Chapter 3

Relations

3.1 Generalities of relations

Definition 3.1.1. A relation from a set A to a set B is any correspondence \mathcal{R} that links elements of A to elements of B in a certain way.

- 1. We call A the domain and B the codomain of relation R.
- 2. If x is linked to y by relation \mathcal{R} , we say that x is in relation \mathcal{R} with y, and we write $x\mathcal{R}y$ or $\mathcal{R}(x,y)$. Otherwise, we write $x\mathcal{R}(y)$ or $\mathcal{R}(x,y)$.
- 3. A relation from A to A is called a relation on A.
- **Examples 3.1.2.** 1. Let A be the set of university professors in Usto, and B the set of students in Usto university. We can determine a relation \mathcal{R} from A to B by defining that $(x,y) \in A \times B$ satisfies $x\mathcal{R}y$ if and only if x teaches y.
 - 2. Let $A = B = \mathbb{Z}$. We can determine a relation \mathcal{R} on \mathbb{Z} by defining that $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ satisfies $\mathcal{R}(x, y)$ if and only if x y is even. We have, for example, $1\mathcal{R}9$ but $14 \mathcal{R}3$.

Definition 3.1.3. (Graph of a relation) The graph of \mathcal{R} (denoted $G_{\mathcal{R}}$) is the set defined by

$$G_{\mathcal{R}} = \{(x, y) \in A \times B \mid x\mathcal{R}y\}.$$

For example, considering the relation R from the previous example, we have $(1,7) \in G_{\mathcal{R}}$ and $(18,7) \notin G_{\mathcal{R}}$.

Example 3.1.4. Given two relations $\mathcal{R} = (A, B, G_{\mathcal{R}})$ and $\mathcal{R}' = (A', B', G_{\mathcal{R}'})$, the statement "the relations \mathcal{R} and \mathcal{R}' are equal" means that A = A', B = B', and $G_{\mathcal{R}} = G_{\mathcal{R}'}$ same source, same target, and same graph.

3.2 Representation of a binary relation

We are once again interested in binary relations on two given sets A and B.

- 1. Set representation: Simply list the pairs satisfying the relation.
- 2. Representation using a sagittal diagram: A diagram with two curves for arbitrary A and B (one curve for the source A and the other for the target B). When A = B, you can either keep the two-curve representation or bring everything together in a single curve representing A. This latter view is often very instructive.
- 3. Representation using a formula: For example, the relation \mathcal{R} on \mathbb{R} such that $x\mathcal{R}y$ if and only if $x^2 = y^2$.

3.3 Properties of a Binary Relation on a Set

We now focus on a binary relation where the source coincides with the target. Thus, we have a relation on a given set A. Here, we explore the main properties that such a binary relation may or may not possess.

Definition 3.3.1. Let \mathcal{R} be a (binary) relation on a set A. We say that \mathcal{R} is:

- 1. Reflexive, for every $a \in A$, we have aRa.
- 2. Symmetric, for every pair $(a,b) \in A^2$, if $a\mathcal{R}b$, then $b\mathcal{R}a$.
- 3. Transitive, for every triplet of elements $a, b, c \in A$, if $(aRb \ and \ bRc)$, then (aRc).

4. Antisymmetric, for every $(a,b) \in A^2$, if $(a\mathcal{R}b \text{ and } b\mathcal{R}a)$, then (a=b).

Examples 3.3.2. Let $A = B = \mathbb{Z}$, and $\mathcal{R} = (a, b) \in \mathbb{Z}^2$, 2|(a - b). Then \mathcal{R} is reflexive, symmetric, transitive, but not antisymmetric.

Given the set \mathcal{U} , the inclusion relation, which relates subsets of \mathcal{U} as follows $(X \subseteq Y)$, is reflexive, transitive, and antisymmetric, but not symmetric.

Let the relation \mathcal{R} be defined on \mathbb{Z} as follows: $a\mathcal{R}y \Leftrightarrow a$ divides y.

- (a) For any $a \in \mathbb{Z}$, we have a divides a. So, for all $a \in \mathbb{Z}$, aRa holds, which means R reflexive.
- (b) For $x, y \in \mathbb{Z}$, $x\mathcal{R}y$ implies $(x \text{ divides } y) \Rightarrow (y \text{ divides } x)$. For example, 1 divides 4, but 4 does not divide 1, hence \mathcal{R} is not symmetric.
- (c) Let $x, y \in \mathbb{Z}$, we have $(x\mathcal{R}y)$ and $(y\mathcal{R}x) \Rightarrow ((x \text{ divides } y) \text{ and } (y \text{ divides } x)) \Rightarrow x = y$, for example, (1 divides -1) and (-1 divides 1), but $-1 \neq 1$, hence \mathcal{R} is not antisymmetric.
- (d) For $x, y, z \in \mathbb{Z}$, if $(x\mathcal{R}y)$ and $(y\mathcal{R}z) \Rightarrow ((x \text{ divides } y) \text{ and } (y \text{ divides } z)) \Rightarrow (x \text{ divides } z)$, then $x\mathcal{R}z$. Thus, \mathcal{R} is transitive.

