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Frequently Used Notation

the inverse image or preimage of A under f
a divides b
the greatest common divisor of a, b
also the ideal generated by a, b
the order of the set A, the order of the element x
the integers, the positive integers
the rational numbers, the positive rational numbers
the real numbers, the positive real numbers
the complex numbers, the nonzero complex numbers
the integers modulo n
the (multiplicative group of) invertible integers modulo n
the direct or Cartesian product of A and B
H is a subgroup of G
the cyclic group of order n
the dihedral group of order 2n
the symmetric group on n letters, and on the set €2
the alternating group on n letters
the quaternion group of order 8
the Klein 4-group
the finite field of N elements
the general linear groups
the special linear group
A is isomorphic to B
the centralizer, and normalizer in G of A
the center of the group G
the stabilizer in the group G of s
the group generated by the set A, and by the element x
generators and relations (a presentation) for G
the kernel, and the image of the homomorphism ¢
N is a normal subgroup of G

the left coset, and right coset of H with coset representative g

the index of the subgroup H in the group G

the automorphism group of the group G

the set of Sylow p-subgroups of G

the number of Sylow p-subgroups of G

the commutator of x, y

the semidirect product of H and K

the real Hamilton Quaternions

the multiplicative group of units of the ring R
polynomials in x, and in x1, . . ., x,, with coefficients in R

the group ring of the group G over the ring R, and over the field F

the ring of integers in the number field K

the direct, and the inverse limit of the family of groups A;
the p-adic integers, and the p-adic rationals

the direct sum of A and B
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the leading term of the polynomial f, the ideal of leading terms
the n x n, and the n x m matrices over R
the matrix of the linear transformation ¢
with respect to bases 3 (domain) and £ (range)
the trace of the matrix A
the R-module homomorphisms from A to B
the endomorphism ring of the module M
the torsion submodule of M
the annihilator of the module M
the tensor product of modules M and N over R
the k™ tensor power, and the tensor algebra of M
the k'™ symmetric power, and the symmetric algebra of M
the k'™ exterior power, and the exterior algebra of M
the minimal, and characteristic polynomial of T’
the characteristic of the field F
the field K is an extension of the field F
the degree of the field extension K/F
the field generated over F by « or «, 8, etc.
the minimal polynomal of « over the field F
the group of automorphisms of a field K
the group of automorphisms of a field K fixing the field F
the Galois group of the extension K/ F
affine n-space
the coordinate ring of A", and of the affine algebraic set V
the locus or zero set of 1, the locus of an element f
the ideal of functions that vanish on A
the radical of the ideal /
the associated primes for the module M
the support of the module M
the ring of fractions (localization) of R with respect to D
the localization of R at the prime ideal P, and at the element f
the local ring, and the tangent space of the variety V at the point v
the unique maximal ideal of O, v
the prime spectrum, and the maximal spectrum of R
the structure sheaf of X = Spec R
the ring of sections on an open set U in Spec R
the stalk of the structure sheaf at P
the Jacobson radical of the ring R
the n'™ cohomology group derived from Hompg
the n'M cohomology group derived from the tensor product over R
the fixed points of G acting on the G-module A
the n™™ cohomology group of G with coefficients in A
the restriction, and corestriction maps on cohomology
the stability group of the series | <A I G
the norm of the character 6
the character of the representation y induced from H to G
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Preface to the Third Edition

The principal change from the second edition is the addition of Grobner bases to this
edition. The basic theory is introduced in a new Section 9.6. Applications to solving
systems of polynomial equations (elimination theory) appear at the end of this section,
rounding it out as a self-contained foundation in the topic. Additional applications and
examples are then woven into the treatment of affine algebraic sets and k-algebra homo-
morphisms in Chapter 15. Although the theory in the latter chapter remains independent
of Grobner bases, the new applications, examples and computational techniques sig-
nificantly enhance the development, and we recommend that Section 9.6 be read either
as a segue to or in parallel with Chapter 15. A wealth of exercises involving Grobner
bases, both computational and theoretical in nature, have been added in Section 9.6
and Chapter 15. Preliminary exercises on Grobner bases can (and should, as an aid to
understanding the algorithms) be done by hand, but more extensive computations, and
in particular most of the use of Grobner bases in the exercises in Chapter 15, will likely
require computer assisted computation.

Other changes include a streamlining of the classification of simple groups of order
168 (Section 6.2), with the addition of a uniqueness proof via the projective plane of
order 2. Some other proofs or portions of the text have been revised slightly. A number
of new exercises have been added throughout the book, primarily at the ends of sections
in order to preserve as much as possible the numbering schemes of earlier editions.
In particular, exercises have been added on free modules over noncommutative rings
(10.3), on Krull dimension (15.3), and on flat modules (10.5 and 17.1).

As with previous editions, the text contains substantially more than can normally
be covered in a one year course. A basic introductory (one year) course should probably
include Part I up through Section 5.3, Part II through Section 9.5, Sections 10.1, 10.2,
10.3, 11.1, 11.2 and Part I'V. Chapter 12 should also be covered, either before or after
Part IV. Additional topics from Chapters 5, 6, 9, 10 and 11 may be interspersed in such
a course, or covered at the end as time permits.

Sections 10.4 and 10.5 are at a slightly higher level of difficulty than the initial
sections of Chapter 10, and can be deferred on a first reading for those following the text
sequentially. The latter section on properties of exact sequences, although quite long,
maintains coherence through a parallel treatment of three basic functors in respective
subsections.

Beyond the core material, the third edition provides significant flexibility for stu-
dents and instructors wishing to pursue a number of important areas of modern algebra,

xi



either in the form of independent study or courses. For example, well integrated one-
semester courses for students with some prior algebra background might include the
following: Section 9.6 and Chapters 15 and 16; or Chapters 10 and 17; or Chapters S,
6 and Part VI. Each of these would also provide a solid background for a follow-up
course delving more deeply into one of many possible areas: algebraic number theory,
algebraic topology, algebraic geometry, representation theory, Lie groups, etc.

The choice of new material and the style for developing and integrating it into the
text are in consonance with a basic theme in the book: the power and beauty that accrues
from arich interplay between different areas of mathematics. The emphasis throughout
has been to motivate the introduction and development of important algebraic concepts
using as many examples as possible. We have not attempted to be encyclopedic, but
have tried to touch on many of the central themes in elementary algebra in a manner
suggesting the very natural development of these ideas.

A number of important ideas and results appear in the exercises. This is not because
they are not significant, rather because they did not fit easily into the flow of the text
but were too important to leave out entirely. Sequences of exercises on one topic
are prefaced with some remarks and are structured so that they may be read without
actually doing the exercises. In some instances, new material is introduced first in
the exercises—often a few sections before it appears in the text—so that students may
obtain an easier introduction to it by doing these exercises (e.g., Lagrange’s Theorem
appears in the exercises in Section 1.7 and in the text in Section 3.2). All the exercises
are within the scope of the text and hints are given [in brackets] where we felt they were
needed. Exercises we felt might be less straightforward are usually phrased so as to
provide the answer to the exercise; as well many exercises have been broken down into
a sequence of more routine exercises in order to make them more accessible.

We have also purposely minimized the functorial language in the text in order to
keep the presentation as elementary as possible. We have refrained from providing
specific references for additional reading when there are many fine choices readily
available. Also, while we have endeavored to include as many fundamental topics as
possible, we apologize if for reasons of space or personal taste we have neglected any
of the reader’s particular favorites.

We are deeply grateful to and would like here to thank the many students and
colleagues around the world who, over more than 15 years, have offered valuable
comments, insights and encouragement—their continuing support and interest have
motivated our writing of this third edition.

David Dummit
Richard Foote
June, 2003
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Preliminaries

Some results and notation that are used throughout the text are collected in this chapter
for convenience. Students may wish to review this chapter quickly at first and then read
each section more carefully again as the concepts appear in the course of the text.

0.1 BASICS

The basics of set theory: sets, N, U, €, etc. should be familiar to the reader. Our
notation for subsets of a given set A will be

B={a€A]... (conditionson a) ...}.

The order or cardinality of a set A will be denoted by |A|. If A is a finite set the order
of A is simply the number of elements of A.
It is important to understand how to test whether a particular x € A liesin a subset
B of A (cf. Exercises 1-4). The Cartesian product of two sets A and B is the collection
A x B={(a,b)|ae€ A b € B}, of ordered pairs of elements from A and B.
We shall use the following notation for some common sets of numbers:
1) Z = {0, £1, £2, 13, ...} denotes the integers (the Z is for the German word for
numbers: “Zahlen”).
(2) Q={a/b| a, b € Z, b # 0} denotes the rational numbers (or rationals).
(3) R = { all decimal expansions + d1d; .. .d,.a1a,a;3 . ..} denotes the real numbers
(or reals).
@) C={a+bi|a,beR,i? = —1)} denotes the complex numbers.
(5) Z*, Q* and R* will denote the positive (nonzero) elements in Z, Q and R, respec-
tively.

We shall use the notation f : A > Bor A J Btodenote a function f from A
to B and the value of f at a is denoted f(a) (i.e., we shall apply all our functions on
the left). We use the words function and map interchangeably. The set A is called the
domain of f and B is called the codomain of f. The notation f : a+> bora > bif f
is understood indicates that f(a) = b, i.e., the function is being specified on elements.

If the function f is not specified on elements it is important in general to check
that f is well defined, i.e., is unambiguously determined. For example, if the set A
is the union of two subsets A; and A, then one can try to specify a function from A
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to the set {0, 1} by declaring that f is to map everything in A; to O and is to map
everything in A; to 1. This unambiguously defines f unless A; and A, have elements
in common (in which case it is not clear whether these elements should map to O or to
1). Checking that this f is well defined therefore amounts to checking that A; and A,
have no intersection.
The set
f(A)={beB|b= f(a), for some a € A}

is a subset of B, called the range or image of f (or the image of A under f). For each
subset C of B the set
O =taeA| f@eC)

consisting of the elements of A mapping into C under f is called the preimage or inverse
image of C under f. For each b € B, the preimage of {b} under f is called the fiber of
f over b. Note that f~! is not in general a function and that the fibers of f generally
contain many elements since there may be many elements of A mapping to the element
b.

If f:A— Bandg : B — C, then the composite map g o f : A — C is defined
by

(8o Nla) = g(f(@).

Let f: A — B.

(1) f isinjective or is an injection if whenever a; # a,, then f(a;) # f(az).

(2) f is surjective or is a surjection if for all b € B there is some a € A such that
f(a) = b, i.e., the image of f is all of B. Note that since a function always maps
onto its range (by definition) it is necessary to specify the codomain B in order for
the question of surjectivity to be meaningful.

() f isbijective oris abijection if it is both injective and surjective. If such a bijection
f exists from A to B, we say A and B are in bijective correspondence.

(4) f has a left inverse if there is afunctiong : B - Asuchthatgo f: A —> Ais
the identity map on A4, i.e., (g o f)(a) = a, for all a € A.

(5) f has aright inverse if thereis afunctionh : B — Asuchthat foh: B — Bis
the identity map on B.

Proposition 1. Let f : A — B.
(1) The map f is injective if and only if f has a left inverse.
(2) The map f is surjective if and only if f has a right inverse.
(3) The map f is a bijection if and only if there exists g : B — A such that f o g
is the identity map on B and g o f is the identity map on A.

(4) If A and B are finite sets with the same number of elements (i.e., |A| = |B]),
then f : A — B is bijective if and only if f is injective if and only if f is
surjective.

Proof: Exercise.
In the situation of part (3) of the proposition above the map g is necessarily unique
and we shall say g is the 2-sided inverse (or simply the inverse) of f.
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A permutation of a set A is simply a bijection from A to itself.

If AC Band f : B— C, we denote the restriction of f to A by f|a. When the
domain we are considering is understood we shall occasionally denote f|4 againsimply
as f even though these are formally different functions (their domains are different).

If AC Band g : A — C and there is a function f : B — C such that f|4 = g,
we shall say f is an extension of g to B (such a map f need not exist nor be unique).

Let A be a nonempty set.
(1) Abinaryrelationonaset A is asubset R of A x Aand we writea ~ bif (a, b) € R.
(2) Therelation ~ on A is said to be:
(a) reflexiveifa ~ a, foralla € A,
(b) symmetric if a ~ bimpliesb ~ a for alla, b € A,
(c) transitiveifa ~ b and b ~ cimpliesa ~ c forall a, b, c € A.
A relation is an equivalence relation if it is reflexive, symmetric and transitive.
(3) If ~ defines an equivalence relation on A, then the equivalence class of a € A is
defined to be {x € A | x ~ a}. Elements of the equivalence class of a are said
to be equivalent to a. If C is an equivalence class, any element of C is called a
representative of the class C.
(4) A partition of A is any collection {A; | i € I} of nonempty subsets of A (I some
indexing set) such that
(a) A =U;e/A;, and
() AinA; =0, foralli, j € I withi # j
i.e., A is the disjoint union of the sets in the partition.

The notions of an equivalence relation on A and a partition of A are the same:

Proposition 2. Let A be a nonempty set.
(1) If ~ defines an equivalence relation on A then the set of equivalence classes of
~ form a partition of A.
(2) If {A; | i € I} is apartition of A then there is an equivalence relation on A
whose equivalence classes are precisely the sets A;, i € I.

Proof: Omitted.

Finally, we shall assume the reader is familiar with proofs by induction.

EXERCISES

In Exercises 1 to 4 let A be the set of 2 x 2 matrices with real number entries. Recall that
matrix multiplication is defined by

a b P q\_(ap+br aq+bs
c d)\r s) \cp+dr cq+ds

Let
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and let
B={Xe A|MX = XM}.

1. Determine which of the following elements of A lie in B:

11 11 00 11 1 0 01

0 1) \1 1/)>\0 0/’ \1 0/ \0 1/)>\1 0/
2. Prove thatif P, Q € B, then P+ Q € B (where 4 denotes the usual sum of two matrices).
3. Provethatif P, Q € B,then P-Q € B (where - denotes the usual product of two matrices).

4. Find conditions on p, g, r, s which determine precisely when (1: ;1 ) e B.

5. Determine whether the following functions f are well defined:
@) f : Q> Z defined by f(a/b) = a.
(b) f : Q- Qdefined by f(a/b) = a?/b2.
6. Determine whether the function f : Rt — Z defined by mapping a real number r to the
first digit to the right of the decimal point in a decimal expansion of r is well defined.
7. Let f : A — B be a surjective map of sets. Prove that the relation
a ~ b if and only if f(a) = f(b)

is an equivalence relation whose equivalence classes are the fibers of f.

0.2 PROPERTIES OF THE INTEGERS

The following properties of the integers Z (many familiar from elementary arithmetic)
will be proved in a more general context in the ring theory of Chapter 8, but it will
be necessary to use them in Part I (of course, none of the ring theory proofs of these
properties will rely on the group theory).
(1) (Well Ordering of Z) If A is any nonempty subset of Z*, there is some element
m € A such thatm < q, for all a € A (m is called a minimal element of A).
(2) Ifa,b € Z with a # 0, we say a divides b if there is an element ¢ € Z such that
b = ac. In this case we write a | b; if a does not divide b we write a { b.
(@) Ifa, b € Z — {0}, there is a unique positive integer d, called the greatest common
divisor of a and b (or g.c.d. of a and b), satisfying:
(a) d |aandd | b (sod is a common divisor of a and b), and
(b) ife | aand e | b, then e | d (so d is the greatest such divisor).
The g.c.d. of a and b will be denoted by (a, b). If (a, b) = 1, we say that a and b
are relatively prime.
4) If a,b € Z — {0}, there is a unique positive integer I, called the least common
multiple of a and b (or l.c.m. of a and b), satisfying:
(@) a|landb | ! (so!is a common multiple of a and b), and
(b) ifa | mand b | m, then ! | m (so ! is the least such multiple).
The connection between the greatest common divisor d and the least common
multiple / of two integers a and b is given by dl = ab.
(5) The Division Algorithm: ifa, b € Z — {0}, then there exist unique g, r € Z such
that
a=qgb+r and 0<r <|b|,
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where ¢ is the quotient and r the remainder. This is the usual “long division”
familiar from elementary arithmetic.

(6) The Euclidean Algorithm is an important procedure which produces a greatest
common divisor of two integers a and b by iterating the Division Algorithm: if
a, b € Z — {0}, then we obtain a sequence of quotients and remainders

a = qob+ro )
b=qro+n 1)
ro=qr1+n 2
n=qnr+n 3
Tn—2 = Gnln—1+ Iy (n)
T'n—1 = gn+1"n (n+1)

where r,, is the last nonzero remainder. Such an r,, exists since |b| > |ro| > |r1| >

- > |r,| is a decreasing sequence of strictly positive integers if the remainders
are nonzero and such a sequence cannot continue indefinitely. Then r,, is the g.c.d.
(a,b) of a and b.

Example
Suppose a = 57970 and b = 10353. Then applying the Euclidean Algorithm we obtain:

57970 = (5)10353 + 6205
10353 = (1)6205 + 4148
6205 = (1)4148 + 2057
4148 = (2)2057 + 34
2057 = (60)34 + 17
34 =(2)17

which shows that (57970, 10353) = 17.

(7) One consequence of the Euclidean Algorithm which we shall use regularly is the
following: if a, b € Z — {0}, then there exist x, y € Z such that

(a,b) = ax + by

that is, the g.c.d. of a and b is a Z-linear combination of a and b. This follows
by recursively writing the element r,, in the Euclidean Algorithm in terms of the
previous remainders (namely, use equation (n) above to solve forr,, = r,—; —gnrn—1
in terms of the remainders r,,_; and r,_,, then use equation (n — 1) to write r,, in
terms of the remainders r,,_, and r,,_3, etc., eventually writing r,, in terms of a and
b).

Sec. 0.2  Properties of the Integers 5



Example

Suppose a = 57970 and b = 10353, whose greatest common divisor we computed above to
be 17. From the fifth equation (the next to last equation) in the Euclidean Algorithm applied
to these two integers we solve for their greatest common divisor: 17 = 2057 — (60)34.
The fourth equation then shows that 34 = 4148 — (2)2057, so substituting this expression
for the previous remainder 34 gives the equation 17 = 2057 — (60)[4148 — (2)2057], i.e.,
17 = (121)2057 — (60)4148. Solving the third equation for 2057 and substituting gives
17 = (121)[6205 — (1)4148] — (60)4148 = (121)6205 — (181)4148. Using the second
equation to solve for 4148 and then the first equation to solve for 6205 we finally obtain

17 = (302)57970 — (1691)10353

as can easily be checked directly. Hence the equation ax + by = (a, b) for the greatest
common divisor of a and b in this example has the solution x = 302 and y = —1691. Note
that it is relatively unlikely that this relation would have been found simply by guessing.

