# 2.2 Functions and Applications

### 2.2.1 Functions

**Definition 2.2.1.** A correspondence f from E to F is called a function if every element x in E has at most one image y in F.

- We say that E is the domain or (the source set), and F is called the codomain or (the target set).
- The element associated to x by f, is called the image of x and it is noted f(x) (means y = f(x)).
- The domain of definition of a function f (denoted by  $D_f$ ) is the set of elements x of E for which f(x) exists.

**Examples 2.2.2.** 1. The correspondence f that associates each natural number with the corresponding month is a function from  $\mathbb{N}$  to the set

 $B = \{January, February, March, April, May, June, July, August, September, October, November, December\}.$ 

In this case, f(2) = february, and f(15) does not exist.

$$D_f = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$$

- 2. The correspondence that associates each month with the possible number of days in the month is not a function from the set B in the previous example to  $\mathbb{N}$ , because it associates two elements, 28 and 29, to February.
- 3. The correspondence g that associates each integer with its square is indeed a function, and we can write it as  $g : \mathbb{N} \longrightarrow \mathbb{N}$ , for g(n) = 2n, the domain of g is  $D_g = \mathbb{N}$ .

#### Definition 2.2.3. Let

$$f: E \longrightarrow F$$
  
 $x \longmapsto f(x)$ 

be a function, where A is a subset of E and B is a subset of F.

1. The image of A by f is

$$f(A) = \{ f(x), \ x \in A \cap D_f \}.$$

2. The preimage (or inverse image) of B by f is

$$f^{-1}(B) = \{x \in E, \ f(x) \in B\}.$$

3. Let  $f: E \longrightarrow F$ , if  $A \subset E$ , we call graph of A, and we note it  $G_f(A)$ , the subset of  $E \times F$  formed by the couples (x, f(x)) such that  $x \in A \cap D_f$ . Which means

$$G_f(A) = \{(x, f(x)) \in E \times F/x \in A \cap D_f\}.$$

**Examples 2.2.4.** 1. If we take the function given in the previous Example (2.2.2), we will have:  $G_f(\{1,4\}) = \{(1, January), (4, April)\}$   $f(2\mathbb{N}) = \{August, October, February, April, June, December\}$  $D_f = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}, \text{ and } f^{-1}(\{June, December\}) = \{6, 12\}.$ 

- 2. Let  $g: \mathbb{N} \longrightarrow \mathbb{N}$  be a function such that  $g(n) = n^2$ .  $G_g = \{(n, n^2)/n \in \mathbb{Z}\}$   $g(\{-1, 1, 0, 2, 3\}) = \{0, 1, 4, 9\}, g^{-1}(\{9\}) = \{-3, 3\}.$
- 3. Let  $h : \mathbb{R} \longrightarrow \mathbb{R}$  defined by  $h(x) = \frac{1}{x}$ .  $G_h = \{(x, \frac{1}{x})/x \in \mathbb{R}^*\}, \ h([-1, 2]) = ]-\infty, -1] \cup [\frac{1}{2}, +\infty[, \ and h^{-1}([2, 3]) = [\frac{1}{3}, \frac{1}{2}].$

## 2.2.2 Representations of Functions

The representation of a function  $f: E \longrightarrow F$  depends on the nature of the sets E and F. The most commonly used representations are as follows

1. Representation using a formula.

Example: Let's consider the function  $g: \mathbb{Z} \longrightarrow \mathbb{N}$  such that  $g(n) = n^2$ .

2. Representation using a table of values (useful when A is finite).

Example: Let's consider the function  $h: \{-2, -1, 0, 1, 2\} \longrightarrow \mathbb{N}$  such that:

| n    | -2 | -1 | 0 | 1 | 2 |
|------|----|----|---|---|---|
| h(n) | 4  | 1  | 3 | 1 | 0 |

3. Representation using a graph. Representation using a formula. Example: Let's consider the function  $k : \mathbb{R} \longrightarrow \mathbb{R}$  such that  $k(x) = x^2$ .