3.4 Equivalence Relation

Definition 3.4.1. Let \mathcal{R} be a relation on a set A.

- 1. \mathcal{R} is called an equivalence relation if \mathcal{R} is reflexive, symmetric, and transitive.
- 2. If \mathcal{R} is an equivalence relation, then
 - (a) For each $a \in A$, the set $\dot{a} = \{x \in A | xRa\}$ is called the equivalence class of a modulo R.
 - (b) The set $A_{/\mathcal{R}} = \{\dot{a} | a \in A\}$ is called the quotient set of A by \mathcal{R} .

Examples 3.4.2. 1. The relation \mathcal{R} given over \mathbb{R} by the following formula $x\mathcal{R}y$ if and only if $x^2 = y^2$ is an equivalence relation, and $\dot{0} = \{0\}$, and for $a \neq 0$, $\dot{a} = \{a, -a\}$. $\mathbb{R}_{|\mathcal{R}} = \{\{0\}, \{a, -a\}, a > 0\}$.

2. Let \mathcal{R}_n be a relation of congruence modulo n defined on \mathbb{Z} by $x\mathcal{R}_n y$ if and only if n divides y - x, is indeed an equivalence relation.

For this relation, we have

$$\dot{a} = \{x \in \mathbb{Z}/n \text{ divides } x - a\}$$

$$= \{x \in \mathbb{Z}/x = nq + a, \ q \in \mathbb{Z}\}$$

noted $n\mathbb{Z} + a$.

In this case $\mathbb{Z}_{|\mathcal{R}_n} = \{n\mathbb{Z} + a, a \in \mathbb{Z}\}$ which is identified by $\mathbb{Z}_{|n\mathbb{Z}}$.

Remark 3.4.3. The class \dot{a} is also denoted as \bar{a} , [a], and Cl(a).

If x is in an equivalence relation with y, we say that x and y are equivalent.

Theorem 3.4.4. Let \mathcal{R} be an equivalence relation on a non-empty set A, then

- 1. Every element of A is in an equivalence class. That is, $A = \bigcup \dot{a}$, where $a \in A$.
- 2. Two elements are equivalent if and only if they belong to the same class. That is, for all $a, x \in A$, $a\mathcal{R}x$ if and only if $\dot{a} = \dot{x}$.
- 3. Any equivalence classes are disjoint or coincide. That is, for all $a, x \in A$, $\dot{a} \cap \dot{x} = \emptyset$ or $\dot{a} = \dot{x}$.
- 4. The equivalence classes form a partition of A. That is, every element in A belongs to exactly one equivalence class, and the union of all equivalence classes covers A entirely.

Proof:

1. Every element $a \in A$ verify $a \mathcal{R} a$, which means $a \in \dot{a}$.

2. Suppose that $a\mathcal{R}x$ and let $y \in \dot{a}$, then $y\mathcal{R}a$. Thus, by transitivity $z\mathcal{R}x$, so $y \in \dot{x}$. Then $\dot{a} \subset \dot{x}$. Similarly, $\dot{x} \subset \dot{a}$. Inversely, if $\dot{a} = \dot{x}$, we take an element $y \in \dot{a} = \dot{x}$, satisfies $a\mathcal{R}y$ and $y\mathcal{R}x$. Thus, by

- 3. Suppose the opposite, means $\dot{a} \cap \dot{x} \neq \emptyset$ and $\dot{a} \neq \dot{x}$. Thus, $\exists y \in A$ satisfies $a\mathcal{R}y$ and $y\mathcal{R}x$. Thus, by transitivity, we get $a\mathcal{R}x$ and using (2), we conclude that $\dot{a} = \dot{x}$, which is a contradiction with $\dot{a} \neq \dot{x}$.
- 4. Due to (1), we have $\dot{a} \neq \emptyset$ and $A = \cup \dot{a}$, where $a \in A$, and using (3) $\dot{a} \cap \dot{b} = \emptyset$ if $\dot{a} \neq \dot{b}$. Consequently, the equivalence classes form a partition of A.

Example 3.4.5. If n = 3, we have $\mathbb{Z}_{|3\mathbb{Z}} = \{\dot{0},\dot{1},\dot{3}\} = \{\dot{3},\dot{1},\dot{2}\} = \{\dot{-3},\dot{4},\dot{5}\}.$

transitivity, we get $a\mathcal{R}x$.