The integers x and y in (7) above are not unique. In the example with a = 57970
and b = 10353 we determined one solution to be x = 302 and y = —1691, for
instance, and it is relatively simple to check that x = —307 and y = 1719 also
satisfy 57970x 4+ 10353y = 17. The general solution for x and y is known (cf. the
exercises below and in Chapter 8).

(8) Anelement p of Z™ is called a prime if p > 1 and the only positive divisors of p are
1 and p (initially, the word prime will refer only to positive integers). An integer
n > 1 which is not prime is called composite. For example, 2,3,5,7,11,13,17,19,...
are primes and 4,6,8,9,10,12,14,15,16,18,... are composite.
An important property of primes (which in fact can be used to define the primes
(cf. Exercise 3)) is the following: if p is a prime and p | ab, for some a, b € Z,
then either p [a or p | b.

(9) The Fundamental Theorem of Arithmetic says: if n € Z, n > 1, then n can
be factored uniquely into the product of primes, i.e., there are distinct primes

D1, P2, - - -, Ps and positive integers o, a2, . . ., &s such that

n=pipy...p5.
This factorization is unique in the sense thatif q,, g2, . . ., g, are any distinct primes
and By, B2, . - ., Bt positive integers such that

n=q'q" -..q",
then s = ¢ and if we arrange the two sets of primes in increasing order, then g; = p;
and o; = B;, 1 <i < s. For example, n = 1852423848 = 233211219331 and this
decomposition into the product of primes is unique.
Suppose the positive integers a and b are expressed as products of prime powers:

s — B2 A
a=pl'py?...p%, b—pl'pz...pf
where p;, p2, - . ., ps aredistinct and the exponents are > 0 (we allow the exponents

to be 0 here so thatthe products are taken over the same set of primes — the exponent
will be O if that prime is not actually a divisor). Then the greatest common divisor

ofaand b is

(a,b) = p?ﬁn(al,ﬂx)p;nin(az,ﬂz). - p?ﬂn(as,ﬂl)
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(and the least common multiple is obtained by instead taking the maximum of the
«; and f; instead of the minimum).

Example

In the example above, a = 57970 and b = 10353 can be factoredasa =2-5-11-17-31
and b = 3-7-17-29, from which we can immediately conclude that their greatest common
divisor is 17. Note, however, that for large integers it is extremely difficult to determine
their prime factorizations (several common codes in current use are based on this difficulty,
in fact), so that this is not an effective method to determine greatest common divisors in
general. The Euclidean Algorithm will produce greatest common divisors quite rapidly
without the need for the prime factorization of a and b.

(10) The Euler gp—function is defined as follows: for n € Z* let ¢(n) be the number of
positive integers a < n with a relatively prime to n, i.e., (a, n) = 1. For example,
©(12) = 4 since 1, 5, 7 and 11 are the only positive integers less than or equal
to 12 which have no factors in common with 12. Similarly, ¢(1) = 1, ¢(2) = 1,
0?3 =2,904) =2,9(5) =4, p(6) = 2, etc. For primes p, ¢(p) = p — 1, and,
more generally, for all @ > 1 we have the formula

o(p®) = p* —p* = p*H(p - D).
The function ¢ is multiplicative in the sense that
¢(ab) = p(@)p(b) if (a,b) =1
(note thatit isimportant here that a and b be relatively prime). Together with the for-

mula above this gives a general formula for the values of ¢ : if n = p{' p3? ... p%,

then
@(n) = e(p1Ne(PF?) - .. e(PF)

= P = DP (= DL pE T (s — D).
For example, ¢(12) = ¢(2%)¢(3) = 2!(2 — 1)3°(3 — 1) = 4. The reader should
note that we shall use the letter ¢ for many different functions throughout the text
so when we want this letter to denote Euler’s function we shall be careful to indicate
this explicitly.

EXERCISES

1. For each of the following pairs of integers a and b, determine their greatest common
divisor, their least common multiple, and write their greatest common divisor in the form
ax + by for some integers x and y.

(@) a=20,b=13.

(b) a=69,b=7372.

©) a=792,b=275.

(d) a =11391, b = 5673.
(e) a=1761,b = 1567.

) a = 507885, b = 60808.

2. Provethat if the integer k divides the integers a and b then k divides as + bt for every pair
of integers s and ¢.
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3.

4.

S
6.

8.

10.

11.

Prove that if n is composite then there are integers a and b such that n divides ab but n
does not divide either a or b.

Let @, b and N be fixed integers with a and b nonzero and let d = (a, b) be the greatest
common divisor of @ and b. Suppose xgp and yg are particular solutions to ax + by = N
(i.e., axg + byp = N). Prove for any integer r that the integers

X X + an

are also solutions to ax 4+ by = N (this is in fact the general solution).
Determine the value ¢(n) for each integer n < 30 where ¢ denotes the Euler ¢-function.

Prove the Well Ordering Property of Z by induction and prove the minimal element is
unique.

If p is a prime prove that there do not exist nonzero integers a and b such that a? = pb?
(i.e., ,/P is not a rational number).

Let p be a prime, n € Z*. Find a formula for the largest power of p which divides
n!=nn—1)(n —2)...2 -1 (itinvolves the greatest integer function).

. Write a computer program to determine the greatest commondivisor (a, b) of two integers

a and b and to express (a, b) in the form ax + by for some integers x and y.

Prove for any given positive integer N there exist only finitely many integers n with
@(n) = N where ¢ denotes Euler’s g-function. Conclude in particular that ¢(n) tends to
infinity as n tends to infinity.

Prove that if d divides n then ¢(d) divides ¢(n) where ¢ denotes Euler’s ¢-function.

0.3 Z/n Z : THE INTEGERS MODULO n

Let n be a fixed positive integer. Define a relation on Z by

a ~bifand only if n | (b — a).

Clearly a ~ a, and a ~ b implies b ~ a for any integers a and b, so this

relation is trivially reflexive and symmetric. If a ~ b and b ~ ¢ then n divides a — b
and n divides b — ¢ so n also divides the sum of these two integers, i.e., n divides
(a—b)+ (b—c) =a — c, soa ~ c and the relation is transitive. Hence this is an
equivalence relation. Write @ = b (mod n) (read: a is congruent to b mod n) ifa ~ b.
For any k € Z we shall denote the equivalence class of a by a — this is called the
congruence class or residue class of a mod n and consists of the integers which differ
from a by an integral multiple of #, i.e.,

a={a+kn|keZ)}
={a,axtnax2naxiln,...}.

There are precisely n distinct equivalence classes mod n, namely

0,1,2,...,n—1

determined by the possible remainders after division by n and these residue classes
partition the integers Z. The set of equivalence classes under this equivalence relation

8
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will be denoted by Z/nZ and called the integers modulo n (or the integers mod n).
The motivation for this notation will become clearer when we discuss quotient groups
and quotient rings. Note that for different n’s the equivalence relation and equivalence
classes are different so we shall always be careful to fix n first before using the bar
notation. The process of finding the equivalence class mod »n of some integer a is often
referred to as reducing a mod n. This terminology also frequently refers to finding the
smallest nonnegative integer congruent to a mod n (the least residue of a mod n).

We can define an addition and a multiplication for the elements of Z /nZ, defining
modular arithmetic as follows: for a, b € Z/nZ, define their sum and product by

a+b=a+b ad a-b=ab.
What this means is the following: given any two elements @ and b in Z/nZ, to compute
their sum (respectively, their product) take any representative integer a in the class
a and any representative integer b in the class b and add (respectively, multiply) the
integers a and b as usual in Z and then take the equivalence class containing the result.

The following Theorem 3 asserts that this is well deﬁnf:d, i.e., does not depend on the
choice of representatives taken for the elements a and b of Z/nZ.

Example
Suppose n = 12 and consider Z / 12Z, which consists of the twelve residue classes

0,1,2,...,11

determined by the twelve possible remainders of an integer after division by 12. The
elements in the residue class 5, for example, are the integers which leave a remainder of 5
when divided by 12 (the integers congruent to 5 mod 12). Any integer congruent to 5 mod
12 (suchas 5, 17, 29, ... or —7, —19, ... ) will serve as a representative for the residue class
5. Note that Z / 127Z consists of the twelve elements above (and each of these elements of
Z / 12Z consists of an infinite number of usual integers).

Suppose now thata = 5 and b = 8. The most obviousrepresentativefora is the integer
5 and similarly 8 is the most obvious representative for b. Using these representatives for
the residue classes we obtain 5 + 8 = 13 = 1 since 13 and 1 lie in the same class modulo
n = 12. Had we instead taken the representative 17, say, for a (note that 5 and 17 do lie in
the same residue class modulo 12) and the representative —28, say, for b, we would obtain
5+48=(17- 28) = —11 = 1 and as we mentioned the result does not depend on the
choice of representatives chosen. The product of thesetwoclassesisa-b =5 - 8 = 40 = 4,
also independent of the representatives chosen.

Theorem 3. The operations of addition and multiplication on Z/nZ defined above
are both well defined, that is, they do not depend on the choices of representatives for
the clﬁses involved. More precisely, if a;, a; € Z and by, b, € Z with a; = b; and
a; = by, then a1 + a; = by + b, and aja; = by by, ie., if
ag=b; (modn) and a; =b, (mod n)
then
a+a,=by+b, (modn) and aa; =bib; (mod n).
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Proof: Supposea; = b, (mod n), i.e., a; — b, isdivisible by n. Thena; = b; +sn
for some integer s. Similarly, a, = b, (mod n) means a; = b, + tn for some integer z.
Thena;+a; = (b1 +b2)+(s+1t)n sothata; +a; = by +b, (imod n), which shows that
the sum of the residue classes is independent of the representatives chosen. Similarly,
aiaz = (by+sn)(by+tn) = biby+ (b1t +bys+stn)n shows thataja, = bi1b, (mod n)
and so the product of the residue classes is also independent of the representatives
chosen, completing the proof.

We shall see later that the process of adding equivalence classes by adding their
representatives is a special case of a more general construction (the construction of
a quotient). This notion of adding equivalence classes is already a familiar one in
the context of adding rational numbers: each rational number a/b is really a class of
expressions: a/b = 2a/2b = —3a/ — 3b etc. and we often change representatives
(for instance, take common denominators) in order to add two fractions (for example
1/2 + 1/3 is computed by taking instead the equivalent representatives 3/6 for 1/2
and 2/6 for 1/3 to obtain 1/2 + 1/3 = 3/6 + 2/6 = 5/6). The notion of modular
arithmetic is also familiar: to find the hour of day after adding or subtracting some
number of hours we reduce mod 12 and find the least residue.

It is important to be able to think of the equivalence classes of some equivalence
relation as elements which can be manipulated (as we do, for example, with fractions)
rather than as sets. Consistent with this attitude, we shall frequently denote the elements
of Z/nZ simply by {0, 1, ..., n—1} where addition and multiplication are reduced mod
n. Itis important to remember, however, that the elements of Z/nZ are not integers, but
rather collections of usual integers, and the arithmetic is quite different. For example,
5 + 8 is not 1 in the integers Z as it was in the example of Z / 12Z above.

The fact that one can define arithmetic in Z / nZ has many important applications
in elementary number theory. As one simple example we compute the last two digits in
the number 2% First observe that the last two digits give the remainder of 2!°% after
we divide by 100 so we are interested in the residue class mod 100 containing 2!9%.
We compute 2!° = 1024 = 24 (mod 100), so then 220 = (219)? = 24? = 576 = 76
(mod 100). Then 2% = (2%)2 = 76% = 5776 = 76 (mod 100). Similarly 2% =
2160 = 2320 = 2640 = 76 (mod 100). Finally, 21900 = 26402320240 = 76 .76 . 76 = 76
(mod 100) so the final two digits are 76.

An important subset of Z/nZ consists of the collection of residue classes which
have a multiplicative inverse in Z/nZ:

(Z/nZ)* = {(a € Z/nZ | there exists ¢ € Z/nZ witha - ¢ = 1}.

Some of the following exercises outline a proof that (Z/nZ)* is also the collection
of residue classes whose representatives are relatively prime to n, which proves the
following proposition.

Proposition 4. (Z/nZ)* ={a € Z/nZ | (a,n) = 1}.
It is easy to see that if any representative of a is relatively prime to n then all

representatives are relatively prime to » so that the set on the right in the proposition is
well defined.
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Example

inverses of these elements are {1, 5, 7, 2, 4, 8}, respectively.

If a is an integer relatively prime to n then the Euclidean Algorithm produces integers
x and y satisfying ax + ny = 1, hence ax =1 (mod n), so that x is the multiplicative
inverse of a in Z/nZ. This gives an efficient method for computing multiplicative
inverses in Z/nZ.

Example
Suppose n = 60 and a = 17. Applying the Euclidean Algorithm we obtain
60=(3)17+9
17=(1)9+8
9=(1)8+1

so that a and n are relatiﬂaly prime, and (—7)17 + (2060 = 1. Hence =7 = 53 is the
multiplicative inverse of 17 in Z/60Z.

EXERCISES

1. Write down explicitly all the elements in the residue classes of Z/ 18Z.

2. Prove that the distinct equivalence classes in Z/nZ are precisely 0, 1,2,...,n — 1 (use
the Division Algorithm).

3. Prove that if @ = a,10" + @,—110""! 4+ ... 4 4,10 + ay is any positive integer then
a=a,+a,—1+---+a; +ag (mod 9) (note that this is the usual arithmetic rule that
the remainder after division by 9 is the same as the sum of the decimal digits mod 9 — in
particular an integer is divisible by 9 if and only if the sum of its digits is divisible by 9)
[notethat 10 = 1 (mod 9)].

4. Compute the remainder when 371% is divided by 29.

5. Compute the last two digits of 91300,

6. Prove that the squares of the elements in Z/4Z are just 0 and 1.
7. Prove for any integers a and b that @ + b2 never leaves a remainder of 3 when divided by
4 (use the previous exercise).

8. Prove that the equation a? + b? = 3¢? has no solutions in nonzero integers a, b and c.
[Consider the equation mod 4 as in the previous two exercises and show that @, b and ¢
would all have to be divisible by 2. Then each of a2, b? and ¢? has a factor of 4 and by
dividing through by 4 show that there would be a smaller set of solutions to the original
equation. Iterate to reach a contradiction.]

9. Prove that the square of any odd integer always leaves a remainder of 1 when divided by
8.

10. Prove that the number of elements of (Z/nZ)> is ¢(n) where ¢ denotes the Euler ¢-
function.

11. Prove thatif a, b € (Z/nZ)*, thena - b € (Z/nZ)*.
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12. Letn € Z,n > 1,and leta € Z with 1 < a < n. Prove if a and n are not relatively prime,
there exists an integer b with 1 < b < n such that ab = 0 (mod n) and deduce that there
cannot be an integer ¢ such that ac =1 (mod n).

13. letn € Z,n > 1,andleta € Z with 1 < a < n. Prove thatif a and n are relatively prime
then there is an integer ¢ such that ac = 1 (mod n) Juse the fact that the g.c.d. of two
integers is a Z-linear combination of the integers].

14. Conclude from the previous two exercises that (Z/nZ)* is the set of elements a of Z/nZ
with (a, n) = 1 and hence prove Proposition 4. Verify this directly in the case n = 12.

15. For each of the following pairs of integers a and n, show that a is relatively prime to » and

determine the multiplicative inverse of a in Z/nZ.

(@) a=13,n=20.

(b) a =69,n = 89.

(c) a =1891,n =3797.

(d) a = 6003722857, n = 77695236973. [The Euclidean Algorithm requires only 3
steps for these integers.]

16. Write a computer program to add and multiply mod n, for any n given as input. The output
of these operations should be the least residues of the sums and products of two integers.
Also include the feature that if (a, n) = 1, an integer ¢ between 1 and n — 1 such that
@ - ¢ = 1 may be printed on request. (Your program should not, of course, simply quote
“mod” functions already built into many systems).
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Part |

GROUP THEORY

The modern treatment of abstract algebra begins with the disarmingly simple abstract
definition of a group. This simple definition quickly leads to difficult questions involving
the structure of such objects. There are many specific examples of groups and the power
of the abstract point of view becomes apparent when results for all of these examples
are obtained by proving a single result for the abstract group.

The notion of a group did not simply spring into existence, however, but is rather the
culmination of a long period of mathematical investigation, the first formal definition
of an abstract group in the form in which we use it appearing in 1882.! The definition
of an abstract group has its origins in extremely old problems in algebraic equations,
number theory, and geometry, and arose because very similar techniques were found
to be applicable in a variety of situations. As Otto Holder (1859-1937) observed, one
of the essential characteristics of mathematics is that after applying a certain algorithm
or method of proof one then considers the scope and limits of the method. As a result,
properties possessed by a number of interesting objects are frequently abstracted and
the question raised: can one determine all the objects possessing these properties?
Attempting to answer such a question also frequently adds considerable understanding
of the original objects under consideration. It is in this fashion that the definition of an
abstract group evolved into what is, for us, the starting point of abstract algebra.

Weillustrate with a few of the disparate situations in which theideas later formalized
into the notion of an abstract group were used.

(1) In number theory the very object of study, the set of integers, is an example of a
group. Consider for example what we refer to as “Euler’s Theorem” (cf. Exercise
22 of Section 3.2), one extremely simple example of which is that a* has last two
digits O1 if a is any integer not divisible by 2 nor by 5. This was proved in 1761
by Leonhard Euler (1707-1783) using “group-theoretic” ideas of Joseph Louis
Lagrange (1736-1813), long before the first formal definition of a group. From
our perspective, one now proves “Lagrange’s Theorem” (cf. Theorem 8 of Section
3.2), applying these techniques abstracted to an arbitrary group,and then recovers
Euler’s Theorem (and many others) as a special case.

