2.2.6 Injection, Surjection, Bijection

Definition 2.2.13. (injection" one to one") Let E and F be two sets, and let $f: E \longrightarrow F$ be a function.

f is injective if every element of F has at most one pre-image in E. In other words:

$$\forall x, y \in E, \ f(x) = f(y) \Rightarrow x = y.$$

Also, it can be written using the contrapositive as follow

$$\forall x, y \in E, \ x \neq y \Rightarrow f(x) \neq f(y).$$

Examples 2.2.14. 1. The function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that f(x) = 3x + 1 is one to one, since

$$f(x) = f(y) \text{ implies } 3x + 1 = 3y + 1. \text{ Hence } x = y.$$

- 2. The function $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ such that $f(x) = \frac{1}{x}$ is one to one, since f(x) = f(y) implies $\frac{1}{x} = \frac{1}{y}$. Hence x = y.
- 3. The function $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ such that $f(x) = x^2$ is not one to one, since f(-1) = f(1).

Theorem 2.2.15. Let $f: E \longrightarrow F$ be a function. The following assertions are equivalents

- 1. f is injective.
- 2. For all $(x, y) \in E^2$, $x \neq y$ implies $f(x) \neq f(y)$.
- 3. For all $b \in F$, the equation f(x) = b has at most one solution x.

Proof: To prove this theorem, it is sufficient to prove $1) \Rightarrow 2) \Rightarrow 3) \Rightarrow 1$.

- 1) \Rightarrow 2), this implication can be obtained easily by using the contrapositive of the injectivity definition.
- 2) \Rightarrow 3), suppose that the equation f(x) = b has two solutions x, y or more, which means $x \neq y$, using 2), we get $f(x) \neq f(y)$, i.e., $b \neq b$ which is a contradiction. Hence, the equation f(x) = b has at most one solution.

• 3) \Rightarrow 1), Let $x, y \in E$ such that f(x) = f(y), then x is a solution of f(x) = b, $b \in F$, and also y is a solution of f(y) = b. Using 3), x can't be different of y, which means x = y. Hence, f is injective.

Definition 2.2.16. (Surjection" Onto") f is surjective if every element of F has at least one pre-image in E. In other words:

$$\forall y \in F, \ \exists x \in E, f(x) = y.$$

Examples 2.2.17. 1. The function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that f(x) = 3x + 1 is surjective, since

$$\forall y \in \mathbb{R}, \ \exists x = \frac{y-1}{3} \in \mathbb{R}, f(x) = y.$$

- 2. The function $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ such that $f(x) = \frac{1}{x}$ is not surjective, since y = 0 has no antecedent.
- 3. The function $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ such that $f(x) = x^2$ is surjective, since

$$\forall y \in \mathbb{R}^+, \ \exists x = \pm \sqrt{y} \in \mathbb{R}, f(x) = y.$$

Theorem 2.2.18. Let $f: E \longrightarrow F$ be a function. The following assertions are equivalents

- 1. f is surjective.
- 2. f(E) = F.
- 3. For all $b \in F$, the equation f(x) = b has at least one solution x.

Proof:

• Show that 1) implies 2). If f is surjective, then for every y in F, there exists x in E such that y = f(x). Thus, y is in f(E), and since f(E) is a subset of F, it follows that 2) holds.

• Show that 2) implies 3). If 2) holds, then for every $b \in F$, there exists at least one x in E such that b = f(x), which means x is a solution to the equation.

• Show that 3) implies 1). If 3) holds, then for every y in F, there is at least one solution x to the equation f(x) = y, which means x is a pre-image of y.

Definition 2.2.19. (Bijection) f is bijective if it is both injective and surjective (every element of F has exactly one pre-image in E).

Examples 2.2.20. 1. The function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that f(x) = 3x + 1 is bijective, since it is injective and surjective.

- 2. The function $f: \mathbb{R}^* \longrightarrow \mathbb{R}$ such that $f(x) = \frac{1}{x}$ is not bijective, since it is not surjective.
- 3. The function $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ such that $f(x) = x^2$ is not bijective, since it is not injective.

Theorem 2.2.21. Let $f: E \longrightarrow F$ be a function. The following assertions are equivalents

- 1. f is bijective.
- 2. For all $b \in F$, the equation f(x) = b has a unique solution x.

Proof: A function is bijective if and only if the equation y = f(x) has at least (see Theorem 2.2.15) and at most (see Theorem 2.2.18) one solution, hence a unique solution.

2.2.6.1 Reciprocal application of a bijective function

Definition 2.2.22. Let $f: E \longrightarrow F$ be a bijective function. The reciprocal application of f, denoted by f^{-1} , is defined as $f^{-1}: F \longrightarrow E$, where $f^{-1}(y) = x$, and x is the antecedent of y by f (i.e., f(x) = y).

Example 2.2.23. The bijection f defined from \mathbb{R} to \mathbb{R} by f(x) = 3x + 1, its reciprocal application is defined from \mathbb{R} to \mathbb{R} by $f^{-1}(x) = \frac{x-1}{3}$.

Theorem 2.2.24. Let $f: E \longrightarrow F$ be a bijective function. Then

- (a) The reciprocal application f^{-1} is bijective and $(f^{-1})^{-1} = f$.
- **(b)** $f \circ f^{-1} = Id_F \text{ and } f^{-1} \circ f = Id_E.$

Proof:

- (a) For each $x \in E$, the equation $f^{-1}(y) = x$ has a unique solution y = f(x) and it is unique because another solution y' can only be f(x). Then, according to Theorem 2.2.21, f^{-1} is bijective. Moreover, $(f^{-1})^{-1} : E \longrightarrow F$ and $(f^{-1})^{-1}(x) = y$ since $f^{-1}(y) = x$. Therefore, $(f^{-1})^{-1} = f$.
- (b) We have $f: E \longrightarrow F$ and $f^{-1}: F \longrightarrow E$, then $f \circ f^{-1}: F \longrightarrow F$. Also, $f \circ f^{-1}(y) = f(x) = y = Id_F(y)$, hence the equality $f \circ f^{-1} = Id_F$. Similarly, it can be shown that $f^{-1} \circ f = Id_E$.

Theorem 2.2.25. (Bijection Theorem) Let I be an interval in \mathbb{R} . Let $f: I \to \mathbb{R}$. We assume that f is continuous and strictly monotonic on I. Then

- f establishes a bijection from I to the interval J = f(I).
- f^{-1} is monotonically increasing on J, with the same direction of variation as f, and $f^{-1}: J \to I$ with $f^{-1}(y) = x$ (x is the antecedent of y by f).