1.3 Logical reasoning for proofs

There are many ways to prove mathematical statements. Here we will outline some usual techniques.

Direct reasoning

To show that the logical implication $P \Rightarrow Q$ is true, we need to assume that P is true and demonstrate that Q is true as a result. Which means, suppose that P is true (assumption). Use logical laws and reasoning to deduce Q from P.

Example 1.3.1. Prove that, if $a, b \in \mathbb{Q}$, $a + b \in \mathbb{Q}$.

We have $a, b \in \mathbb{Q}$, means $a = \frac{p}{q}$ and $b = \frac{p'}{q'}$, with $p, p' \in \mathbb{Z}$ and $q, q' \in \mathbb{Z}^*$ then

$$a+b=rac{pq'+p'q}{qq'}\in\mathbb{Q},\ (pq'+p'q\in\mathbb{Z}\ and\ qq'\in\mathbb{Z}^*).$$

Case by case reasoning

To verify an assertion P(x) for all $x \in E$, we prove the assertion for x belonging to a set A of E, then for the x that doesn't belong to A. This is the disjunction method or case by case.

Example 1.3.2. Prove that $\forall n \in \mathbb{N}$, $\frac{n(n+1)}{2}$ is an integer.

We distinct two cases

(a) If n is even, then n = 2k, and n + 1 = 2k + 1 with $k \in \mathbb{N}$, which means

$$\frac{n(n+1)}{2} = k(2k+1),$$

which is clearly an integer number.

(b) If n is odd, then n = 2k + 1, and n + 1 = 2k + 2 = 2(k + 1) with $k \in \mathbb{N}$, which means

$$\frac{n(n+1)}{2} = (k+1)(2k+1),$$

which is also an integer number.

Contrapositive reasoning

Contrapositive reasoning is a logical method based on the principle that if a logical implication is true, then its contrapositive is also true. Consider a logical implication of the form "If P, then Q" (P implies Q). The contrapositive of this implication is "If not Q, then not P" (\overline{Q} implies \overline{P}). To demonstrate the validity of the initial implication, we can prove that its contrapositive is true. Contrapositive reasoning is useful when a direct proof of the initial implication is difficult. By proving the contrapositive, we can obtain a simpler or more direct proof.

Example 1.3.3. Let a, b > 0. Prove that, if $a \neq b$ then $\frac{a}{b+1} \neq \frac{b}{a+1}$.

The contrapositive of this proposition is "if $\frac{a}{b+1} = \frac{b}{a+1}$ then a = b"

$$\frac{a}{b+1} = \frac{b}{a+1} \Rightarrow a(a+1) = b(b+1)$$
$$\Rightarrow (a-b)(a+b+1) = 0.$$

This implies a - b = 0 or a + b + 1 = 0. Since a, b > 0, then a = b.

Contradiction reasoning

Proof by contradiction is a logical method used to prove a proposition by initially assuming its negation and then demonstrating that it leads to a contradiction or an absurdity.

Example 1.3.4. proof that $\sqrt{2}$ is not a rational number.

Suppose that $\sqrt{2} = \frac{m}{n}$, with pgcd(m,n) = 1, so that $2n^2 = m^2$. Which means that m^2 is even, this implies that m is even. which means m = 2k, $k \in \mathbb{Z}$. Then $2n^2 = 4k^2$, which implies that $n^2 = 2k^2$. Hence, m^2 is even, this implies that n is even. Therefore, 2 is a comon divisors for n and m, which is a contradiction with pgcd(m,n) = 1.

Reasoning by counter-example

The reasoning by counterexample is a logical method used to refute a proposition or statement by presenting a concrete example that contradicts it. If we need to prove an

assertion of the form $\forall x \in E$, P(x) is true, we need to prove P(x) true for all $x \in E$. However, if we want to prove that this assertion is false, then we need to find $x \in E$ such that P(x) is false.

Example 1.3.5. Prove that the following assertion is false "Every positif integer is the sum of three squares."

Let a = 7 an integer number. However, the squares less than 7 are just 1 and 4, which means 7 can't be the sum of three squares. Hence, the propositions is false.

Induction reasoning

Induction is a method of mathematical proof used to establish that a statement P(n) holds true for all natural numbers.

The process of mathematical induction consists of three main steps:

- 1. We prove that the statement is true for the first value, n_0 . This serves as the base case for the induction.
- 2. We assume that the statement is true for an arbitrary value k, which is known as the inductive hypothesis.
- 3. We prove that if the statement is true for k, it is also true for k+1. This completes the induction step.

Example 1.3.6. Prove that $1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$.

Note the proposition $1 + 2 + 3 + ... + n = \frac{1}{2}n(n+1)$ by (P_n) . Let n = 1, P_1 is true $(1 = \frac{1}{2}(1)(2))$.

Suppose that (P_n) is true and prove that (P_{n+1}) is true.

$$(P_{n+1}): 1+2+3+\ldots+n+(n+1)=\frac{1}{2}(n+1)(n+2).$$

We have

$$1+2+3+\ldots+n+(n+1) = \frac{1}{2}n(n+1)+(n+1)$$
$$= (n+1)(\frac{1}{2}n+1)$$
$$= \frac{1}{2}(n+1)(n+2).$$

Which means (P_{n+1}) is true. Then the proposition (P_n) is true.