1For most of the historical comments below, see the excellent book A History of Algebra, by B. L.
van der Waerden, Springer-Verlag, 1980 and the references there, particularly The Genesis of the Abstract
Group Concept: A Contribution to the History of the Origin of Abstract Group Theory (translated from
the German by Abe Shenitzer), by H. Wussing, MIT Press, 1984. See also Number Theory, An Approach
Through History from Hammurapai to Legendre, by A. Weil, Birkhiuser, 1984.
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(2) Investigations into the question of rational solutions to algebraic equations of the
form y? = x3 — 2x (there are infinitely many, for example (0, 0), (-1, 1), (2, 2),
9/4, —21/8), (—1/169, 239/2197)) showed that connecting any two solutions by
a straight line and computing the intersection of this line with the curve y?> =
x3 — 2x produces another solution. Such “Diophantine equations,” among others,
were considered by Pierre de Fermat (1601-1655) (this one was solved by him in
1644), by Euler, by Lagrange around 1777, and others. In 1730 Euler raised the
question of determining the indefinite integral [ dx/+/1 — x* of the “lemniscatic
differential” dx/+/1 — x4, used in determining the arc length along an ellipse (the
question had also been considered by Gottfried Wilhelm Leibniz (1646-1716) and
Johannes Bernoulli (1667-1748)). In 1752 Euler proved a “multiplication formula”
for such elliptic integrals (using ideas of G.C. di Fagnano (1682-1766), received
by Euler in 1751), which shows how two elliptic integrals give rise to a third,
bringing into existence the theory of elliptic functions in analysis. In 1834 Carl
Gustav Jacob Jacobi (1804—1851) observed that the work of Euler on solving certain
Diophantine equations amounted to writing the multiplication formula for certain
elliptic integrals. Today the curve above is referred to as an “elliptic curve” and
these questions are viewed as two different aspects of the same thing — the fact
that this geometric operation on points can be used to give the set of points on an
elliptic curve the structure of a group. The study of the “arithmetic” of these groups
is an active area of current research.?

(3) By 1824 it was known that there are formulas giving the roots of quadratic, cubic
and quartic equations (extending the familiar quadratic formula for the roots of
ax* + bx + ¢ = 0). In 1824, however, Niels Henrik Abel (1802-1829) proved
that such a formula for the roots of a quintic is impossible (cf. Corollary 40 of
Section 14.7). The proof is based on the idea of examining what happens when
the roots are permuted amongst themselves (for example, interchanging two of the
roots). The collection of such permutations has the structure of a group (called,
naturally enough, a “permutation group”). This idea culminated in the beautiful
work of Evariste Galois (1811-1832) in 1830-32, working with explicit groups
of “substitutions.” Today this work is referred to as Galois Theory (and is the
subject of the fourth part of this text). Similar explicit groups were being used
in geometry as collections of geometric transformations (translations, reflections,
etc.) by Arthur Cayley (1821-1895) around 1850, Camille Jordan (1838-1922)
around 1867, Felix Klein (1849-1925) around 1870, etc., and the application of
groups to geometry is still extremely active in current research into the structure of
3-space, 4-space, etc. The same group arising in the study of the solvability of the
quintic arises in the study of the rigid motions of an icosahedron in geometry and
in the study of elliptic functions in analysis.

The precursors of today’s abstract group can be traced back many years, even
before the groups of “substitutions” of Galois. The formal definition of an abstract
group which is our starting point appeared in 1882 in the work of Walter Dyck (1856
1934), an assistant to Felix Klein, and also in the work of Heinrich Weber (1842—-1913)

2See The Arithmetic of Elliptic Curves by J. Silverman, Springer-Verlag, 1986.
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in the same year.

It is frequently the case in mathematics research to find specific application of
an idea before having that idea extracted and presented as an item of interest in its
own right (for example, Galois used the notion of a “quotient group” implicitly in his
investigations in 1830 and the definition of an abstract quotient group is due to Holder in
1889). Itis important to realize, with or without the historical context, that the reason the
abstract definitions are made is because it is useful to isolate specific characteristics and
consider what structure is imposed on an object having these characteristics. The notion
of the structure of an algebraic object (which is made more precise by the concept of
an isomorphism — which considers when two apparently different objects are in some
sense the same) is a major theme which will recur throughout the text.
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CHAPTER 1

Introduction to Groups

1.1 BASIC AXIOMS AND EXAMPLES

In this section the basic algebraic structure to be studied in Part I isintroduced and some
examples are given.

Definition.
(1) A binary operation xonaset G is afunctionx : G xG — G. Foranya, b € G
we shall write a = b for x(a, b).
(2) A binary operation » on a set G is associative if for all a, b, c € G we have
ax(bxc)=(axb)xc.
(3) If » is a binary operation on a set G we say elements a and b of G commute if
a*b = bxa. We say » (or G) is commutative if foralla, b € G,axb = bxa.

Examples

(1) + (usual addition) is a commutative binary operation on Z (or on Q, R, or C respec-
tively).

(2) x (usual multiplication) is a commutative binary operation on Z (or on Q, R, or C
respectively).

(3) — (usual subtraction) is a noncommutative binary operation on Z, where —(a, b) =
a — b. The map a — —a is not a binary operation (not binary).

(4) — is not a binary operation on Z*+ (nor Q*, R*) because for a, b € Z* witha < b,
a—b ¢ Zt, that is, — does not map Z*+ x Z* into Z+.

(5) Taking the vector cross-product of two vectors in 3-space R3 is a binary operation
which is not associative and not commutative.

Suppose that » is a binary operation on a set G and H is a subset of G. If the
restriction of % to H is a binary operation on H, i.e., foralla,b € H,axb € H,
then H is said to be closed under *. Observe that if * is an associative (respectively,
commutative) binary operation on G and « restricted to some subset H of G is a binary
operation on H, then x is automatically associative (respectively, commutative) on H
as well.

Definition.

(1) A group is an ordered pair (G, x) where G is a set and « is a binary operation
on G satisfying the following axioms:
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() (axb)xc=ax(bxc),foralla, b, c € G, i.e., » is associative,
(ii) there exists an element e in G, called an identity of G, such that for all
a€ Gwehaveaxe=exa=a,
(iii) for each a € G there is an element a~! of G, called an inverse of a,
suchthataxa ! =a 'xa=e.
(2) The group (G, *) is called abelian (or commutative ) if a *x b = b » a for all
a,beG.

We shall immediately become less formal and say G is a group under »if (G, *) is
a group (or just G is a group when the operation * is clear from the context). Also, we
say G is a finite group if in addition G is a finite set. Note that axiom (ii) ensures that
a group is always nonempty.

Examples
1) Z,Q, R and C are groups under + with e = 0 and a~! = —q,forall a.
2 Q — {0}, R — {0}, C — {0}, QF, Rt are groups under x with e = 1 and al= %,
for all a. Note however that Z — {0} is not a group under x because although X is an

associative binary operation on Z — {0}, the element 2 (for instance) does not have an
inverse in Z — {0}.

We have glossed over the fact that the associative law holds in these familiar ex-
amples. For Z under + this is a consequence of the axiom of associativity for addition
of natural numbers. The associative law for QQ under + follows from the associative
law for Z — a proof of this will be outlined later when we rigorously construct Q from
Z (cf. Section 7.5). The associative laws for R and, in turn, C under + are proved
in elementary analysis courses when R is constructed by completing Q — ultimately,
associativity is again a consequence of associativity for Z. The associative axiom for
multiplication may be established via a similar development, starting first with Z. Since
R and C will be used largely for illustrative purposes and we shall not construct R from
Q (although we shall construct C from R) we shall take the associative laws (under +
and x ) for R and C as given.

Examples (continued)

(3) The axioms for a vector space V include those axioms which specify that (V, +) is an
abelian group (the operation + is called vector addition). Thus any vector space such
as R" is, in particular, an additive group.

(4) Forn € Z*, Z/nZ is an abelian group under the operation + of addition of residue
classes as described in Chapter 0. We shall prove in Chapter 3 (in a more general
context) that this binary operation + is well defined and associative; for now we take
this for granted. The identity in this group is the element 0 and for each a € Z/nZ,
the inverse of @ is —a. Henceforth, when we talk about the group Z/nZ it will be
understood that the group operation is addition of classes mod n.

(5) For n € Z*, the set (Z/nZ)* of equivalence classes a which have multiplicative
inverses mod n is an abelian group under multiplication of residue classes as described
in Chapter 0. Again, we shall take for granted (for the moment) that this operation
is well defined and associative. The identity of this group is the element 1 and, by
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definition of (Z/nZ)>, each element has a multiplicative inverse. Henceforth, when
we talk about the group (Z/nZ)> it will be understood that the group operation is
multiplication of classes mod .

(6) If (A, ») and (B, o) are groups, we can form a new group A x B, called their direct
product, whose elements are those in the Cartesian product

AxB={(a,b)|lac A, be B}
and whose operation is defined componentwise:
(a1, b1)(az, b2) = (a1 *az, by © b2).

For example, if we take A = B = R (both operations addition), R x R is the familiar
Euclidean plane. The proof that the direct product of two groups is again a group is
left as a straightforward exercise (later) — the proof that each group axiom holds in
A x B is a consequence of that axiom holding in both A and B together with the fact
that the operation in A x B is defined componentwise.

There should be no confusion between the groups Z/nZ (under addition) and
(Z/nZ)* (under multiplication), even though the latter is a subset of the former — the
superscript x will always indicate that the operation is multiplication.

Before continuing with more elaborate examples we prove two basic results which
in particular enable us to talk about zhe identity and the inverse of an element.

Proposition 1. If G is a group under the operation * , then
(1) the identity of G is unique
(2) for each a € G, a~! is uniquely determined
B) @H '=aforallae G
@ @xb)y'=0""x@")
(5) foranyay, ay, ..., a, € G the value of a) xa; » - - - % a, is independent of how
the expression is bracketed (this is called the generalized associative law).

Proof: (1) If f and g are both identities, then by axiom (ii) of the definition of a
group f «g = f (take a = f and e = g). By the same axiom f « g = g (takea = g
and e = f). Thus f = g, and the identity is unique.

(2) Assume b and c are both inverses of a and let e be the identity of G. By axiom
(ili) axb = e and c »a = e. Thus

c=cxe (definition of e - axiom (ii))
=cx(axb) (sincee =axb)
=(cxa)xb (associative law)
=exb (sincee =cxa)
=b (axiom (ii)).

(3) To show (a~!)~! = a is exactly the problem of showing a is the inverse of a~!
(since by part (2) a has a unique inverse). Reading the definition of a~!, with the roles
of a and a~! mentally interchanged shows that a satisfies the defining property for the
inverse of a~!, hence a is the inverse of a=!.
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(4) Let ¢ = (a » b)™! so by definition of c, (a » b) x ¢ = e. By the associative law
ax(bxc) =e.
Multiply both sides on the left by a~! to get
alx(@x(bxc) =a ' xe.

The associative law on the left hand side and the definition of e on the right give

@ 'xa)x(bxc)=a’

SO

ex(brxc)=a!

hence

bxc=al.

Now multiply both sides on the left by b~! and simplify similarly:
b x(brc)=b"lxa™!
G xb)xc=b"'lxa!
exc=b"lxa™!
c=blxa,

as claimed.

(5) This is left as a good exercise using induction on n. First show the result is true
for n = 1, 2, and 3. Next assume for any k < n that any bracketing of a product of k
elements, by » by - - - « by, can be reduced (without altering the value of the product) to
an expression of the form

byx(byx (b3 (---xby))...).

Now argue that any bracketing of the product @) x a; * - - - % @, must break into 2
subproducts, say (a; *a; % - - - * ax) * (Gp41 * Ag42 * - - - * a,), where each sub-product
is bracketed in some fashion. Apply the induction assumption to each of these two
sub-products and finally reduce the result to the forma; * (a2 x (a3 (- - - *a,)) ...) to
complete the induction.

Note that throughout the proof of Proposition 1 we were careful not to change
the order of any products (unless permitted by axioms (ii) and (iii)) since G may be
non-abelian.

Notation:

(1) For an abstract group G it is tiresome to keep writing the operation » throughout
our calculations. Henceforth (except when necessary) our abstract groups G, H,
etc. will always be written with the operation as - and a - b will always be written
as ab. In view of the generalized associative law, products of three or more group
elements will not be bracketed (although the operation is still a binary operation).
Finally, for an abstract group G (operation -) we denote the identity of G by 1.
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(2) For any group G (operation - implied) and x € G and n € Z* since the product
xx - - - x (n terms) does not depend on how it is bracketed, we shall denote it by x”".
Denote x 1x~! ... x~! (n terms) by x". Let x° = 1, the identity of G.

This new notation is pleasantly concise. Of course, when we are dealing with
specific groups, we shall use the natural (given) operation. For example, when the
operation is +, the identity will be denoted by 0 and for any element q, the inverse a!
will be written —a anda+a+---+a (n > Oterms) will be written na; —a—a---—a
(n terms) will be written —na and Oa = O.

Proposition 2. Let G be a group and let g, b € G. The equations ax = b and ya = b
have unique solutions for x, y € G. In particular, the left and right cancellation laws
hold in G, 1.e.,

(1) ifau = av, thenu = v, and

(2) if ub = vb, then u = v.

Proof: We can solve ax = b by multiplying both sides on the left by a~! and
simplifying to get x = a~'b. The uniqueness of x follows because a~! is unique.
Similarly, if ya = b, y = ba™!. If au = av, multiply both sides on the left by a~! and
simplify to get u = v. Similarly, the right cancellation law holds.

One consequence of Proposition 2 is that if a is any element of G and for some
be G,ab=eorba=e, thenb =a!,ie., we donot have to show both equations
hold. Also, if for some b € G, ab = a (or ba = a), then b must be the identity of G,
i.e., we do not have tocheck bx = xb = x forall x € G.

Definition. For G a group and x € G define the order of x to be the smallest positive
integer n such that x” = 1, and denote this integer by |x|. In this case x is said to be of
order n. If no positive power of x is the identity, the order of x is defined to be infinity
and x is said to be of infinite order.

The symbol forthe order of x should notbe confused with the absolute value symbol
(when G C R we shall be careful to distinguish the two). It may seem injudicious to
choose the same symbol for order of an element as the one used to denote the cardinality
(or order) of a set, however, we shall see that the order of an element in a group is the
same as the cardinality of the set of all its (distinct) powers so the two uses of the word
“order” are naturally related.

Examples

(1) Anelement of a group has order 1 if and only if it is the identity.

(2) In the additive groups Z, @, R or C every nonzero (i.e., nonidentity) element has
infinite order.

(3) In the multiplicative groups R — {0} or Q — {0} the element —1 has order 2 and all
other nonidentity elements have infinite order.

(4) Inthe additive group Z/9Z the element 6 has order 3, since 6 # 0,646 =12 =3 # 0,
but 6+ 6+ 6 = 18 = 0, the identity in this group. Recall that in an additive group the
powers of an element are the integer multiples of the element. Similarly, the order of
the element 5 is 9, since 45 is the smallest positive multiple of 5 that is divisible by 9.
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(5) In the multiplicative group (Z/7Z)*, the powers of the element 2are2,4,8 = 1, the
identity in this group, so 2 has order 3. Similarly, the element 3 has order 6, since 36
is the smallest positive power of 3 that is congruent to 1 modulo 7.

Definition. Let G = {g1, g2, - - - , 8} be a finite group with g, = 1. The multiplica-
tion table or group table of G is the n x n matrix whose i, j entry is the group element

8i&j-

For afinite group the multiplication table contains, in some sense, all the information
about the group. Computationally, however, it is an unwieldly object (being of size the
square of the group order) and visually it is not a very useful object for determining
properties of the group. One might think of a group table as the analogue of having a
table of all the distances between pairs of cities in the country. Such a table is useful
and, in essence, captures all the distance relationships, yet amap (better yet, a map with
all the distances labelled on it) is a much easier tool to work with. Part of our initial
development of the theory of groups (finite groups in particular) is directed towards a
more conceptual way of visualizing the intermal structure of groups.

EXERCISES

Let G be a group.
1. Determine which of the following binary operations are associative:
(a) the operation » on Z definedbyaxb=a — b

(b) the operation » on R defined byaxb =a + b+ ab
b
(c) the operation » on Q defined by a xb = fl-+—
(d) the operation » on Z x Z defined by (a, b) » (¢, d) = (ad + bc, bd)

(e) the operation « on Q — {0} definedby a xb = ‘l—:.

»

Decide which of the binary operations in the preceding exercise are commutative.

3. Prove that addition of residue classes in Z/nZ is associative (you may assume it is well
defined).

Prove that multiplication of residue classes in Z/nZ is associative (you may assume it is
well defined).

Prove for alln > 1 that Z/nZ is not a group under multiplication of residue classes.

4

by

bl

6. Determine which of the following sets are groups under addition:
(a) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators
are odd
(b) the set of rational numbers (including 0 = 0/1) in lowest terms whose denominators
are even
(c) the set of rational numbers of absolute value < 1
(d) the set of rational numbers of absolute value > 1 together with 0
(e) the set of rational numbers with denominators equal to 1 or 2
(f) the set of rational numbers with denominators equal to 1, 2 or 3.
7.LetG ={xe€eR|0<x < 1}andforx,y € G let x » y be the fractional partof x + y
(i.e., x *y = x + y — [x + y] where [a] is the greatest integer less than or equal to a).
Prove that « is a well defined binary operation on G and that G is an abelian group under
* (called the real numbers mod 1).
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10.
11.

12.

13.

14.

15.

16.
17.
18.

19.

20.
21.

22.

23.

24.

2s.
26.

27.

28.

22

. Let G={z € C|z" =1 forsomen € Z*t).

(a) Prove that G is a group under multiplication (called the group of roots of unity in C).
(b) Prove that G is not a group under addition.

. LetG={a+bv2€R|a,be Q).

(a) Prove that G is a group under addition.
(b) Provethatthe nonzero elements of G are a group under multiplication. [“Rationalize
the denominators™ to find multiplicative inverses.]

Prove that a finite group is abelian if and only if its group table is a symmetric matrix.
Find the orders of each element of the additive group Z/12Z.

Eirld the (Elers of the following elements of the multiplicative group (Z/12Z)*: 1, —I,
5,7,-7,13.

Find the orders of the following elements of the multiplicative group (Z/36Z): 1, —1,
5,13,-13,17.

Prove that (@1az ...a,) ! = a,jlan__ll ...ay

1 forall ay,ay,...,a, €G.
Let x be an element of G. Prove that x2 = 1 if and only if |x| is either 1 or 2.
1

Letx bean element of G. Prove thatif |x| = n for some positiveintegern thenx ™~ n=l,

1

=x
Let x and y be elements of G. Prove that xy = yx if and only if y~
xylxy=1.

Letx € Gandleta,b € Z*.

(a) Provethat x?tP = xaxb  and (x®)b = x9b.

(b) Prove that (x4)~! = x—2.

(c) Establish part (a) for arbitrary integers a and b (positive, negative or zero).

xy = x if and only if

For x an element in G show that x and x ! have the same order.

Let G be a finite group and let x be an element of G of order n. Prove that if n is odd, then
x = (x2)* for some k.

If x and g are elements of the group G, prove that |x| = |g~!xg|. Deduce that |ab| = |ba|
foralla, b € G.

