N. Belmahi 45

3.6 Order Relation

Definition 3.6.1. Let \mathcal{R} be a relation on a set A.

 \mathcal{R} is called an order relation if \mathcal{R} is reflexive, antisymmetric, and transitive.

- 1. (a) If \mathcal{R} is an order relation, we often write $\leq_{\mathcal{R}}$ instead of \mathcal{R} .
 - (b) $\leq_{\mathcal{R}}$ is called a total order relation if

$$\forall x, y \in A, ((x \leq_{\mathcal{R}} y) \lor (y \leq_{\mathcal{R}} x)).$$

(c) $\leq_{\mathcal{R}}$ is called a partial order relation if

$$\exists x, y \in A, ((x \not\leq_{\mathcal{R}} y) \land (y \not\leq_{\mathcal{R}} x)).$$

Remark 3.6.2. Two elements x and y are said to be comparable by $\leq_{\mathcal{R}}$ if $x \leq_{\mathcal{R}} y$ or $y \leq_{\mathcal{R}} x$.

Examples 3.6.3. 1. The inclusion relation \mathcal{R} on $\mathcal{P}(\mathbb{N})$ is a partial order. (For X, Y, and Z in $\mathcal{P}(\mathbb{N})$

- Reflexivity $X \subseteq X$
- Antisymmetry $X \subset Y$ and $Y \subseteq X$ implies X = Y.
- Transitivity $X \subseteq Y$ and $Y \subseteq Z$ implies $X \subseteq Z$. Moreover, the subsets $\{1,2\}$ and $\{1,3\}$ are incomparable.
- 2. The way words are arranged in a dictionary defines a total order relation called lexicographic order, denoted by \leq_{lex} . For example, algebra \leq_{lex} analysis.

Definition 3.6.4. (Special Elements)Let \mathcal{R} be an order relation on a set E, and let A be a subset of E, then

- 1. An element $m \in E$ is called a minimum of A if
 - (a) $m \in A$.

N. Belmahi 46

(b) for every $x \in A$, we have $m \leq_{\mathcal{R}} x$. (We also say that m is a smallest (least) element of A.)

- 2. An element $M \in E$ is called a maximum of A if
 - (a) $M \in A$.
 - (b) for every $x \in A$, we have $x \leq_{\mathcal{R}} M$. (We also say that M is a greatest element of A.)
- 3. An extremum is an element that is either a minimum or a maximum.
- 4. An element u in the set E is called a lower bound of A if for every $x \in A$, $u \leq_{\mathcal{R}} x$.

 (It is also said that A is bounded below by u.)
- 5. An element U in the set E is called an upper bound of A if for every $x \in A$, $x \leq_{\mathcal{R}} U$.

 (It is also said that A is bounded above by U.)
- 6. The set A is said to be bounded below in E if A has a lower bound in E; A is said to be bounded above in E if A has an upper bound in E; and A is said to be bounded in E if A is both bounded below and above.
- 7. An element w in the set E is called a infimum of A if
 - (a) v is a lower bound of A,
 - (b) for every lower bound v' of A, we have $v' \leq_{\mathcal{R}} v$. Notation: $v = \inf(A)$.
- 8. An element V in the set E is called a supremum of A if
 - (a) V is an upper bound of A,
 - (b) for every upper bound 'V of A, we have $V \leq_{\mathcal{R}} V'$. Notation: $V = \sup(A)$.

Examples 3.6.5. For the usual order \leq on the set of real numbers \mathbb{R} , let $B =]-4,0[\cup[\frac{1}{2},+\infty[$. We have the following

There is no min(B) (4 is a good candidate, but 4 is not in B).

N. Belmahi 47

There is no max(B) (There are no candidates for the maximum element in B).

The set of lower bounds of B is $]-\infty,-4]$, so inf(B)=-4.

There are no upper bounds of B, so sup(B) does not exist.