University of science and technology Oran M-B

Academic year 2023/2024 Algebra 1

Department of Mathematics

Exercise series $N^{\circ}03$

Exercise 1:

- 1. Are the following relations, reflexive? symmetric? antisymmetric? transitive?
 - (a) $E = \mathbb{Z}$, and $x \mathcal{R} y \Leftrightarrow x = -y$;
 - (b) $E = \mathbb{R}$, and $x\mathcal{R}y \Leftrightarrow \cos^2(x) + \sin^2(y) = 1$;
 - (c) $E = \mathbb{N}$, and $x\mathcal{R}y \iff \exists p, q \ge 1, y = px^q (p, q \in \mathbb{N});$
 - (d) $E = \mathbb{R}$, and $x\mathcal{R}y \Leftrightarrow (x-y)(x^2-y) = 0$.
- 2. Are these relations, order relations? or equivalence relations?

Exercise 2:

Let \mathcal{R} , the relation defined on \mathbb{R}^* by

$$\forall x, y \in \mathbb{R}^*, x\mathcal{R}y \iff x - y = \frac{1}{x} - \frac{1}{y}.$$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of 2.

Exercise 3:

Let \mathcal{R} a relation defined on \mathbb{Z} by

$$x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y$$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of any element $x \in \mathbb{R}$. Precise the equivalence class of 1.

Exercise 4:

Let \mathcal{R} a relation defined on \mathbb{Z} by

$$x\mathcal{R}y \Leftrightarrow x-y$$
 is multiple of 3

- 1. Prove that \mathcal{R} is an equivalence relation on \mathbb{Z} .
- 2. Determine the quotient set.
- 3. Prove that $\dot{15} = \dot{0}$ and $\dot{9} \cap \dot{58} = \emptyset$.

Exercise 5:

Let \mathcal{R} a relation defined on \mathbb{Z} by

 $x\mathcal{R}y \iff \exists k \in \mathbb{Z}, \ x - y = 4k.$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine $\mathbb{Z}_{|\mathcal{R}}$.

Exercise 6:

Let E be a non empty set, and $\Gamma \subset \mathcal{P}(E)$ non empty, satisfies the following property:

$$\forall X,Y\in \Gamma, \ \exists Z\in \Gamma, \ Z\subset (X\cap Y).$$

We define on $\mathcal{P}(E)$ the following relation $A\mathcal{R}B \iff \exists X \in \Gamma, \ X \cap A = X \cap B.$

Prove that \mathcal{R} is an equivalence relation on $\mathcal{P}(E)$. What are the equivalence classes of \emptyset and E?

Exercise 7:

Let ${\mathcal R}$ a relation defined on ${\mathbb R}$ by

$$x\mathcal{R}y \Leftrightarrow x^3 - y^3 \ge 0.$$

Prove that \mathcal{R} is an order relation. Is the order total?

Exercise 8:

Let \prec a relation defined on \mathbb{R}^2 by

$$(x,y) \prec (x',y') \iff x \le x' \text{ and } y \le y'.$$

1. Prove that \prec is an order relation. Is the order total?

2. The closed disk of center 0 and radius 1, have upper bounds? greatest element 'max'? supremum?