Suppose x € G and |x| = n < oo. If n = st for some positive integers s and ¢, prove that
[x5|=t.

If a and b are commuting elements of G, prove that (ab)" = a"b" for alln € Z. [Do this
by induction for positive n first.]

Prove that if x2 = 1 for all x € G then G is abelian.

Assume H is a nonempty subset of (G, x) which is closed under the binary operation on
G and is closed under inverses, i.e., forall h and k € H, hk and h~! € H. Prove that H is
a group under the operation « restricted to H (such a subset H is called a subgroup of G).

Prove that if x is an element of the group G then {x" | n € Z} is a subgroup (cf. the
preceding exercise) of G (called the cyclic subgroup of G generated by x).

Let (A, x) and (B, ©) be groups and let A x B be their direct product (as defined in Example
6). Verify all the group axioms for A x B:
(a) prove that the associative law holds: forall (¢;, ;) € Ax B,i =1,2,3

(a1, b1)l(az2, b2)(a3, b3)] = [(a1, b1)(az, b2))(as, b3),
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29.
30.

31.

32.

33.

34.

3s.

36.

(b) prove that (1, 1) is the identity of A x B, and
(c) prove that the inverse of (a, b) is (@1, b7y,

Prove that A x B is an abelian group if and only if both A and B are abelian.

Prove that the elements (a, 1) and (1, b) of A x B commute and deduce that the order of
(a, b) is the least common multiple of |a| and |b|.

Prove that any finite group G of even order contains an element of order 2. [Let 1(G) be
theset{g €e G| g # g‘l} Show that 7(G) has an even number of elements and every
nonidentity element of G — ¢(G) has order 2.]

If x is an element of finite order n in G, prove that the elements 1, x, x2, ..., x" 1 areall

distinct. Deduce that |x| < |G|.

Let x be an element of finite order nin G.

(a) Prove thatifnisodd then x* # x™* for all_i = 1,.2, e..,n—1

(b) Prove thatifn =2kand1 <i <nthenx' =x"'ifand onlyifi = k.

If x is an element of infinite order in G, prove that the elements x", n € Z are all distinct.

If x is an element of finite order n in G, use the Division Algorithm to show that any
integral power of x equals one of the elements in the set {1, x, x2, ..., x"~1} (so these are
all the distinct elements of the cyclic subgroup (cf. Exercise 27 above) of G generated by
X).

Assume G = {1, a, b, c} is a group of order 4 with identity 1. Assume also that G has no
elements of order 4 (so by Exercise 32, every element has order < 3). Use the cancellation
laws to show that there is a unique group table for G. Deduce that G is abelian.

1.2 DIHEDRAL GROUPS

An important family of examples of groups is the class of groups whose elements are
symmetries of geometric objects. The simplest subclass is when the geometric objects
are regular planar figures.

For eachn € Z*, n > 3 let D,, be the set of symmetries of a regular n-gon, where

a symmetry is any rigid motion of the n-gon which can be effected by taking a copy
of the n-gon, moving this copy in any fashion in 3-space and then placing the copy
back on the original n-gon so it exactly covers it. More precisely, we can describe the
symmetries by first choosing a labelling of the n vertices, for example as shown in the
following figure.
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Then each symmetry s can be described uniquely by the corresponding permutation o
of {1,2,3,...,n} where if the symmetry s puts vertex i in the place where vertex j
was originally, then o is the permutation sending i to j. For instance, if s is a rotation
of 27 /n radians clockwise about the center of the n-gon, then o is the permutation
sendingi toi + 1,1 <i < n—1, and o(n) = 1. Now make D, into a group by
defining st for s, € D, to be the symmetry obtained by first applying ¢ then s to
the n-gon (note that we are viewing symmetries as functions on the n-gon, so st is just
function composition — read as usual from right to left). If s, ¢ effect the permutations
o, T, respectively on the vertices, then st effects o o . The binary operation on D,,
is associative since composition of functions is associative. The identity of D,, is the
identity symmetry (which leaves all vertices fixed), denoted by 1, and the inverse of
s € D,, isthe symmetry which reverses all rigid motions of s (so if s effects permutation
o on the vertices, s ! effects 0 ~!). In the next paragraph we show

|D2n| = 2n

and so D,, is called the dihedral group of order 2n. In some texts this group is written
D,,; however, D,, (where the subscript gives the order of the group rather than the
number of vertices) is more common in the group theory literature.

To find the order | D,,| observe that given any vertex i, there is a symmetry which
sends vertex 1 into position i. Since vertex 2 is adjacent to vertex 1, vertex 2 must
end up in positioni + 1 ori — 1 (where n + 1 is 1 and 1 — 1 is n, i.e., the integers
labelling the vertices are read mod n ). Moreover, by following the first symmetry by a
reflection about the line through vertexi and the center of the n-gon one sees that vertex
2 can be sent to either position i + 1 or i — 1 by some symmetry. Thus there are n - 2
positions the ordered pair of vertices 1, 2 may be sent to upon applying symmetries.
Since symmetries are rigid motions one sees that once the position of the ordered pair
of vertices 1, 2 has been specified, the action of the symmetry on all remaining vertices
iscompletely determined. Thus there are exactly 2n symmetries of a regular n-gon. We
can, moreover, explicitly exhibit 2n symmetries. These symmetries are the n rotations
about the center through 2i /n radian, 0 < i < n— 1, and the n reflections through the
n lines of symmetry (if » is odd, each symmetry line passes through a vertex and the
mid-point of the opposite side; if n is even, there are n/2 lines of symmetry which pass
through 2 opposite vertices and n/2 which perpendicularly bisect two opposite sides).
For example, if n = 4 and we draw a square at the origin in an x, y plane, the lines of
symmetry are

y
N ,y=x
\ ’
4T /1
\ ’
\ ’
N
RIS x
s \
7/ \
s \
3 2
s \
7/ \y:—x
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the lines x = 0 (y-axis), y = 0 (x-axis), y = x and y = —x (note that “reflection”
through the origin is not a reflection but a rotation of 7 radians).

Since dihedral groups will be used extensively as an example throughout the text
we fix some notation and mention some calculations which will simplify future com-
putations and assist in viewing D, as an abstract group (rather than having to return to
the geometric setting at every instance). Fix a regular n-gon centered at the origin in an
x, y plane and label the vertices consecutively from | to n in a clockwise manner. Let r
be the rotation clockwise about the origin through 27 /n radian. Let s be the reflection
about the line of symmetry through vertex 1 and the origin (we use the same letters for
each n, but the context will always make » clear). We leave the details of the following
calculations as an exercise (for the most part we shall be working with Dg and Dg, so
the reader may wish to try these exercises for n = 3 and n = 4 first):

@ 1,r,r?, ..., r* Yareall distinct and r” = 1, so |r| = n.
@) Is| =2.

(3) s #r' foranyi.

@) srt #£sr/,forall0 <i,j <n-—1withi # j, so

Dy ={1,r, 7%, ..., r" L s, sr,sr?, ..., sr" 1}

i.e., each element can be written uniquely in the form skrt for some k = 0 or
landO<i<n-—1.

(5) rs = sr~!. [First work out what permutation s effects on {1,2,...,n} and
then work out separately what each side in this equation does to vertices 1
and 2.] This shows in particular that r and s do not commute so that D,, is
non-abelian.

(6) r's =sr~,forall0 <i < n. [Proceed by induction on i and use the fact that
ritls = r(r's) together with the preceding calculation.] This indicates how to
commute s with powers of r.

Having done these calculations, we now observe that the complete multiplication
table of D,, can be written in terms r and s alone, that is, all the elements of D,,, have a
(unique) representation in the form s*r’, k = Oor 1 and 0 < i < n— 1, and any product
of two elements in this form can be reduced to another in the same form using only
“relations” (1), (2) and (6) (reducing all exponents mod n). For example, if n = 12,

sr2)(sr® = s(Ps)r® = s(sr)yb = s =, 3 =7,

Generators and Relations

The use of the generators r and s for the dihedral group provides a simple and succinct
way of computing in D,,. We can similarly introduce the notions of generators and
relations for arbitrary groups. It is useful to have these concepts early (before their
formal justification) since they provide simple ways of describing and computing in
many groups. Generators will be discussed in greater detail in Section 2.4, and both
concepts will be treated rigorously in Section 6.3 when we introduce the notion of free
groups.
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A subset S of elements of a group G with the property that every element of G
can be written as a (finite) product of elements of S and their inverses is called a set of
generators of G. We shall indicate this notationally by writing G = (S) and say G
is generated by S or S generates G. For example, the integer 1 is a generator for the
additive group Z of integers since every integer is a sum of a finite number of +1’s and
—1’s,s0Z = (1). By property (4) of D,, the set S = {r, s} is a set of generators of
D,,, so Dy, = (r,s). We shall see later that in a finite group G the set S generates
G if every element of G is a finite product of elements of S (i.e., it is not necessary to
include the inverses of the elements of S as well).

Any equations in a general group G that the generators satisfy are called relations
in G. Thus in D,, we have relations: r* = 1, s = 1 and rs = sr~!. Moreover, in
D,, these three relations have the additional property that any other relation between
elements of the group may be derived from these three (this is not immediately obvious;
‘it follows from the fact that we can determine exactly when two group elements are
equal by using only these three relations).

In general, if some group G is generated by a subset S and there is some collection
of relations, say R, R, ..., R,, (here each R; is an equation in the elements from
S U {1}) such that any relation among the elements of S can be deduced from these, we
shall call these generators and relations a presentation of G and write

G=(S|R1,R2,-..,Rm).

One presentation for the dihedral group D,, (using the generators and relations above)

is then
D2n=(r,s|r"=s2=1, rs =srl). (1.1)

We shall see that using this presentation to describe D, (rather than always reverting
to the original geometric description) will greatly simplify working with these groups.

Presentations give an easy way of describing many groups, but there are anumber of
subtleties that need to be considered. One of these is that in an arbitrary presentation it
may be difficult (or even impossible) to tell when two elements of the group (expressed
in terms of the given generators) are equal. As a result it may not be evident what the
order of the presented group is, or even whether the group is finite or infinitet For
example, one can show that (x, y; | xl2 = )’12 = (x1y1)? = 1) is a presentation of a
group of order 4, whereas (x;,y2 | x3 = y23 = (x2y2)*® = 1) is a presentation of an
infinite group (cf. the exercises).

Another subtlety is that even in quite simple presentations, some “collapsing” may
occur because the relations are intertwined in some unobvious way, i.e., there may be
“hidden,” or implicit, relations that are not explicitly given in the presentation but rather
are consequences of the specified ones. This collapsing makes it difficult in general to
determine even a lower bound for the size of the group being presented. For example,
suppose one mimicked the presentation of D5, in an attempt to create another group by
defining:

Xo =(x,y | x"=y*=1, xy = yx*). (1.2)

The “commutation” relation xy = yx? determines how to commute y and x (i.e., how
to “move” y from the right of x to the left), so that just as in the group D5, every element
in this group can be written in the form y*x’ with all the powers of y on the left and all
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the powers of x on the right. Also, by the first two relations any powers of x and y can be
reduced so that i lies between O and n — 1 and k is O or 1. One might therefore suppose
that X, is again a group of order 2n. This is not the case because in this group there is
a “hidden” relation obtained from the relation x = xy? (since y? = 1) by applying the
commutation relation and the associative law repeatedly to move the y’s to the left:

x = x)? = (xy)y = (pxD)y = (x)(xy) = (Yx) (yx?)
= y(xy)x? = y(yxDx? = y2x* = x*.
Since x* = x it follows by the cancellation laws that x3 = 1 in X,,, and from the
discussion above it follows that X, has order at most 6 for any ». Even more collapsing
may occur, depending on the value of n (see the exercises).
As another example, consider the presentation

Y =(u,v|u*=0=1, uv=10%?). (1.3)

In this case it is tempting to guess that Y is a group of order 12, but again there are
additional implicit relations. In fact this group Y degenerates to the trivial group of
order 1, i.e., u and v satisfy the additional relations ¥ = 1 and v = 1 (a proof is outlined
in the exercises).

This kind of collapsing does not occur for the presentation of D,, because we
showed by independent (geometric) means that there is a group of order 2n with gen-
erators r and s and satisfying the relations in (1). As a result, a group with only these
relations must have order at least 2n. On the other hand, it is easy to see (using the
same sort of argument for X, above and the commutation relation rs = sr~!) that any
group defined by the generators and relations in (1) has order at most 2n. It follows that
the group with presentation (1) has order exactly 2n and also that this group is indeed
the group of symmetries of the regular n—gon.

The additional information we have for the presentation (1) is the existence of a
group of known order satisfying this information. In contrast, we have no independent
knowledge about any groups satisfying the relations in either (2) or (3). Without such
independent “lower bound” information we might not even be able to determine whether
a given presentation just describes the trivial group, as in (3).

While in general it is necessary to be extremely careful in prescribing groups by
presentations, the use of presentations for known groups is a powerful conceptual and
computational tool. Additional results about presentations, including more elaborate
examples, appear in Section 6.3.

EXERCISES

In these exercises, Dy, has the usual presentation Dy, = (r,s | r" = s2=1, rs=sr! ).
1. Compute the order of each of the elements in the following groups:
@ Ds (b)Dg (c) Dio.

2. Use the generators and relations above to show thatif x is any element of D;, which is

not a power of r, thenrx = xr—1.

3. Use the generators and relations above to show that every element of D, whichisnot a
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power of r has order 2. Deduce that D;, is generated by the two elements s and sr, both
of which have order 2.

4. If n = 2k is even and n > 4, show that z = r¥ is an element of order 2 which commutes
with all elements of D;,. Show also that z is the only nonidentity element of D,, which
commutes with all elements of D,,,. [cf. Exercise 33 of Section 1.]

5. If n is odd and n > 3, show that the identity is the only element of D,, which commutes
with all elements of D,,. [cf. Exercise 33 of Section 1.]

Let x and y be elements of order 2 in any group G. Prove that if t = xy then tx = xt™!
(sothat if n = |xy| < oo then x, ¢ satisfy the same relations in G as s, r do in D3,,).

6

7. Show that (a, b | a2 =b2=(@ab)" =1 ) gives a presentation for Dy, in terms of the two
generators @ = s and b = sr of order 2 computed in Exercise 3 above. [Show that the
relations for r and s follow from the relations for a and b and, conversely, the relations for
a and b follow from those for r and s.]

8. Find the order of the cyclic subgroup of D,, generated by r (cf. Exercise 27 of Section 1).

Ineachof Exercises 9 to 13 you can find the orderof the group of rigid motionsin R? (also called
the group of rotations) of the given Platonic solid by following the proof for the order of Dy, :
find the number of positions to which an adjacent pair of vertices can be sent. Alternatively,
you can find the number of places to which a given face may be sent and, once a face is fixed,
the number of positions to which a vertex on that face may be sent.

9. Let G be the group of rigid motions in R3 of a tetrahedron. Show that |G| = 12.

10. Let G be the group of rigid motions in R3 of a cube. Show that |G| = 24.

11. Let G be the group of rigid motions in R3 of an octahedron. Show that |G| = 24.

12. Let G be the group of rigid motions in R3 of a dodecahedron. Show that |G| = 60.

13. Let G be the group of rigid motions in R3 of an icosahedron. Show that |G| = 60.

14. Find a set of generators for Z.

15. Find a set of generators and relations for Z/nZ.

16. Show that the group (x1, y1 | x]2 = y]2 = (x1y1)? = 1) is the dihedral group D4 (where
x1 may be replaced by the letter r and y; by s). [Show that the last relation is the same as:
ny= ylxl_l-]

17. Let X5, be the group whose presentation is displayed in (1.2).

(a) Show thatif n = 3k, then X, has order 6, and it has the same generators and relations
as D¢ when x is replaced by r and y by s.

(b) Show that if (3, n) = 1, then x satisfies the additional relation: x = 1. In this case
deduce that X2, has order 2. [Use the facts that x” = 1 and x3 = 1.]

18. Let Y be the group whose presentation is displayed in (1.3).

(a) Show that v2 = v~!. [Use the relation: v3 = 1.]

(b) Show that v commutes with 3. [Show that v2u3v = u3 by writing the left hand side
as (v2u?)(uv) and using the relations to reduce this to the right hand side. Then use
part (a).]

(c) Show that v commutes with u. [Show that ° = u and then use part (b).]

(d) Show that uv = 1. [Use part (c) and the last relation.]

(e) Show that u = 1, deduce that v = 1, and conclude that ¥ = 1. [Use part (d) and the
equation u%v3 = 1.]
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1.3 SYMMETRIC GROUPS

Let €2 be any nonempty set and let Sg, be the set of all bijections from 2 to itself (i.e.,
the set of all permutations of §2). The set S, is a group under function composition: o.
Note that o is a binary operation on S, since if o : 2 — Q and 7 : £ — 2 are both
bijections, then o o t is also a bijection from €2 to €. Since function composition is
associative in general, o is associative. The identity of Sg, is the permutation 1 defined
by 1(@) = a, for all a € 2. For every permutation o there is a (2-sided) inverse
function, 07! : Q@ — Qsatisfyingo oo ~! = 07! 0o = 1. Thus, all the group axioms
hold for (Sq, o). This group is called the symmetric group on the set 2. It is important
to recognize that the elements of Sg, are the permutations of 2, not the elements of 2
itself.

In the special case when 2 = {1, 2, 3, ..., n}, the symmetric group on 2 is de-
noted S, the symmetric group of degree n.! The group S, will play an important role
throughout the text both as a group of considerable interest in its own right and as a
means of illustrating and motivating the general theory.

First we show that the order of S, is n!. The permutations of {1, 2, 3, ..., n} are
precisely the injective functions of this set to itself because it is finite (Proposition 0.1)
and we can count the number of injective functions. A n injective function o can send
the number 1 to any of the n elements of {1, 2, 3, ..., n}; 0(2) can then be any one of
the elements of this set except o (1) (so there are n — 1 choices for o (2)); o(3) can be
any element except o (1) or o (2) (so there are n — 2 choices for o (3)), and so on. Thus
there are precisely n - (n — 1) - (n — 2)...2 - 1 = n! possible injective functions from
{1,2,3,...,n} toitself. Hence there are precisely n! permutations of {1,2,3,...,n}
so there are precisely n! elements in S,,.

We now describe an efficient notation for writing elements o of S,, which we shall
use throughout the text and which is called the cycle decomposition.

