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Chapter 3

Relations

3.1 Generalities of relations

Definition 3.1.1. A relation from a set A to a set B is any correspondence R that links

elements of A to elements of B in a certain way.
1. We call A the domain and B the codomain of relation R.

2. If x 1s linked to y by relation R, we say that x is in relation R with y, and we write

TRy or R(x,y). Otherwise, we write x R(y) or R(z,y).
3. A relation from A to A is called a relation on A.

Examples 3.1.2. 1. Let A be the set of university professors in Usto, and B the set
of students in Usto university. We can determine a relation R from A to B by

defining that (x,y) € A x B satisfies xRy if and only if x teaches y.

2. Let A= B =7Z. We can determine a relation R on Z by defining that (v,y) € ZXZ
satisfies R(z,y) if and only if v —y is even. We have, for ezample, 1R9 but 14 R3.

Definition 3.1.3. (Graph of a relation) The graph of R (denoted Gr) is the set defined

by
Gr ={(z,y) € Ax B| 2Ry}
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For example, considering the relation R from the previous example, we have (1,7) €

Gr and (18,7) ¢ Gg.

Example 3.1.4. Given two relations R = (A, B,Gr) and R' = (A’, B',Gr/), the state-
ment "the relations R and R’ are equal” means that A = A', B = B’, and Gr = Gr/

same source, same target, and same graph.

3.2 Representation of a binary relation

We are once again interested in binary relations on two given sets A and B.
1. Set representation: Simply list the pairs satisfying the relation.

2. Representation using a sagittal diagram: A diagram with two curves for arbitrary
A and B (one curve for the source A and the other for the target B). When A = B,
you can either keep the two-curve representation or bring everything together in a

single curve representing A. This latter view is often very instructive.

3. Representation using a formula: For example, the relation R on R such that 2Ry

if and only if 2% = 9.

3.3 Properties of a Binary Relation on a Set

We now focus on a binary relation where the source coincides with the target. Thus,
we have a relation on a given set A. Here, we explore the main properties that such a

binary relation may or may not possess.

Definition 3.3.1. Let R be a (binary) relation on a set A. We say that R is:
1. Reflexive, for every a € A, we have aRa.
2. Symmetric, for every pair (a,b) € A2, if aRb, then bRa.

3. Transitive, for every triplet of elements a,b,c € A, if (aRb and bRc), then (aRc).
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4. Antisymmetric, for every (a,b) € A%, if (aRb and bRa), then (a =b).

Examples 3.3.2. Let A= B =17, and R = (a,b) € Z?, 2|(a —b). Then R is reflexive,
symmetric, transitive, but not antisymmetric.

Given the set U, the inclusion relation, which relates subsets of U as follows (X CY), is
reflexive, transitive, and antisymmetric, but not symmetric.

Let the relation R be defined on Z as follows: aRy < a divides y.

(a) For any a € Z, we have a divides a. So, for all a € Z, aRa holds, which means R

reflexive.

(b) For x,y € Z, xRy implies (x divides y) # (y divides x). For example, 1 divides 4,

but 4 does not divide 1, hence R is not symmetric.

(c) Let x,y € Z, we have (xRy) and (yRx) = ((x divides y) and (y divides x)) =
x =y, for example, (1 divides —1) and (—1 divides 1), but —1 # 1, hence R is not

antisymmelric.

(d) Forzx,y,z € Z, if (xRy) and (yRz) = ((x dividesy) and (y divides z)) = (x divides
z), then xRz. Thus, R is transitive.

3.4 Equivalence Relation

Definition 3.4.1. Let R be a relation on a set A.
1. R is called an equivalence relation if R is reflexive, symmetric, and transitive.
2. If R is an equivalence relation, then

(a) For each a € A, the set a = {x € AlxRa} is called the equivalence class of a
modulo R.

(b) The set A;r = {ala € A} is called the quotient set of A by R.
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Examples 3.4.2. 1. The relation R given over R by the following formula xRy if and
only if 2% = y? is an equivalence relation, and 0 = {0}, and for a # 0, a = {a, —a}.

Rz = {{0}, {a,—a}, a > 0}.

2. Let R,, be a relation of congruence modulo n defined on Z by xR,y if and only if n
divides y — x, is indeed an equivalence relation.

For this relation, we have
a={zx € Z/n divides © — a}
={r€Z/x=nq+a, q€Z}

noted nZ + a.
In this case Zyg, = {nZ + a,a € Z} which is identified by Z.z.

Remark 3.4.3. The class a is also denoted as a, [a], and Cl(a).

If x is in an equivalence relation with y, we say that x and y are equivalent.
Theorem 3.4.4. Let R be an equivalence relation on a non-empty set A, then
1. Every element of A is in an equivalence class. That is, A = Ua, where a € A.

2. Two elements are equivalent if and only if they belong to the same class. That 1is,

for all a,x € A, aRx if and only if a = .

3. Any equivalence classes are disjoint or coincide. That is, for alla,xz € A, aNt = ()

ora==zx.

4. The equivalence classes form a partition of A. That is, every element in A belongs
to exactly one equivalence class, and the union of all equivalence classes covers A

entirely.

Proof :

1. Every element a € A verify aRa, which means a € a.
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2. Suppose that aRz and let y € a, then yRa. Thus, by transitivity zRx, so y € .
Then a C &. Similarly,  C a.
Inversely, if @ = 2, we take an element y € a = &, satisfies aRy and yRx. Thus, by

transitivity, we get aRx.

3. Suppose the opposite, means @ N & # () and @ # &. Thus, Jy € A satisfies aRy
and yRx.Thus, by transitivity, we get aRx and using (2), we conclude that a = 7,

which is a contradiction with a # z.

4. Due to (1), we have @ # @ and A = Ua, where a € A, and using (3) anNb = @ if

a # b. Consequently, the equivalence classes form a partition of A.

Example 3.4.5. If n =3, we have Zj3;, = {0,1,3}) = {3,1,2} = {-3,4,5}.



