \to \mathbb{R}$ be the function defined by:

$$f(x) = \frac{x^2}{1 + x^2}$$

- 1. Find the direct image f(A) of $A = \{-1, 0, 1\}$ under f.
- 2. Find the inverse image $f^{-1}(B)$ of $B = \{-1\}$ under f.
- 3. Is f injective? Surjective? Justify your answer.
- 4. Consider the function $g:(-\infty,0]\to [0,1]$ defined by:

$$g(x) = f(x), \quad \forall x \in (-\infty, 0].$$

Show that g is bijective and define its inverse g^{-1} .

Exercise 7:

In the following cases, determine f(I), then verify that f realise a bijection from I to J = f(I), then precise f^{-1} .

1.
$$f(x) = \sqrt{2x+1} - 1$$
, $I =]\frac{-1}{2}$, $+\infty[$.

2.
$$f(x) = \frac{1}{1+x^2}$$
, $I = [0, +\infty[$.

3.
$$f(x) = \frac{1}{\sqrt{x^2 + 2x + 2}}, \quad I = [-1, +\infty[.$$

Exercise 8:

Prove that the function

$$f: \mathbb{R} \longrightarrow \mathbb{R}_+^*$$
$$x \longmapsto \frac{e^x + 2}{e^{-x}}$$

is a bijection. Compute its reciprocal bijection f^{-1} .

Exercise 9:

Let f from E to E be an application such that:

$$f(f(E)) = E$$

Show that f is onto.