A cycle is a string of integers which represents the element of S,, which cyclically
permutes these integers (and fixes all other integers). The cycle (a; a; ... a,,) is the
permutation which sends a; to a;11, 1 <i < m — 1 and sends a,, to a;. For example
(213) is the permutation which maps 2 to 1, 1 to 3 and 3 to 2. In general, for each
o € S, the numbers from 1 to n will be rearranged and grouped into k cycles of the
form

(@ ay...0n ) n1Gny42 - - Omy) o Oy 41 Oy 42 - - - Oy

from which the action of o on any number from 1 to n can easily be read, as follows.
For any x € {1, 2, 3, ..., n} first locate x in the above expression. If x is not followed
immediately by a right parenthesis (i.e., x is not at the right end of one of the k cycles),
then o (x) is the integer appearing immediately to the right of x. If x is followed by a
right parenthesis, then o (x) is the number which is at the start of the cycle ending with
x (ie., if x = ay,, for some i, then o (x) = a,,,_,+1 (Where my is taken to be 0)). We
can represent this description of o by

We shall see in Section 6 that the structure of Sp, depends only on the cardinality of €2 , not on the
particular elements of Q2 itself, so if 2 is any finite set with n elements, then Sq; “looks like” ,,.
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Ca1—>a2—>---—>aml>

C—) Ami+1 —> Qm42 —> -~ —> am2>

C—) Ay +1 = Qmy_ 42 —> *+ —> amk>

The product of all the cycles is called the cycle decomposition of o .

We now give an algorithm for computing the cycle decomposition of an element o
of S, and work through the algorithm with a specific permutation. We defer the proof
of this algorithm and full analysis of the uniqueness aspects of the cycle decomposition

until Chapter 4.
Letn =13 and let o € Si3 be defined by

o()=12, o0(2)=13, 0(3)=3, o4 =1, o(5) =11,
c(6)=9, o(T=5 @B =10, o9 =6, o (10) =4,

oc(11) =7, o0(12)=8, o(13)=2.

Cycle Decomposition Algorithm

Method

Example

To start a new cycle pick the smallest element of {1, 2, ....n}
which has not yet appeared in a previous cycle — call it a (if
you are just starting, a = 1); begin the new cycle: (a

a

Read off o (@) from the given description of o — call it b. If
b = g, close the cycle with a rith parenthesis (without writing
b down); this completes a cycle — return to step 1. If b # a,
write b nexttoa in this cycle: (ab

o(l) = 12 = b, 12 # 1 so write:
(112

Read off o(b) from the given description of o — callit c. If
¢ = a, close the cycle with a right parenthesis to complete the
cycle — return to step 1. If ¢ # a, write ¢ next to b in this
cycle: (abc Repeat this step using the number ¢ as the new

value for b until the cycle closes.

o(12) = 8, 8 # 1 so continue the
cycleas: (1128

Naturally this process stops when all the numbers from {1, 2, ..., n} have appeared
in some cycle. For the particular o in the example this gives

oc=(1128104)(213)(3)(5117)(69).

The length of a cycle is the number of integers which appear in it. A cycle of length
t is called a -cycle. Two cycles are called disjoint if they have no numbers in common.
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Thus the element o above is the product of 5 (pairwise) disjoint cycles: a 5-cycle, a
2-cycle, a 1-cycle, a 3-cycle, and another 2-cycle.

Henceforth we adoptthe convention that 1-cycles will not be written. Thus if some
integer, i, does not appear in the cycle decomposition of a permutation 7 it is understood
thatt(i) = i, i.e., thatt fixes i. Theidentity permutation of S, has cycle decomposition
(1)(2) ... (n) and will be written simply as 1. Hence the final step of the algorithm is:

Cycle Decomposition Algorithm (cont.)

Final Step: Remove all cycles of length 1

The cycle decomposition for the particular o in the example is therefore
o=(1128104)(213)(5117)(69)

This convention has the advantage that the cycle decomposition of an element 7 of
S, is also the cycle decomposition of the permutation in S,, for m > n which acts as T
on{l, 2, 3,..., n} and fixes eachelementof {n + 1, n+ 2, . .., m}. Thus, for example,
(12) is the permutation which interchanges 1 and 2 and fixes all larger integers- whether
viewed in S,, S3 or Sy, etc.

As another example, the 6 elements of S3 havethe following cycle decompositions:

The group $3

Values of o; Cycle Decomposition of o;
oi()=1,012)=2,013) =3 1
o2(1) =1,02(2) =3,02(3) =2 23)
03(1)=3,032) =2,03(3) =1 a13)
04(1) =2,04(2) =1,04(3) =3 (12)
os(1)=2,05(2)=3,05(3)=1 az3

For any o € §,, the cycle decomposition of o~! is obtained by writing the num-
bers in each cycle of the cycle decomposition of o in reverse order. For example, if
o = (1128104)(213)(5 11 7)(6 9) is the element of S;3 described before then

o 1=(4108121)(132)(7115)©9 6).

Computing products in ,, is straightforward, keeping in mind that when computing
o ot in S, one reads the permutations from right to left. One simply “follows” the
elements under the successive permutations. For example, in the product (1 2 3) o
(1 2)(3 4) the number 1 is sent to 2 by the first permutation, then 2 is sent to 3 by
the second permutation, hence the composite maps 1 to 3. To compute the cycle
decomposition of the product we need next to see what happens to 3. Itis sent first to 4,
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then 4 is fixed, so 3 is mapped to 4 by the composite map. Similarly, 4 is first mapped to
3 then 3 is mapped to 1, completing this cycle in the product: (1 3 4). Finally, 2 is sent
to 1, then 1 is sent to 2 so 2 is fixed by this product andso (12 3)o0(12)(34) =(134)
is the cycle decomposition of the product.

As additional examples,

12)o(13) =(132) and 13)0o(12)=(123).
In particular this shows that
S, is a non-abelian group for all n > 3.

Eachcycle (a; a; . . . a,,) inacycle decomposition can be viewed as the permutation
which cyclically permutes a, az, . . ., a, and fixes all other integers. Since disjoint
cycles permute numbers which lie in disjoint sets it follows that

disjoint cycles commute.

Thus rearranging the cycles in any product of disjoint cycles (in particular, in a cycle
decomposition) does not change the permutation.

Also, since a given cycle, (a; a; .. .an), permutes {a;, az, ..., a,} cyclically, the
numbers in the cycle itself can be cyclically permuted without altering the permutation,
ie.,

(aray...ap)=(@2a3...ap,a1) =(azas...an a1 a3) =...

=(@naiaz...am_1).

Thus, for instance, (1 2) = (2 1) and (12 34) = (341 2). By convention, the smallest
number appearing in the cycle is usually written first.

One must exercise some care working with cycles since a permutation may be
written in many ways as an arbitrary product of cycles. For instance, in S3, (1 2 3) =
(12)(23) = (13)(132)(13) etc. But, (as we shall prove) the cycle decomposition of
each permutation is the unique way of expressing a permutation as a product of disjoint
cycles (up to rearranging its cycles and cyclically permuting the numbers within each
cycle). Reducing an arbitrary product of cycles to a product of disjoint cycles allows
us to determine at a glance whether or not two permutations are the same. Another
advantage to this notation is that it is an exercise (outlined below) to prove that the order
of a permutation is the l.c.m. of the lengths of the cycles in its cycle decomposition.

EXERCISES

1. Let o be the permutation
1—3 24 35 42 S5 1
and let t be the permutation
1—5 23 32 4~ 4 5 1.
2

Find the cycle decompositions of each of the following permutations: o, 7, 0%, 01, 70,
2
and t¢0.
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2. Let o be the permutation

1— 13 22 3> 15 4 14 5~ 10
6> 6 T 12 8>3 99— 4 101
11— 17 12— 9 13> 5 1411 15—~ 8

and let T be the permutation

1— 14 2—9 3~ 10 42 S 12
6— 6 75 8> 11 9 15 10—~ 3
11+~ 8 27 13— 4 141 15— 13.

Find the cycle decompositions of the following permutations: o, 7, 62, o7, To, and t20.

3. For each of the permutations whose cycle decompositions were computed in the preceding

two exercises compute its order.

4. Compute the order of each of the elements in the following groups: (@) S3  (b) Ss.

5. Findthe orderof (1 128 104)(2 13)(5 11 7)(6 9).

6. Write out the cycle decomposition of each element of order 4 in Ss.

7. Write out the cycle decomposition of each element of order 2 in S3.

8. Prove thatif 2 = {1, 2, 3, ...} then Sq is an infinite group (do not say oo! = 00).

9. (@) Leto bethe 12cycle (12345678910 11 12). For which positive integers i is
o' also a 12-cycle? ‘

(b) Let 7 be the 8-cycle (1 23 4 5 6 7 8). For which positive integers i is 7' also an
8-cycle?

(c¢) Let w.be the 14-cycle (123456789 10 11 12 13 14). For which positive integers
iis o' also a 14-cycle?

Prove that if o is the m-cycle (a1 a ... a),thenforalli € (1,2, ..., m}, o' (ax) = ax4i,

where k + i is replaced by its least residue mod m when k +i > m. Deduce that [o| = m.

11. Let o be the m-cycle (1 2 ... m). Show that o' is also an m-cycle if and only if i is
relatively prime to m.

12. (@) If r = (1 2)(3 4)(5 6)(7 8)(9 10) determine whether there is a n-cycle o (n > 10)

with T = o for some integer k.
(b) If t = (1 2)(3 4 5) determine whether there is an n-cycle o (n > 5) with t = o* for
some integer k.

13. Show that an element has order 2 in S, if and only if its cycle decomposition is a product
of commuting 2-cycles.

14. Let p be a prime. Show that an element has order p in S, if and only if its cycle decom-
position is a product of commuting p-cycles. Show by an explicit example that this need
not be the case if p is not prime.

15. Prove that the order of an element in S,, equals the least common multiple of the lengths
of the cycles in its cycle decomposition. [Use Exercise 10 and Exercise 24 of Section 1.]

16. Show thatif n > m then the number of m-cycles in S, is given by

nn—-1Dn-2)..n—m+1)
p .
[Count the number of ways of forming an m-cycle and divide by the number of represen-
tations of a particular m-cycle.]

10
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17. Show that if n > 4 then the number of permutations in S, which are the product of two
disjoint 2-cycles is n(n — 1)(n — 2)(n — 3)/8.

18. Find all numbers » such that S5 contains an element of order n. [Use Exercise 15.]

19. Find all numbers n such that S7 contains an element of order n. [Use Exercise 15.]

20. Find a set of generators and relations for S3.

1.4 MATRIX GROUPS

In this section we introduce the notion of matrix groups where the coefficients come
from fields. This example of a family of groups will be used for illustrative purposes
in Part I and will be studied in more detail in the chapters on vector spaces.

A field is the “smallest” mathematical structure in which we can perform all the
arithmetic operations +, —, X, and + (division by nonzero elements), so in particular
every nonzero element must have a multiplicative inverse. We shall study fields more
thoroughly later and in this part of the text the only fields F we shall encounter will
be Q R and Z/pZ, where p is a prime. The example Z/pZ is a finite field, which, to
emphasize that it is a field, we shall denote by IF,,. For the sake of completeness we
include here the precise definition of a field.

Definition.
(1) A field is a set F together with two binary operations + and - on F such that
(F, 4) is an abelian group (call its identity 0) and (F — {0}, -) is also an abelian
group, and the following distributive law holds:

a-b+c)=@-b)y+@-o), foralla, b,c € F.
(2) For any field F let F* = F — {0}.

All the vector space theory, the theory of matrices and linear transformations and
the theory of determinants when the scalars come from R is true, mutatis mutandis,
when the scalars come from an arbitrary field F. When we use this theory in Part I we
shall state explicitly what facts on fields we are assuming.

Foreachn € Z* let GL, (F) be the set of all n x n matrices whose entries come
from F and whose determinant is nonzero, i.e.,

GL,(F)={A| Aisann x n matrix with entries from F and det(A) # 0 },

where the determinant of any matrix A with entries from F can be computed by the
same formulas used when F = R. For arbitrary n x n matrices A and B let AB be the
product of these matrices as computed by the same rules as when F = R. This product
is associative. Also, since det(AB) = det(A) - det(B), it follows that if det(A) # 0
and det(B) # 0, then det(AB) # 0, so GL, (F) is closed under matrix multiplication.
Furthermore, det(A) # 0 if and only if A has a matrix inverse (and this inverse can be
computed by the same adjoint formula used when F = R), so each A € GL,(F) has
an inverse, A}, in GL,(F):

AA ' =AT1A=1],
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where [ is the n x n identity matrix. Thus GL, (F) is a group under matrix multipli-
cation, called the general linear group of degree n.

The following results will be proved in Part I1I but are recorded now for convenience:
Q) if F is afield and | F| < oo, then | F| = p™ for some prime p and integer m
(2) if |F| =g < 0o, then |GL,(F)| = (¢" — 1)(¢" —q)(g" — ¢ ...(¢" —q"").

EXERCISES

Let Fbeafieldandletn € Z*.
1. Provethat |GL;(F;)| = 6.
2. Write out all the elements of G L; () and compute the order of each element.
3. Show that GL,(F3) is non-abelian.

. Show that if n is not prime then Z/nZ is not a field.

. Show that GL, (F) is a finite group if and only if F has a finite number of elements.

. If |F| = q is finite prove that |GL, (F)| < g"".

. Let p be a prime. Prove that the order of GL2(F)) is p* — p* — p? + p (do not just quote
the order formula in this section). [Subtract the number of 2 x 2 matrices which are not
invertible from the total number of 2 x 2 matrices over IF,. You may use the fact that a
2 x 2 matrix is not invertible if and only if one row is a multiple of the other.]

8. Show that GL, (F) is non-abelian for any n > 2 and any F.

. Prove that the binary operation of matrix multiplication of 2 x 2 matrices with real number
entries is associative.

10. LetG:{(g f)|a,b,ce1R, a#0, c#0).

NN s

o

(a) Compute the product of (‘8 Ic” ) and (%2 2) to show that G is closed under
1

matrix multiplication.

(b) Find the matrix inverse of g ? and deduce that G is closed under inverses.

(c) Deduce that G is a subgroup of GL;(R) (cf. Exercise 26, Section 1).

(d) Prove that the set of elements of G whose two diagonal entries are equal (i.e., a = ¢)
is also a subgroup of GL;(R).

The next exercise introduces the Heisenberg group over the field F and develops some of its
basic properties. When F = R this group plays an important role in quantum mechanics
and signal theory by giving a group theoretic interpretation (due to H. Weyl) of Heisenberg’s
Uncertainty Principle. Note also that the Heisenberg group may be defined more generally —
for example, with entries in Z.

1 a b
11. Let H(F) = {(0 1 c) | a, b, c € F} — called the Heisenberg group over F. Let
0 01

1 a b 1 d e

X=]0 1 cjJandY=]0 1 f | beelementsof H(F).
0 0 1 0 0 1

(a) Compute the matrix product XY and deduce that H (F) is closed under matrix mul-

tiplication. Exhibit explicit matrices such that XY # YX (so that H(F) is always
non-abelian).
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(b) Find an explicit formula for the matrix inverse X ~1 and deduce that H (F) is closed
under inverses.

(c) Prove the associative law for H(F) and deduce that H(F) is a group of order |F 13.
(Do not assume that matrix multiplication is associative.)

(d) Find the order of each element of the finite group H(Z/2Z).

(e) Prove that every nonidentity element of the group H(R) has infinite order.

1.5 THE QUATERNION GROUP

The quaternion group, Qs, is defined by
Os={l,-1, i, —i, j,—j, k, —k}
with product - computed as follows:
l-a=a-1=a, foralla € Qg

D D=1, (-)-a=a-(=1)=—a, forallae Qs

i-j=k, j-i=—k
Jj-k=i, k-j=—i
k-i=j, i-k=—j

As usual, we shall henceforth write ab for a - b. It is tedious to check the associative
law (we shall prove this later by less computational means), but the other axioms are
easily checked. Note that Qg is a non-abelian group of order 8.

EXERCISES

1. Compute the order of each of the elements in Qsg.
2. Write out the group tables for S3, Dg and QOs.
3. Find a set of generators and relations for Qsg.

1.6 HOMOMORPHISMS AND ISOMORPHISMS

In this section we make precise the notion of when two groups “look the same,” that is,
have exactly the same group-theoretic structure. This is the notion of an isomorphism
between two groups. We first define the notion of a homomorphism about which we
shall have a great deal more to say later.

Definition. Let (G, %) and (H, ©) be groups. A map ¢ : G — H such that
px*y) = p(x) o p(y), forallx,y € G

is called a homomorphism.
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When the group operations for G and H are not explicitly written, the homomor-
phism condition becomes simply

e(xy) = p(x)e(y)

but it is important to keep in mind that the product xy on the left is computed in G
and the product ¢(x)¢(y) on the right is computed in H. Intuitively, a map ¢ is a
homomorphism if it respects the group structures of its domain and codomain.

Definition. The map ¢ : G — H is called an isomorphism and G and H are said to
be isomorphic or of the same isomorphism type, written G = H, if

(1) ¢ is ahomomorphism (i.e., (xy) = ¢(x)@(y)), and

(2) ¢ is abijection.

In other words, the groups G and H are isomorphic if there is a bijection between
them which preserves the group operations. Intuitively, G and H are the same group
except that the elements and the operations may be written differently in G and H.
Thus any property which G has which depends only on the group structure of G (i.e.,
can be derived from the group axioms — for example, commutativity of the group) also
holds in H. Note that this formally justifies writing all our group operations as - since
changing the symbol of the operation does not change the isomorphism type.

Examples

(1) For any group G, G = G. The identity map provides an obvious isomorphism but
not, in general, the only isomorphism from G to itself. More generally, let G be
any nonempty collection of groups. It is easy to check that the relation = is an
equivalence relation on G and the equivalence classes are called isomorphism classes.
This accounts for the somewhat symmetric wording of the definition of “isomorphism.”

(2) The exponential map exp : R — R* defined by exp(x) = €*, where e is the base of
the natural logarithm, is an isomorphism from (R, +) to (R*, x). Exp is a bijection
since it has an inverse function (namely log, ) and exp preserves the group operations
since e*1Y = ¢*e”. In this example both the elements and the operations are different
yet the two groups are isomorphic, that is, as groups they have identical structures.

(3) In this example we show that the isomorphism type of a symmetric group depends
only on the cardinality of the underlying set being permuted.