Figure 2.1: The graph of  $k(x) = x^2$ .

**Definition 2.2.5.** (Composition of functions) The composition of the function  $f: E \longrightarrow F$  and the function  $g: F \longrightarrow G$  is the function

$$g \circ f : E \longrightarrow G$$
  
 $x \longmapsto g(f(x)).$ 

**Example 2.2.6.** Let the functions f, g defined from  $\mathbb{R}$  to  $\mathbb{R}$  given by f(x) = 3x - 2 and  $g(x) = x^2$ . The composition of f followed by g is the function  $g \circ f : \mathbb{R} \longrightarrow \mathbb{R}$ , such that  $g \circ f(x) = g(f(x)) = (3x - 2)^2$ .

### 2.2.3 Applications

**Definition 2.2.7.** A function f is an application if every element of E has (exactly) one image in F. We denote by  $\mathcal{F}(E,F)$  the set of all applications from E to F. A function f is an application if and only if its domain of definition is all of E.

**Examples 2.2.8.** 1. The function  $g : \mathbb{Z} \longrightarrow \mathbb{N}$ , defined by  $g(n) = n^2$ , is a mapping from  $\mathbb{Z}$  to  $\mathbb{N}$ .

- 2. The function  $f: \mathbb{R} \longrightarrow \mathbb{R}$ , defined by  $f(x) = \frac{1}{x}$  is not a mapping (application) because  $D_f = \mathbb{R}^* \neq \mathbb{R}$ .
- 3. The function  $Id_E: E \longrightarrow E$ , defined by  $Id_E(x) = x$ , is a specific mapping called the identity mapping of E.

### 2.2.4 Restriction and Extension

Let  $f: E \longrightarrow F$  be a mapping.

- 1. The restriction of f to a subset  $E_0$  of E is the mapping  $g: E_0 \longrightarrow F$  defined by g(x) = f(x) for all  $x \in E_0$  (g is often denoted as  $f_{|E_0}$ ).
- 2. The extension of f to a set  $\tilde{E}$  containing E is the function  $h: \tilde{E} \longrightarrow F$  defined by h(x) = f(x) for all  $x \in E$ .

**Example 2.2.9.** Let the mapping  $f : \mathbb{Z} \longrightarrow \mathbb{N}$  be defined by f(n) = |n|. The restriction of f to  $\mathbb{N}$  is the identity mapping  $Id_{\mathbb{N}}$ . We can also say that the mapping f is an extension of  $Id_{\mathbb{N}}$ .

Remark 2.2.10. The restriction is always unique, but an extension is not unique.

## 2.2.5 Equality of mappings

Two mappings  $f: E \longrightarrow F$  and  $g: E' \longrightarrow F'$  are equal if E = E', F = F', and for all  $x \in E$ , we have f(x) = g(x). In this case, we write f = g.

**Example 2.2.11.** The mappings f and g defined from  $\mathbb{N}$  to  $\mathbb{Z}$  by  $f(n) = cos(\pi n)$  and  $g(n) = (-1)^n$  are equal, and we can write f = g.

**Proposition 2.2.12.** Let  $f: E \longrightarrow F$  be an application.

- 1. Let A and B be two subsets of F. Then
  - (a) If  $A \subset B$ , then  $f^{-1}(A) \subset f^{-1}(B)$ .
  - **(b)** We always have  $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ .
  - (c) We always have  $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ .
- 2. Let A and B be two subsets of E. Then
  - (a) If  $A \subset B$ , then  $f(A) \subset f(B)$ .
  - **(b)** We always have  $f(A \cup B) = f(A) \cup f(B)$ .
  - (c) We always have  $f(A \cap B) \subset f(A) \cap f(B)$ .
- 3. (a) If A is a subset of E, then  $A \subseteq f^{-1}(f(A))$ .
  - **(b)** If B is a subset of F, then  $f(f^1(B)) \subseteq B$ .