University of science and technology Oran M-B

Academic year 2023/2024

Department of Mathematics

Algebra 1

Exercise series $N^{\circ}02$

Exercise 1:

- 1. Let $E = \{a, b, c, d\}$ be a set, can we write the following (1) $a \in E$, (2) $a \subset E$, (3) $\{a\} \subset E$, (4) $\emptyset \in E$, (5) $\emptyset \subset E$. Give the power set of E.
- 2. Let $A =]-\infty, 2[, B =]-2, 6[$, and $C =]-4, +\infty[$ three sets of \mathbb{R} . Determine $A \cap B, A \cup B, B \cap C, A^c, A^c \cap B^c, A|B$.

Exercise 2:

Let $f : \mathbb{R}_+ \longrightarrow [1, +\infty[, g : [1, +\infty[\longrightarrow \mathbb{R}_+ \text{ such that } f(x) = x^2 + 1 \text{ and } g(x) = \sqrt{x-1}.$ Is $f \circ g = g \circ f$? Exercise 3:

Let $g: \mathbb{Z} \longrightarrow \mathbb{N}$ be a function such that g(n) is the number of positif divisors of n.

- 1. Is g an application?
- 2. Determine $g(\{-18, 0, 1, 3\}), g^{-1}(\{0, 1, 2, 3\})$ and graph $G_g(n \in \mathbb{Z} : |n| \le 2)$.
- 3. Determine the restriction of g on P "the set of prime numbers"

Exercise 4:

Are the following functions injective? surjective?

- 1. $f: \mathbb{N} \longrightarrow \mathbb{N}, n \longmapsto n+1;$
- 2. $f : \mathbb{Z} \longrightarrow \mathbb{Z}, n \longmapsto n+1;$
- 3. $f : \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto x^2 + 1;$

Exercise 5:

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = \frac{2x}{1+x^2}$

- 1. Is f injective? surjective?
- 2. Prove that $f(\mathbb{R}) = [-1, 1]$.
- 3. Prove that the restriction $g: [-1,1] \longrightarrow [-1,1]$ such that g(x) = f(x) is a bijection.
- 4. Prove the previous results using the study of variations of f.

Exercise 6:

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = x^2 + x - 2$

- 1. Define and compute $f^{-1}(4)$.
- 2. Is f bijective?
- 3. Define and compute f([-1, 1]) and $f^{-1}([-2, 4])$.

Exercise 7:

Let $f: \mathbb{Z} \longrightarrow \mathbb{Q}$ a function defined by $f(x) = \frac{x}{2}$

- 1. Determine $f(\mathbb{Z})$, $f^{-1}(B)$ such that $B = \{\frac{5}{3}\}$.
- 2. Is f injective? surjective?

Exercise 8:

In the following cases, determine f(I), then verify that f realise a bijection from I to J = f(I), then precise f^{-1} .

1. $f(x) = \sqrt{2x+3}$ -2, $I =]\frac{-3}{2}, +\infty[$. 2. $f(x) = \frac{1}{1+x^2}, \quad I = [0, +\infty[$. 3. $f(x) = \frac{1}{\sqrt{x^2+2x+2}}, \quad I = [-1, +\infty[$.

Exercise 9:

Prove that the function

$$f: \mathbb{R} \longrightarrow \mathbb{R}^*_+$$
$$x \longmapsto \frac{e^x + 2}{e^{-x}}$$

is a bijection. Compute its reciprocal bijection f^{-1} .

Exercise 10:

Let $f: E \longrightarrow F$ be an application, and let A and B be two subsets of E, and C, D be two subsets of F. Show that

- (a) If $A \subset B$, then $f(A) \subset f(B)$.
- (b) $f(A \cup B) = f(A) \cup f(B)$ and $f(A \cap B) \subset f(A) \cap f(B)$.
- (c) If $C \subset D$, then $f^{-1}(C) \subset f^{-1}(D)$.
- (d) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ and $f^{-1}(C \cap D) \subset f^{-1}(C) \cap f^{-1}(D)$.