Let A and €2 be nonempty sets. The symmetric groups Sa and Sg are isomorphic
if |A| = |R2|]. We can see this intuitively as follows: given that |A| = |2|, there is a
bijection 6 from A onto 2. Think of the elements of A and 2 as being glued together
via 6, i.e.,each x € A is glued to 6(x) € Q2. Toobtainamap ¢ : SA — Sqleto € Sa
be a permutation of A and let ¢(o) be the permutation of &2 which moves the elements
of Q in the same way o moves the corresponding glued elements of A; that is, if
o(x) = y,forsome x, y € A, then ¢(c)(6(x)) = 6(y) in 2. Since the set bijection 6
has an inverse, one can easily check that the map between symmetric groups also has
aninverse. The precise technical definition of the map ¢ and the straightforward, albeit
tedious, checking of the properties which ensure ¢ is an isomorphism are relegated to
the following exercises.
Conversely, if SA = Sq, then |A| = |S2|; we prove this only when the underlying
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sets are finite (when both A and 2 are infinite sets the proof is harder and will be
given as an exercise in Chapter 4). Since any isomorphism between two groups G
and H is, a priori, a bijection between them, a necessary condition for isomorphism
is |Sa| = |Sql- When A is a finite set of order n, then [Sa| = n!. We actually only
proved this for S, however the same reasoning applies for Sa. Similarly, if Q is a
finite set of order m, then |Sq| = m!. Thus if SA and Sq are isomorphic thenn! = m!,
som =n, i.e., |A]| = |2].

Many more examples of isomorphisms will appear throughout the text. When
we study different structures (rings, fields, vector spaces, etc.) we shall formulate
corresponding notions of isomorphisms between respective structures. One of the
central problems in mathematics is to determine what properties of a structure specify
its isomorphism type ( i.e., to prove that if G is an object with some structure (such as a
group) and G has property P, then any other similarly structured object (group) X with
property P is isomorphic to G). Theorems of this type are referred to as classification
theorems. For example, we shall prove that

any non-abelian group of order 6 is isomorphic to S3

(so here G is the group 53 and P is the property “non-abelian and of order 6”). From
this classification theorem we obtain Dg = S3 and GL,(F,) = 3 without having to
find explicit maps between these groups. Note that it is not true that any group of order
6 is isomorphic to S3. In fact we shall prove that up to isomorphism there are precisely
two groups of order 6: S3 and Z/6Z (i.e., any group of order 6 is isomorphic to one
of these two groups and S3 is not isomorphic to Z/6Z). Note that the conclusion is
less specific (there are two possible types); however, the hypotheses are easier to check
(namely, check to see if the order is 6). Results of the latter type are also referred to as
classifications. Generally speaking it is subtle and difficult, even in specific instances,
to determine whether or not two groups (or other mathematical objects) are isomorphic
— constructing an explicit map between them which preserves the group operations
or proving no such map exists is, except in tiny cases, computationally unfeasible as
indicated already in trying to prove the above classification of groups of order 6 without
further theory.

Itis occasionally easy to see that two given groups are not isomorphic. Forexample,
the exercises below assert that if ¢ : G — H is an isomorphism, then, in particular,

@ |G| =|H|

(b) G is abelian if and only if H is abelian

(c) forallx € G, |x| = |p(x)|.
Thus S3 and Z/6Z are not isomorphic (as indicated above) since one is abelian and the
otheris not. Also, (R—{0}, x) and (R, +) cannot be isomorphic because in (R—{0}, x)
the element —1 has order 2 whereas (R, +) has no element of order 2, contrary to (c).

Finally, we record one very useful fact that we shall prove later (when we discuss
free groups) dealing with the question of homomorphisms and isomorphisms between
two groups given by generators and relations:

Let G be a finite group of order n for which we have a presentation and let
S = {s1,.-.,5n} be the generators. Let H be another group and {ry, ..., r,} be el-
ements of H. Suppose that any relation satisfied in G by the s; is also satisfied in H
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when each s; is replaced by r;. Then there is a (unique) homomorphism ¢ : G > H
which maps s; to r;. If we have a presentation for G, then we need only check the
relations specified by this presentation (since, by definition of a presentation, every
relation can be deduced from the relations given in the presentation). If H is generated
by the elements {ry, ..., r,,}, then ¢ is surjective (any product of the r;’s is the image
of the corresponding product of the s;’s). If, in addition, H has the same (finite) or-
der as G, then any surjective map is necessarily injective, i.e., ¢ is an isomorphism:
G = H. Intuitively, we can map the generators of G to any elements of H and obtain
a homomorphism provided that the relations in G are still satisfied.

Readers mayalready be familiar with the corresponding statement for vector spaces.
Suppose V is a finite dimensional vector space of dimension n with basis S and W is
another vector space. Then we can specify a linear transformation from V to W by
mapping the elements of S to arbitrary vectors in W (here there are no relations to
satisfy). If W is also of dimension n and the chosen vectors in W span W (and so are a
basis for W) then this linear transformation is invertible (a vector space isomorphism).

Examples
(1) Recall that Dy, = (r,s | r" = s2=1,sr=r"1 ). Suppose H is a group containing
elements @ and b witha" = 1, b2 = 1 andba = a~!b. Thenthereisa homomorphism
from D,, to H mapping r to a and s to b. For instance, let k be an integer dividing n
withk > 3 and let Dy = (r1, 51 | rf =s? = 1,511 = r 's1). Define

¢ : Dy = Dy by @(r) =riand ¢(s) = s1.

If we write n = km, then since r{‘ = 1, also r;’ = (r{‘ )™ = 1. Thus the three relations
satisfied by r, s in Dy, are satisfied by r, s1 in Dx. Thus ¢ extends (uniquely) to a
homomorphism from Dy, to Dy. Since {r1, s1} generates Doy, ¢ is surjective. This
homomorphism is not an isomorphism if k < n.

(2) Following up on the preceding example, let G = Dg be as presented above. Check
thatin H = S3 the elements @ = (12 3) and b = (1 2) satisfy the relations: a’d =1,
b? = 1 and ba = ab™!. Thus there is a homomorphism from Dg to S3 which sends
r — a and s > b. One may further check that S3 is generated by @ and b, so this
homomorphismis surjective. Since D¢ and S3 both have order 6, this homomorphism
is an isomorphism: Dg = S3.

Note that the element a in the examples above need not have order n (i.e., n need
not be the smallest power of a giving the identity in H) and similarly b need not have
order 2 (for example b could well be the identity if a = a™!). This allows us to more
easily construct homomorphisms and is in keeping with the idea that the generators and
relations for a group G constitute a complete set of data for the group structure of G.

EXERCISES

Let G and H be groups.

1. Let ¢ : G > H be a homomorphism.
(a) Prove that p(x") = ¢(x)" foralln € Zt.
(b) Do part (a) for n = —1 and deduce that ¢(x") = ¢(x)" for alln € Z.
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6.
7.
8.
9.
10.

11.
12.
13.

14.

15.

16.

17.

18.

19.

40

. If ¢ : G > H is an isomorphism, prove that |¢(x)| = [x| forall x € G. Deduce that any

two isomorphic groups have the same number of elements of order n foreachn € Z*. Is
the result true if ¢ is only assumed to be a homomorphism?

. If ¢ : G - H is an isomorphism, prove that G is abelian if and only if H is abelian. If

¢ : G —> H is ahomomorphism, what additional conditions on ¢ (if any) are sufficient to
ensure that if G is abelian, then so is H?

. Prove that the multiplicative groups R — {0} and C — {0} are not isomorphic.
. Prove that the additive groups R and Q are not isomorphic.

Prove that the additive groups Z and Q are not isomorphic.
Prove that Dg and Qg are not isomorphic.

Prove that if n # m, S,, and S,, are not isomorphic.

Prove that Dy4 and S4 are not isomorphic.

Fill in the details of the proof that the symmetric groups Sp and Sq are isomorphic if
|A| = |€2| as follows: let 6 : A — 2 be a bijection. Define

¢ :8SAr —> Sq by ¢(c)=000067! forallo € Sp

and prove the following:

(a) ¢ is well defined, that s, if o is a permutation of A then 6 0 0 067! is a permutation
of Q.

(b) ¢ is a bijection from S onto Sq. [Find a 2-sided inverse for ¢.]

(c) ¢ is a homomorphism, thatis, ¢(c o ) = ¢(0) o ¢(T).

Note the similarity to the change of basis or similarity transformations for matrices (we

shall see the connections between these later in the text).

Let A and B be groups. Prove that A x B = B x A.
Let A, B,and C be groups andlet G = Ax Band H = BxC. Provethat GXxC = Ax H.

Let G and H be groups and let ¢ : G - H be a homomorphism. Prove that the image
of ¢, ¢(G), is a subgroup of H (cf. Exercise 26 of Section 1). Prove that if ¢ is injective
then G = ¢(G).

Let G and H be groups and let ¢ : G — H be a homomorphism. Define the kernel of
¢ tobe {g € G| p(g) = 1y} (so the kemel is the set of elements in G which map to
the identity of H, i.e., is the fiber over the identity of H). Prove that the kernel of ¢ is a
subgroup (cf. Exercise 26 of Section 1) of G. Prove that ¢ is injective if and only if the

kernel of ¢ is the identity subgroup of G.

Define a map = : R2 > R by m((x,y)) = x. Prove that & is a homomorphism and find
the kernel of 7 (cf. Exercise 14).

Let A and B be groups and let G be their direct product, A x B. Prove that the maps
7 : G > Aand m; : G — B defined by 71((a, b)) = a and m2((a, b)) = b are
homomorphisms and find their kernels (cf. Exercise 14).

Let G be any group. Prove that the map from G to itself defined by g > gl is a

homomorphism if and only if G is abelian.

Let G be any group. Prove that the map from G to itself defined by g > g2 is a homo-
morphism if and only if G is abelian.

Let G = {z € C | 2" = 1forsomen € Z*}. Prove that for any fixed integer k > 1
the map from G to itself defined by z > z* is a surjective homomorphism but is not an
isomorphism.
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20.

21.

22.

23.

24,

25.

26.

Let G be a group and let Aut(G) be the set of all isomorphisms from G onto G. Prove that
Aut(G) is a group under function composition (called the automorphism group of G and
the elements of Aut(G) are called automorphisms of G).

Prove that for each fixed nonzero k € QQ the map from Qto itself defined by g + kg is an
automorphism of Q (cf. Exercise 20).

Let A be an abelian group and fix some k € Z. Prove thatthe map a > a* is a homomor-
phism from A to itself. If K = —1 prove that this homomorphism is an isomorphism (i.e.,
is an automorphism of A).

Let G be a finite group which possesses an automorphism o (cf. Exercise 20) such that
o(g) = g if and only if g = 1. If o2 is the identity map from G to G, prove that G is
abelian (such an automorphism o is called fixed poinr free of order 2). [Show that every
element of G can be written in the form x ~1o (x) and apply o to such an expression.]
Let G be a finite group and let x and y be distinct elements of order 2 in G that generate
G. Prove that G = D,,,, where n = |xy|. [See Exercise 6 in Section 2.]

Letn € Z*, let r and s be the usual generators of Dy, and let § = 2 /n.

. 0osf —sin6
(a) Prove that the matrix C. sin
sinf cosé
which rotates the x, y plane about the origin in a counterclockwise direction by 6
radians.

(b) Prove that the map ¢ : D, - GL2(R) defined on generators by

¢(r)=<cos(9 —sin9) and ¢(S)=((1) (l))

sin@ cos@

) is the matrix of the linear transformation

extends to a homomorphism of D, into GL,(R).
(c) Prove that the homomorphism ¢ in part (b) is injective.

Leti and j be the generators of Qg described in Section 5. Prove that the map ¢ from Qg
to G L2 (C) defined on generators by

wr=(Y" ) w wo=( 7))

extends to a homomorphism. Prove that ¢ is injective.

1.7 GROUP ACTIONS

In this section we introduce the precise definition of a group acting on a set and present
some examples. Group actions will be a powerful tool which we shall use both for
proving theorems for abstract groups and for unravelling the structure of specific ex-
amples. Moreover, the concept of an “action” is a theme which will recur throughout

the

text as a method for studying an algebraic object by seeing how it can act on other

structures.

Definition. A group action of a group G on a set A is amap from G x A to A (written
as g-a, for all g € G and a € A) satisfying the following properties:

Sec.

1) g1-(g2-a) = (g182)-a, forall gy, g € G,a € A, and
2) 1-a=a, foralla € A.
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We shall immediately become less formal and say G is a group acting on a set A.
The expression g-a will usually be written simply as ga when there is no danger of
confusing this map with, say, the group operation (remember, -is not a binary operation
and ga is always a member of A). Note that on the left hand side of the equation in
property (1) g2 -a is an element of A so it makes sense to act on this by g;. On the
right hand side of this equation the product (g; g2) is taken in G and the resulting group
element acts on the set element a.

Before giving some examples of group actions we make some observations. Let
the group G act on the set A. For each fixed g € G we get a map o, defined by

0g:A—> A
og(a) = g-a.
We prove two important facts:

(i) foreachfixed g € G, o, is a permutation of A, and
(if) the map from G to S4 defined by g +— o, is a homomorphism.

To see that o, is a permutation of A we show that as a set map from A to A it has a
2-sided inverse, namely o, (it is then a permutation by Proposition 1 of Section 0.1).
Foralla € A

(0g-1 0 0g)(a) = 0g-1(0g(a)) (by definition of function composition)
= g"1 -(g-a) (by definition of 0,1 and o)
= (g_'g) -a (by property (1) of an action)
=la=a (by property (2) of an action).

This proves o,-1 o o, is the identity map from A to A. Since g was arbitrary, we may
interchange the roles of g and g~ to obtain o, o 041 is also the identity map on A.
Thus o, has a 2-sided inverse, hence is a permutation of A.

To check assertion (ii) above let ¢ : G — S, be defined by ¢(g) = o,. Note that
part (i) shows that o, is indeed an element of S4. To see that ¢ is a homomorphism
we must prove ¢(g182) = ¢(g1) o ¢(g2) (recall that S4 is a group under function
composition). The permutations ¢(g; g2) and ¢(g;1) o ¢(g2) are equal if and only if their
values agree on every element a € A. Foralla € A

¢(8182)(a) = 0y,4,(a) (by definition of ¢)
= (g182)-a (by definition of oy, ,,)
= g1-(g2-a) (by property (1) of an action)
= 0, (0g,(a)) (by definition of oy, and o,,)

= (p(g1) c9(g2))(@)  (by definition of ¢).
This proves assertion (ii) above.

Intuitively, a group action of G on aset A just means that every element g in G acts
as a permutation on A in amanner consistent with the group operations in G; assertions
(i) and (ii) above make this precise. The homomorphism from G to S4 given above is
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called the permutation representation associated to the given action. It is easy to see
that this process is reversible in the sense that if ¢ : G — S4 is any homomorphism
from a group G to the symmetric group on a set A, then the map from G x A to A
defined by

g-a=¢(g)a) forall g € G, andalla € A

satisfies the properties of a group action of G on A. Thus actions of a group G on a
set A and the homomorphisms from G into the symmetric group S4 are in bijective
correspondence (i.e., are essentially the same notion, phrased in different terminology).

We should also note that the definition of an action might have been more precisely
named a left action since the group elements appear on the left of the set elements. We
could similarly define the notion of a right action.

Examples

Let G be a group and A a nonempty set. In each of the following examples the check of

properties (1) and (2) of an action are left as exercises.

(1) Letga = a,forallg € G, a € A. Properties (1) and (2) of a group action follow
immediately. This action is called the trivial action and G is said to act trivially on
A. Note that distinct elements of G induce the same permutation on A (in this case
the identity permutation). The associated permutation representation G — S4 is the
trivial homomorphism which maps every element of G to the identity.

If G acts on a set B and distinct elements of G induce distinct permutations of
B, the action is said to be faithful. A faithful action is therefore one in which the
associated permutation representation is injective.

The kernel of the action of G on B is definedtobe {g € G | gb = b for all b € B},
namely the elements of G which fix all the elements of B. For the trivial action, the
kemnel of the action is all of G and this action is not faithful when |G| > 1.

(2) The axioms for a vector space V over a field F include the two axioms that the
multiplicative group F> act on the set V. Thus vector spaces are familiar examples
of actions of multiplicative groups of fields where there is even more structure (in
particular, V must be an abelian group) which can be exploited. In the special case
when V = R" and F = R the action is specified by

a(ry, ra....,m) = (ar,ary, ..., ar,)

forall « € R, (r1,r2,...,1,) € R", where ar; is just multiplication of two real
numbers.

(3) For any nonempty set A the symmetric group S acts on A by 0-a = o(a), for all
o € Sa,a € A. The associated permutation representation is the identity map from
Sa to itself.

(4) If we fix a labelling of the vertices of a regular n-gon, each element « of D, gives
rise to a permutation o, of {1,2, ..., n} by the way the symmetry o permutes the
corresponding vertices. The map of Dy, x {1,2,...,n} onto {1, 2, ..., n} defined
by (@, i) — 04 (i) defines a group action of Dy, on {1,2,...,n}. In keeping with
our notation for group actions we can now dispense with the formal and cumbersome
notation o, (i) and write «i in its place. Note that this action is faithful: distinct
symmetries of a regular n-gon induce distinct permutations of the vertices.

When n = 3 the action of Dg on the three (labelled) vertices of a triangle gives
an injective homomorphism from Dg to S3. Since these groups have the same order,
this map must also be surjective, i.e., is an isomorphism: Dg = S3. This is another

Sec. 1.7 Group Actions 43



proof of the same fact we established via generators and relations in the preceding
section. Geometrically it says that any permutation of the vertices of a triangle is a
symmetry. The analogous statement is not true for any n-gon withn > 4 (just by order
considerations we cannot have D, isomorphic to S, for any n > 4).

(5) Let G be any group and let A = G. Define a map from G x Ato Aby g-a = ga,
for each g € G and a € A, where ga on the right hand side is the product of g and
a in the group G. This gives a group action of G on itself, where each (fixed) g € G
permutes the elements of G by left multiplication:

g:am ga foralla € G

(or, if G is written additively, we get a — g + a and call this left translation). This
action is called the left regular action of G on itself. By the cancellation laws, this
action is faithful (check this).

Other examples of actions are given in the exercises.

3.
4.

b4

10.

44

EXERCISES

. Let F be a field. Show that the multiplicative group of nonzero elements of F (denoted

by F*) acts on the set F by g-a = ga, where g € F*, a € F and ga is the usual product
in F of the two field elements (state clearly which axioms in the definition of a field are
used).

. Show that the additive group Z acts oniitself by z-a = z +a forall z,a € Z.

Show that the additive group R acts on the x, y plane R x Rby r-(x, y) = (x + ry, y).

Let G be a group acting on a set A and fix some a € A. Show that the following sets are
subgroups of G (cf. Exercise 26 of Section 1):

(a) the kernel of the action,

(b) {g € G| ga = a} — this subgroup is called the stabilizer of a in G.

