Exercise series N°03

Exercise 1:

- 1. Are the following relations, reflexive? symmetric? antisymmetric? transitive?
 - (a) $E = \mathbb{Z}$, and $x\mathcal{R}y \iff |x| = |y|$;
 - **(b)** $E = \mathbb{R}$, and $x\mathcal{R}y \Leftrightarrow \cos^2(x) + \sin^2(y) = 1$;
 - (c) $E = \mathbb{R}$, and $x\mathcal{R}y \Leftrightarrow (x-y)(x^2-y) = 0$.
- 2. Are these relations, order relations? or equivalence relations?

Exercise 2:

Let \mathcal{R} , the relation defined on \mathbb{Z} by

$$\forall x, y \in \mathbb{Z}^2, x\mathcal{R}y \iff x - y \text{ is a multiple of } 3.$$

- 1. Prove that \mathcal{R} is an equivalence relation on \mathbb{Z} .
- 2. Determine the quotient set.
- 3. Prove that $\overline{9} = \overline{0}$, $\overline{12} \cap \overline{10} = \emptyset$.

Exercise 3:

Let \mathcal{R} a relation defined on \mathbb{R} by

$$x\mathcal{R}y \Leftrightarrow x^2 - y^2 = x - y.$$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of any element $x \in \mathbb{R}$. Precise the equivalence class of 1.

Exercise 4:

We define on \mathbb{R}^2 the relation \mathcal{R} by:

$$(x,y)\mathcal{R}(x',y') \Leftrightarrow x+y=x'+y'.$$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of the couple (0,0).

Exercise 5:

Let \prec a relation defined on \mathbb{R}^2 by

$$(x,y) \prec (x',y') \Leftrightarrow x \leq x' \text{ and } y \leq y'.$$

- 1. Prove that \prec is an order relation. Is the order total?
- 2. The closed disk of center 0 and radius 1, have upper bounds? greatest element 'max'? supremum?

Exercise 6:

Let \prec be a relation defined on $E = \{(x, y) \in \mathbb{R}^2, \ x \leq y\}$ by

$$(x,y) \prec (x',y') \Leftrightarrow (x,y) = (x',y') \text{ or } y \leq x'.$$

Prove that \mathcal{R} is an order relation on E.

Exercise 7:

Let \prec a relation defined on $]1, +\infty[$ by

$$x \prec y \iff \frac{x}{1+x^2} \ge \frac{y}{1+y^2}.$$

Prove that \prec is a total order relation.