Prove that the kernel of an action of the group G onthe set A is the same as the kernel of
the corresponding permutation representation G — S, (cf. Exercise 14 in Section 6).

. Prove that a group G acts faithfully on a set A if and only if the kernel of the action is the

set consisting only of the identity.

. Prove that in Example 2 in this section the action is faithful.
. Let A be a nonempty set and let k be a positive integer with k < | A|. The symmetric group

Sa acts on the set B consisting of all subsets of A of cardinality k by o-{ay,...,ar} =

{o(a),...,o(a)).

(a) Prove that this is a group action.

(b) Describeexplicitlyhowthe elements (1 2) and (I 2 3) act onthe six 2-element subsets
of {1,2, 3,4)}.

. Do both parts of the preceding exercise with “ordered k-tuples” in place of “k-element

subsets,” where the action on k-tuples is defined as above but with set braces replaced by
parentheses (note that, for example, the 2-tuples (1,2) and (2,1) are different even though
the sets {1, 2} and {2, 1} are the same, so the sets being acted upon are different).

With reference to the preceding two exercises determine:
(a) for which values of k the action of S,; on k-element subsets is faithful, and
(b) for which values of k the action of S, on ordered k-tuples is faithful.
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11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

Write out the cycle decomposition of the eight permutations in S4 corresponding to the
elements of Dg given by the action of Dg on the vertices of a square (where the vertices
of the square are labelled as in Section 2).

Assume n is an even positive integer and show that Dy, acts on the set consisting of pairs
of opposite vertices of a regular n-gon. Find the kernel of this action (label vertices as
usual).

Find the kernel of the left regular action.

Let G be a group and let A = G. Show that if G is non-abelian then the maps defined by
g-a = agforall g, a € G do not satisfy the axioms of a (left) group action of G on itself.

Let G be any group and let A = G. Show that the maps defined by g-a = ag™! for all
&, a € G do satisfy the axioms of a (left) group action of G on itself.

Let G be any group and let A = G. Show that the maps defined by g-a = gag™~! for all
& a € G do satisfy the axioms of a (left) group action (this action of G on itself is called
conjugation).
Let G be a group and let G act on itself by left conjugation, so each g € G maps G to G
by

X gxg—l.
For fixed g € G, prove that conjugation by g is an isomorphism from G onto itself (i.e.,
is an automorphism of G — cf. Exercise 20, Section 6). Deduce that x and gxg~! have
the same order for all x in G and that for any subset A of G, |A| = |gAg_1| (here
gAg7 ! = (gag™! | a € A)).
Let H be a group acting on a set A. Prove that the relation ~ on A defined by

a~b if and only if a=hb forsomeh e H

is an equivalence relation. (For each x € A the equivalence class of x under ~ is called
the orbit of x under the action of H. The orbits under the action of H partition the set A.)

Let H be a subgroup (cf. Exercise 26 of Section 1) of the finite group G and let H act on
G (here A = G) by left multiplication. Let x € G and let O be the orbit of x under the
action of H. Prove that the map

H-> O defined by h+— hx

is a bijection (hence all orbits have cardinality |H| ). From this and the preceding exercise
deduce Lagrange’s Theorem:

if G is a finite group and H is a subgroup of G then |H| divides |G)|.

Show that the group of rigid motions of a tetrahedron is isomorphic to a subgroup (cf.
Exercise 26 of Section 1) of S4.

Show that the group of rigid motions of a cube is isomorphic to S4. [This group acts on
the set of four pairs of opposite vertices.]

Show that the group of rigid motions of an octahedron is isomorphic to a subgroup (cf.
Exercise 26 of Section 1) of S4. [This group acts on the set of four pairs of opposite faces.]
Deducethatthe groupsof rigid motions of a cube and an octahedron are isomorphic. (These
groups are isomorphic because these solids are “dual” — see Introduction to Geometry
by H. Coxeter, Wiley, 1961. We shall see later that the groups of rigid motions of the
dodecahedron and icosahedron are isomorphic as well — these solids are also dual.)

Explain why the action of the group of rigid motions of a cube on the set of three pairs of
opposite faces is not faithful. Find the kernel of this action.
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CHAPTER 2

Subgroups

2.1 DEFINITION AND EXAMPLES

One basic method for unravelling the structure of any mathematical object which is
defined by a set of axioms is to study subsets of that object which also satisfy the
same axioms. We begin this program by discussing subgroups of a group. A second
basic method for unravelling structure is to study quotients of an object; the notion of
a quotient group, which is a way (roughly speaking) of collapsing one group onto a
smaller group, will be dealt with in the next chapter. Both of these themes will recur
throughout the text as we study subgroups and quotient groups of a group, subrings and
quotient rings of a ring, subspaces and quotient spaces of a vector space, etc.

Definition. Let G be a group. The subset H of G is a subgroup of G if H is nonempty
and H is closed under products and inverses (i.., x,y € H implies x~! € H and
xy € H). If H is a subgroup of G we shall write H < G.

Subgroups of G are just subsets of G which are themselves groups with respect
to the operation defined in G, i.e., the binary operation on G restricts to give a binary
operation on H which is associative, has an identity in H, and has inverses in H for all
the elements of H.

When we say that H is a subgroup of G we shall always mean that the operation
for the group H is the operation on G restricted to H (in general it is possible that the
subset H has the structure of a group with respect to some operation other than the
operation on G restricted to H, cf. Example 5(a) following). As we have been doing for
functions restricted to a subset, we shall denote the operation for G and the operation
for the subgroup H by the same symbol. If H < G and H # G we shall write H < G
to emphasize that the containment is proper.

If H is a subgroup of G then, since the operation for H is the operation for G
restricted to H, any equation in the subgroup H may also be viewed as an equation in
the group G. Thus the cancellation laws for G imply that the identity for H is the same
as the identity of G (in particular, every subgroup must contain 1, the identity of G)
and the inverse of an element x in H is the same as the inverse of x when considered
as an element of G (so the notation x ! is unambiguous).
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Examples
1) Z < Qand Q < R with the operation of addition.
(2) Any group G has two subgroups: H = G and H = {1}; the latter is called the rrivial
subgroup and will henceforth be denoted by 1.
(3) If G = Dy, is the dihedral group of order 2n, let H be {1, r, r2, ... ! }, the set of
all rotations in G. Since the product of two rotations is again a rotation and the inverse
of a rotation is also a rotation it follows that H is a subgroup of D», of order n.
(4) The set of even integers is a subgroup of the group of all integers under addition.
(5) Some examples of subsets which are not subgroups:
(a) Q — {0} under multiplication is not a subgroup of R under addition even though
both are groups and Q — {0} is a subset of R; the operation of multiplication on
@ — {0} is not the restriction of the operation of addition on R.
(b) Z* (under addition) is not a subgroup of Z (under addition) because although
Z* is closed under +, it does not contain the identity, 0, of Z and although each
x € Z1 has an additive inverse, —x, in Z, —x ¢ Z* , i.e., Z* is not closed under
the operation of taking inverses (in particular, Z* is not a group under addition).
For analogous reasons, (Z — {0}, %) is not a subgroup of (Q — {0}, x).
(¢) Deg isnot a subgroup of Dg since the former is not even a subset of the latter.
(6) The relation “is a subgroup of” is transitive: if H is a subgroup of a group G and K
is a subgroup of H, then K is also a subgroup of G.

Aswesaw in Chapter 1, even for easy examples checking that all the group axioms
(especially the associative law) hold for any given binary operation can be tedious at
best. Once we know that we have a group, however, checking that a subset of it is (or
is not) a subgroup is a much easier task, since all we need to check is closure under
multiplication and under taking inverses. The next proposition shows that these can be
amalgamated into a single test and also shows that for finite groups it suffices to check
for closure under multiplication.

Proposition 1. (T he Subgroup Criterion) A subset H of a group G is a subgroup if and
only if

(1) H #0,and

(2) forallx,y € H,xy™! € H.
Furthermore, if H is finite, then it suffices to check that H is nonempty and closed
under multiplication.

Proof: If H is a subgroup of G, then certainly (1) and (2) hold because H contains
the identity of G and the inverse of each of its elements and because H is closed under
multiplication.

It remains to show conversely thatif H satisfies both (1) and (2), then H < G. Let
x be any element in H (such x exists by property (1)). Let y = x and apply property
(2) to deduce that 1 = xx~! € H, so H contains the identity of G. Then, again by (2),
since H contains 1 and x, H contains the element 1x~1, i.e., x ! € H and H is closed
under taking inverses. Finally, if x and y are any two elements of H, then H contains
x and y~! by what we have just proved, so by (2), H also contains x(y~!)~! = xy.
Hence H is also closed under multiplication, which proves H is a subgroup of G.
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Suppose now that H is finite and closed under multiplication and let x be any
elementin H. Then there are only finitely many distinct elements among x, x2, x3, . ..
and so x? = x? for some integers a, b with b > a. If n = b — a, then x" = 1 so in
particular every element x € H is of finite order. Then x"~! = x~! is an element of H,

so H is automatically also closed under inverses.

EXERCISES

Let G be a group.

1. In each of (a) — (e) prove that the specified subset is a subgroup of the given group:
(a) the set of complex numbers of the form a + ai, a € R (under addition)
(b) the set of complex numbers of absolute value 1, i.e., the unit circle in the complex
plane (under multiplication)
(c) for fixed n € Z* the set of rational numbers whose denominators divide n (under
addition)
(d) for fixedn € Z* the set of rational numbers whose denominators are relatively prime
to n (under addition)
(e) the set of nonzero real numbers whose square is a rational number (under multiplica-
tion).
2. In each of (a) — (e) prove that the specified subset is not a subgroup of the given group:
(a) the set of 2-cycles in S, forn > 3
(b) the set of reflections in D,, forn > 3
(c) forn acomposite integer > 1 and G a group containing an element of order n, the set
{(xeGlIlxl=n}u{l}
(d) the set of (positive and negative) odd integers in Z together with O
(e) the set of real numbers whose square is a rational number (under addition).

3. Show that the following subsets of the dihedral group Dg are actually subgroups:
@) {1,7%,5,5r%), (b) (1,72, sr,s73).

4. Give an explicit example of a group G and an infinite subset H of G that is closed under
the group operation but is not a subgroup of G.

5. Prove that G cannot have a subgroup H with |H| = n — 1, where n = |G| > 2.

6. Let G be an abelian group. Prove that {g € G | |g| < o0} is a subgroup of G (called the
torsion subgroup of G). Give an explicit example where this set is not a subgroup when
G is non-abelian.

7. Fix some n € Z with n > 1. Find the torsion subgroup (cf. the previous exercise) of
Z x (Z/nZ). Show that the set of elements of infinite order together with the identity is
not a subgroup of this direct product.

8. Let H and K be subgroups of G. Prove that H U K is a subgroup if and only if either
HCKorKCH.

9. Let G = GL,(F), where F is any field. Define
SL,(F) ={A € GL,(F) | det(A) =1}
(called the special linear group). Prove that SL,,(F) < GL,(F).

10. (a) Prove thatif H and K are subgroups of G then so is their intersection H N K.
(b) Prove that the intersection of an arbitrary nonempty collection of subgroups of G is
again a subgroup of G (do not assume the collection is countable).

11. Let A and B be groups. Prove that the following sets are subgroups of the direct product
A x B:
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@) ((a,1) | a € A}
() {(1,b) | b€ B}
(c) {(a,a) | a € A}, where here we assume B = A (called the diagonal subgroup).

12. Let A be an abelian group and fix some n € Z. Prove that the following sets are subgroups
of A:
(@) {a" | a € A}
() {acA|a"=1}.

13. Let H be a subgroup of the additive group of rational numbers with the property that
1/x € H for every nonzero element x of H. Prove that H = 0 or Q.

14. Showthat {x € Dy, | x2 = 1} is not a subgroup of Dy, (here n > 3).

1S. Let Hy < Hz < -- - be an ascending chain of subgroups of G. Prove that U2 H; is a
subgroup of G.

16. Letn € Zt andlet F be a field. Prove that the set {(a;j) € GL,(F) | a;j =0 for alli > j}
is a subgroup of GL, (F) (called the group of upper triangular mascices).

17. Letn € Z* andlet F be afield. Prove that the set {(aij) € GL,(F) | a;j =0foralli > j,
and g;; = 1 for all i} is a subgroup of GL, (F).

2.2 CENTRALIZERS AND NORMALIZERS, STABILIZERS AND KERNELS

We now introduce some important families of subgroups of an arbitrary group G which
in particular provide many examples of subgroups. Let A be any nonempty subset
of G.

Definition. Define C;(A) = {g € G | gag™! = a foralla € A}. This subset of G
is called the centralizer of A in G. Since gag~! = a if and only if ga = ag, C;(A) is
the set of elements of G which commute with every element of A.

We show C¢(A) is a subgroup of G. First of all, C;(A) # 0 because 1 € Cg(A):
the definition of the identity specifies that 1a = al, for all a € G (in particular, for
all a € A) so 1 satisfies the defining condition for membership in C;(A). Secondly,
assume x, y € Cg(A), that is, forall a € A, xax™! = a and yay™' = a (note that
this does not mean xy = yx). Observe first that since yay~! = a, multiplying both
sides of this first on the left by y~!, then on the right by y and then simplifying gives
a =y lay,ie., y ! € C;(A) sothat C;(A) is closed under taking inverses. Now

(xy)aGxy)™ = (xy)a(y'x")  (by Proposition 1.1(4) applied to (xy)~! )

= x(yay_l)x_1 (by the associative law)
=xax™! (since y € Cg(A) )
=a (since x € Cg(A) )

soxy € Cg(A) and C;(A) is closed under products, hence Cg(A) < G.
In the special case when A = {a} we shall write simply C¢(a) instead of C;({a}).
In this case a" € Cg(a) foralln € Z.
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For example, in an abelian group G, C5(A) = G, for all subsets A. One can
check by inspection that Cg, (i) = {£1, £i}. Some other examples are specified in the
exercises.

We shall shortly discuss how to minimize the calculation of commutativities be-
tween single group elements which appears to be inherent in the computation of cen-
tralizers (and other subgroups of a similar nature).

Definition. Define Z(G) = {g € G| gx = xgforall x € G}, the set of elements
commuting with all the elements of G. This subset of G is called the center of G.

Note that Z(G) = Cs(G), so the argument above proves Z(G) < G as a special
case. As an exercise, the reader may wish to prove Z(G) is a subgroup directly.

Definition. Define gAg™! = {gag™! | a € A}. Define the normalizer of A in G to
be the set Ng(A) = (g € G | gAg™! = A}).

Notice thatif g € C;(A), then gag™' =a € Aforalla € Aso Cs(A) < Ng(A).
The proof that Ng(A) is a subgroup of G follows the same steps which demonstrated
that C;(A) < G with appropriate modifications.

Examples

(1) If Gisabelian then all the elements of G commute, so Z(G) = G. Similarly, Cg(A) =
NG (A) = G for any subset A of G since gag™! = gg~la = aforevery g € G and
every a € A.

(2) Let G = Dg be the dihedral group of order 8 with the usual generators r and s and
let A= {1,r,r2,r3) bethe subgroup of rotations in Dg. We show that Cp,(A) = A.
Since all powers of r commute with each other, A < Cp,(A). Since sr = rls#rs
the element s does not commute with all members of 4, i.e., s ¢ Cp,(A). Finally, the
elements of Dg that are not in A are all of the form s’ for some i € {0, 1,2, 3}. If
the element sr were in C Dg (A) then since Cp, (A) is a subgroup which contains r we
would also have the element s = (sr')(r ) in Cp,(A), a contradiction. This shows
Cp,(A) = A. .

(3) As in the preceding example let G = Dg and let A = {1, r,r2, r3}. We show that
Np,(A) = Dg. Since, in general, the centralizer of a subset is contained in its nor-
malizer, A < Np,(A). Next compute that

sAsTh = (s1s7Y, srs7h, sris T 53T = {1, 3L P2 = A,

sothats € Np,(A). (Note that the set sAs~! equals the set A even thoughthe elements
in these two sets appear in different orders — this is because s is in the normalizer of
A but not in the centralizer of A.) Now both r and s belong to the subgroup Np,(A)
and hence s'r/ € N pg(A) for all integers i and j, that is, every element of Dg is in
Npg(A) (recall that r and s generate Dg). Since Dg < Np,(A) wehave Npg(A) = Dg
(the reverse containment being obvious from the definition of a normalizer).

(4) We show that the center of Dg is the subgroup {1, r2}. First observe that the center
of any group G is contained in C (A) for any subset A of G. Thus by Example 2
above Z(Dg) < Cpg(A) = A, where A = {1, r, r2, r3}. The calculation in Example
2 shows that r and similarly r3 are not in Z(Dg), so Z(Dg) < {1, r?}. To show the
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reverse inclusion note that r commutes with r? and calculate that s also commutes
with 72. Since r and s generate Dg, every element of Dg commutes with r2 (and 1),
hence {1, r2} < Z(Dg) and so equality holds.

(5) LetG = S3 andlet A be the subgroup {1, (12)}. We explainwhy Cs,(A) = Ns,(A) =
A. One can compute directly that Cs, (A) = A, using the ideas in Example 2 above to
minimize the calculations. Alternatively, since an element commutes with its powers,
A < Cs,(A). By Lagrange’s Theorem (Exercise 19 in Section 1.7) the order of the
subgroup Cs, (A) of S3 divides |S3| = 6. Also by Lagrange’s Theorem applied to the
subgroup A of the group Cs, (A) we have that 2 | |Cs,(A)|. The only possibilities
are: |Cs,(A)| = 2 or 6. If the latter occurs, Cs, (A) = S3, i.e., A < Z(S3); thisisa
contradiction because (1 2) does not commute with (12 3). Thus |Cs,(A)| = 2 and so
A = Cs,(A).

Next note that Ns, (A) = A because o € Ny, (A) if and only if
{olo7!. 6(12)07 1} =1, (12)}.

Since olo~! = 1, this equality of sets occurs if and only if o(12)0~! = (12) as
well, i.e,, if and only if o € Cg,(A).
The center of S3 is the identity because Z(S3) < Cs,(A) = A and (12) ¢ Z(S3).

Stabilizers and Kernels of Group Actions

The fact that the normalizer of A in G, the centralizer of A in G, and the center of G
are all subgroups can be deduced as special cases of results on group actions, indicating
that the structure of G is reflected by the sets on which it acts, as follows: if G is a
group acting on a set S and s is some fixed element of S, the stabilizer of s in G is the
set

Gi={geG|g-s=s)

(see Exercise 4 in Section 1.7). We show briefly that G; < G: first | € G by axiom
(2) of an action. Also, if y € G,

s=1l-s=07"y)-s
=y 1. (y-s) (by axiom (1) of an action )
= y—l .S (since y € Gy)
so y~! € G; as well. Finally, if x, y € Gy, then
xy)-s=x-(y-s) (by axiom (1) of an action)
=Xx-5 (since y € Gy)
=S (since x € Gy).

This proves G; is a subgroup! of G. A similar (but easier) argument proves that the
kernel of an action is a subgroup, where the kernel of the action of G on S is defined as

{geeG|g-s=s, foralls € S}

(see Exercise 1 in Section 1.7).

INotice how the steps to prove G is a subgroup are the same as those to prove C;(A) < G with
axiom (1) of an action taking the place of the associative law.
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Examples
(1) The group G = Dg acts on the set A of four vertices of a square (cf. Example 4 in
Section 1.7). The stabilizer of any vertex a is the subgroup {1, ¢} of Dg, where ¢ is
the reflection about the line of symmetry passing through vertex a and the center of
the square. The kernel of this action is the identity subgroup since only the identity
symmetry fixes every vertex.

(2) The group G = Dg also acts on the set A whose elements are the two unordered pairs
of opposite vertices (in the labelling of Figure 2 in Section 1.2, A = { {1, 3}, {2, 4} D).
The kernel of the action of Dg on this set A is the subgroup {1, s, 72, s72} and for either
element a € A the stabilizer of a in Dg equals the kernel of the action.

Finally, we observe that the fact that centralizers, normalizers and kernels are sub-
groups is a special case of the facts that stabilizers and kernels of actions are subgroups
(this will be discussed further in Chapter 4). Let S = P(G), the collection of all subsets
of G, and let G act on S by conjugation, that is, for each g € G and each B C G let

g:B— gBg™! where gBg™!={gbg™!|be B)

(see Exercise 16 in Section 1.7). Under this action, it is easy to check that N (A) is
precisely the stabilizer of A in G (i.e., N6 (A) = G5 where s = A € P(G)), so Ng(A)
is a subgroup of G.
Next let the group Ng(A) act on the set S = A by conjugation, i.e., for all g €
Ng(A)anda € A
g:ar gag"'.

Note that this does map A to A by the definition of N;(A) and so gives an action on
A. Here it is easy to check that C;(A) is precisely the kernel of this action, hence
Cs(A) < Ng(A); by transitivity of the relation “<,” Cs(A) < G. Finally, Z(G) is the
kernel of G acting on S = G by conjugation, so Z(G) < G.

EXERCISES

. Prove that Cg(A) = {g € G | g lag = aforalla € A).
. Prove that C(Z(G)) = G and deduce that N (Z(G)) = G.
. Prove thatif A and B are subsets of G with A C B then Cg(B) is a subgroup of Cg(A).

. For each of §3, Dg, and Qg compute the centralizers of each element and find the center of
each group. Does Lagrange’s Theorem (Exercise 19 in Section 1.7) simplify your work?

5. In each of parts (a) to (c) show that for the specified group G and subgroup A of G,
Cg(A) = A and Ng(A) =G.
(@ G=S3and A ={1,(123),(132)}.
(b) G=Dgand A ={1,s, r2, sr}).
(¢) G=Dipand A= {1,r,12, 13, r4}.
6. Let H be a subgroup of the group G.
(a) Show that H < Ng(H). Give an example to show that this is not necessarily true if
H is not a subgroup.
(b) Show that H < Cs(H) if and only if H is abelian.

7. Let n € Z with n > 3. Prove the following:
(@) Z(Dy,) =1ifnisodd

& W N -
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() Z(Dy,) = {1, r*}if n = 2k.

LetG=S,,fixani € {1,2,...,n} andlet G; = {0 € G | (i) = i} (the stabilizer of i in
G). Use group actions to prove that G; is a subgroup of G. Find |G;|.

9. For any subgroup H of G and any nonempty subset A of G define Ny (A) tobe the set

{h € H | hAh™! = A). Show that Ny;(A) = Ng(A) N H and deduce that Ny (A) is a
subgroup of H (note that A need not be a subset of H).

10. Let H be a subgroup of order 2 in G. Show that Ng(H) = Cg(H). Deduce that if
Ng(H) = G then H < Z(G).
11. Prove that Z(G) < Ng(A) for any subset A of G.

12. Let R bethe set of all polynomials with integer coefficients in the independent variables
X1, X2, X3, X4 i.€., the members of R are finite sums of elements of the form ax}' x3*x3’x;*,

8

.

where a is any integer and ry, . . ., r4 are nonnegative integers. For example,
12x3 %3 x4 — 18x3x3 + 11x8x2x3x23 €3]
is a typical element of R. Each o € S; gives a permutation of {x1, ..., x4} by defining

0 - Xj = X5(j). This may be extended to a map from R to R by defining

o - p(x1,x2, %3, x4) = p(X(1)» X0 (2)» X0 (3)» X (4))

for all p(x1, x2, x3,x4) € R (i.e., o simply permutes the indices of the variables). For
example, if o = (1 2)(3 4) and p(xy, ..., x4) is the polynomial in (x) above, then

o - p(x1,x2,Xx3, X3) = 12x§x¥x3 - 18xfx4 + 11x§x1x2x323

= 12x]x3x3 — 18x3xs + 11x1x3x§3x3.

(a) Let p = p(x1, ..., x4) be the polynomial in (x) above, let 0 = (1 2 3 4) and let
7 =(123). Computes - p,t-(0 - p),(troo)-p,and (co7)-p.

(b) Prove that these definitions give a (left) group action of S4 on R.

(c) Exhibit all permutations in S4 that stabilize x4 and prove that they form a subgroup
isomorphic to S3.

(d) Exhibit all permutations in S4 that stabilize the element x; + x2 and prove that they
form an abelian subgroup of order 4.

(e) Exhibit all permutations in S4 that stabilize the element x;x2 + x3x4 and prove that
they form a subgroup isomorphic to the dihedral group of order 8.

(f) Show that the permutations in S4 that stabilize the element (x; + x2)(x3 + x4) are
exactly the same as those found in part (e). (The two polynomials appearing in parts
(e) and (f) and the subgroup that stabilizes them will play an important role in the
study of roots of quartic equations in Section 14.6.)

13. Letn be a positive integer and let R be the set of all polynomials withinteger coefficients in
the independent variables x1, x2, . .., x,, i.e., the members of R are finite sums of elements
of the form ax{'x3? - - - x,", where a is any integer and ry, . . . , r, are nonnegative integers.

For each o € S, define a map
c:R—> R by 0 p(x1,X2, . ... Xn) = PXg(1)s Xo@)s - - - » Xa(m))-

Prove that this defines a (left) group action of S, on R.

14. Let H(F) be the Heisenberg group over the field F introduced in Exercise 11 of Section
1.4. Determine which matrices lie in the center of H(F) and prove that Z(H(F)) is
isomorphic to the additive group F.
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2.3 CYCLIC GROUPS AND CYCLIC SUBGROUPS

Let G be any group and let x be any element of G. One way of forming a subgroup H
of G is by letting H be the set of all integer (positive, negative and zero) powers of x
(this guarantees closure under inverses and products at least as far as x is concerned).
In this section we study groups which are generated by one element.

Definition. A group H is cyclic if H can be generated by a single element, i.e., there
is some element x € H such that H = {x" | n € Z} (where as usual the operation is
multiplication).

In additive notation H is cyclicif H = { nx | n € Z}. In both cases we shall write
H = (x) and say H is generated by x (and x is a generator of H). A cyclic group
may have more than one generator. For example, if H = (x ), then also H = (x7!)
because (x!)” = x ™" and as n runs over all integers so does —n so that

(x"|neZy={x"YH"|neZ).

We shall shortly show how to determine all generators for a given cyclic group H. One
should note that the elements of (x ) are powers of x (or multiples of x, in groups
written additively) and not integers. It is not necessarily true that all powers of x are
distinct. Also, by the laws for exponents (Exercise 19 in Section 1.1) cyclic groups are
abelian.

Examples

(1) Let G =Dy, = (r,s | " =s*=1,rs = sr~!),n > 3 andlet H be the subgroup
of all rotations of the n-gon. Thus H = (r) and the distinct elements of H are
L,rre,. .., rm1 (these are all the distinct powers of r). In particular, |H| = n and
the generator, r, of H has order n. The powers of r “cycle” (forward and backward)

with period n, that is,

r =r ,r °=r ,-.. €tc.

In general, to write any power of r, say r!, in the form r*, for some k between 0 and
n — 1 use the Division Algorithm to write

t =nq +k, where 0 < k < n,

so that
rt = rmatk — )k = 1975 = K.

For example, in Dg, r* = 1 s0 r105 = p420+1 — , and p=42 = p4C-1D+2 — 2,
Observe that Dy, itself is not a cyclic group since it is non-abelian.

(2) Let H = Z with operation +. Thus H = (1) (here 1 is the integer 1 and the identity
of H is 0) and each element in H can be written uniquely in the form» - 1, for some
n € Z. In contrast to the preceding example, multiples of the generator are all distinct
and we need to take both positive, negative and zero multiples of the generator to
obtain all elements of H. In this example |H| and the order of the generator 1 are
both co. Note also that H = (—1) since each integer x can be written (uniquely) as

(—x)(—1).
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Before discussing cyclic groups further we prove that the various properties of finite
and infinite cyclic groups we observed in the preceding two examples are generic. This
proposition also validates the claim (in Chapter 1) that the use of the terminology for
“order” of an element and the use of the symbol | | are consistent with the notion of
order of a set.

Proposition 2. If H = (x), then |H| = |x| (where if one side of this equality is
infinite, so is the other). More specifically
(1) if|[H| =n < oo, thenx” = land1, x, x2, ..., x" ! are all the distinct elements
of H, and
(2) if |H| = oo, then x" # 1 forall n # 0 and x¢ # x® foralla # b in Z.

Proof: Let |x| = n and first consider the case when n < oco. The elements
1,x,x2, ..., x" 1 are distinct because if x* = x°, with, say, 0 < a < b < n, then
x%~% = x0 = 1, contrary to n being the smallest positive power of x giving the identity.
Thus H has at least n elements and it remains to show that these are all of them. As we
didin Example 1, if x* isany power of x, use the Division Algorithm to writet = nq +k,

where 0 < k < n, so
xf = x"tk = (x")"xk =19 =x* ¢ {1, x, x?%, ...,x"_l},

as desired.

Next suppose |x| = 0o so no positive power of x is the identity. If x* = x?, for
some a and b with, say, a < b, then xb—@ = 1, a contradiction. Distinct powers of x
are distinct elements of H so |H| = oo. This completes the proof of the proposition.

Note that the proof of the proposition gives the method for reducing arbitrary
powers of a generator in a finite cyclic group to the “least residue” powers. It is not a
coincidence that the calculations of distinct powers of a generator of a cyclic group of
order n are carried out via arithmetic in Z/ nZ. Theorem 4 following proves that these
two groups are isomorphic.

First we need an easy proposition.

Proposition 3. Let G be an arbitrary group, x € G and let m,n € Z. If x" = 1 and
x™ =1, then x? = 1, whered = (m, n). In particular, if x™ = 1 for some m € Z, then
|x| divides m.

Proof: By the Euclidean Algorithm (see Section 0.2 (6)) there exist integers r and
s such that d = mr + ns, where d is the g.c.d. of m and n. Thus

xd — xmr+ns — (xm)r(xn)s =1"1*=1.

This proves the first assertion.

Ifx™ =1,letn = |x|. If m = O, certainly n | m, so we may assume m # 0. Since
some nonzero power of x is the identity, n < oo. Let d = (m, n) so by the preceding
result x? = 1. Since 0 < d < n and n is the smallest positive power of x which gives
the identity, we must have d = n, that is, n | m, as asserted.
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Theoremd. Any two cyclic groups of the same orderare isomorphic. More specifically,
(1) ifn € Z* and (x ) and (y) are both cyclic groups of order n, then the map

p:(x)—=>(y)
xk s yk
is well defined and is an isomorphism
(2) if (x ) is an infinite cyclic group, the map

@0:Z— (x)

k> x*

is well defined and is an isomorphism.

Proof: Suppose (x ) and ( y ) are both cyclic groups ofordern. Letg : (x) — (y)
be defined by ¢(x*) = y*; we must first prove ¢ is well defined, that is,

if x" = x*, then ¢(x") = @(x*).
Since x"~° = 1, Proposition 3 implies n | r —s. Writer =tn + s so

p(x") = p(x™*)

—_ ytn+s
="'y’
=y’ = p(’).

This proves ¢ is well defined. Itisimmediate from the laws ofexponents that ¢ (x°x?) =
©(x*)@(x?) (check this), that is, ¢ is a homomorphism. Since the element y* of (y)
is the image of x* under ¢, this map is surjective. Since both groups have the same
finite order, any surjection from one to the other is a bijection, so ¢ is an isomorphism
(alternatively, ¢ has an obvious two-sided inverse).

If ( x ) is an infinite cyclic group, let ¢ : Z — (x ) be defined by (k) = x*. Note
that this map is already well defined since there is no ambiguity in the representation
of elements in the domain. Since (by Proposition 2) x® # x?, for all distinct a, b € Z,
@ is injective. By definition of a cyclic group, ¢ is surjective. As above, the laws of
exponents ensure ¢ is a homomorphism, hence ¢ is an isomorphism, completing the
proof.

We chose to use the rotation group (7 ) as our prototypical example of a finite cyclic
group of order n (instead of the isomorphic group Z/nZ) since we shall usually write
our cyclic groups multiplicatively:

Notation: For each n € Z*, let Z,, be the cyclic group of order n (written multiplica-
tively).

Up to isomorphism, Z, is the unique cyclic group of order n and Z,, = Z/nZ. On
occasion when we find additive notation advantageous we shall use the latter group as
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our representative of the isomorphism class of cyclic groups of order n. We shall occa-
sionally say “let (x ) be the infinite cyclic group” (written multiplicatively), however
we shall always use Z (additively) to represent the infinite cyclic group.

As noted earlier, a given cyclic group may have more than one generator. The next
two propositions determine precisely which powers of x generate the group (x ).

Proposition 5. Let G be a group, let x € G andleta € Z — {0}.
(1) If |x| = oo, then |x¢| = oc.

) If |x] = n < oo, then |x¢]| =

(n,a)
(3) In particular, if |x| = n < oo and a is a positive integer dividing », then
= —.
a
Proof: (1) By way of contradiction assume |x| = oo but |[x*| = m < oo. By
definition of order

1= (xa)m — X"
Also,
x~am — (xam)—l — 1—1 =1.

Now one of am or —am is positive (since neither a nor m is 0) so some positive power of
x is the identity. This contradicts the hypothesis |x| = 0o, so the assumption |x“| < 00
must be false, that is, (1) holds.

(2) Under the notation of (2) let

y=x% (n,a)=d andwrite n=db, a=dc,

for suitable b, c € Z with b > 0. Since d is the greatest common divisor of » and a,
the integers b and c are relatively prime:

(b, c)=1.
To establish (2) we must show |y| = b. First note that
yb = x = xdb — (xdbyc — (x1)° = 1¢ = |
so, by Proposition 3 applied to ( y ), we see that |y| divides b. Let k = |y|. Then
x% = yk — 1

so by Proposition 3 applied to (x ), n | ak,i.e., db | dck. Thus b | ck. Since b and ¢
have no factors in common, b must divide k. Since b and k are positive integers which
divide each other, b = k, which proves (2).

(3) This is a special case of (2) recorded for future reference.

Proposition 6. Let H = (x ).
(1) Assume |x| = oo. Then H = (x®) if and only if a = *1.
(2) Assume |x| = n < oo. Then H = (x*) if and only if (a, n) = 1. In particular,
the number of generators of H is ¢(n) (where ¢ is Euler’s g-function).
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Proof: We leave (1) as an exercise. In (2) if |x| = n < oo, Proposition 2 says x°
generates a subgroup of H of order |x¢|. This subgroup equals all of H if and only if
|x?| = |x|. By Proposition 5,

[x?] = |x| if and only if =n, ie. ifandonlyif (@,n) = 1.

a,n
Since ¢(n) is, by definition, the number of a € {1, 2, ..., n} such that (a, n) = 1, this
is the number of generators of H.

Example
Proposition 6 tells precisely which residue classes mod n generate Z/nZ: namely, a gen-

erates Z/nZ if and only if (a, n) = 1. For instance, 1, 5, 7 and 11 are the generators of
Z/12Z and ¢(12) = 4.

The final theorem in this section gives the complete subgroup structure of a cyclic
group.

Theorem 7. Let H = (x ) be a cyclic group.

(1) Every subgroup of H is cyclic. More precisely, if K < H, then either K = {1}
or K = (x4), where d is the smallest positive integer such that x4 eK.

(2) If |H| = oo, then for any distinct nonnegative integers a and b, (x?) #
(x?). Furthermore, for every integer m, (x™) = (x!), where |m| denotes
the absolute value of m, so that the nontrivial subgroups of H correspond
bijectively with the integers 1, 2,3, .. ..

(3) If |H| = n < o0, then for each positive integer a dividing »n there is a unique

subgroup of H of ordera. This subgroupis the cyclic group ( x¢ ), whered = z .
a

Furthermore, for every integer m, (x™ ) = (x™™ ), so that the subgroups of
H correspond bijectively with the positive divisors of n.

Proof: (1) Let K < H. If K = {1}, the proposition is true for this subgroup, so we
assume K # {1}. Thus there exists some a # O such that x* € K. If a < 0 then since
K is a group also x° = (x?)~! € K. Hence K always contains some positive power
of x. Let

P=1{b|beZ" and x’ € K}.

By the above, P is a nonempty set of positive integers. By the Well Ordering Principle
(Section 0.2) P has a minimum element — call it d. Since K is a subgroup and x¢ € K,
(x4) < K. Since K isa subgroup of H, any element of K is of the form x* for some
integer a. By the Division Algorithm write

a=gqd+r 0<r<d.

Then x" = x99 = x?(x4)~9 is an element of K since both x? and x¢ are elements of
K. By the minimality of d it follows thatr = 0,i.e.,a = gd andso x? = (x%)7 € (x?).
This gives the reverse containment K < {x¢) which proves (1).

We leave the proof of (2) as an exercise (the reasoning is similar to and easier than
the proof of (3) which follows).
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(3) Assume |H| = n < oo and a | n. Letd = r and apply Proposition 5(3) to
a

obtain that ( x¢ ) is a subgroup of order a, showing the existence of a subgroup of order
a. To show uniqueness, suppose K is any subgroup of H of order a. By part (1) we
have

K = (xb)

where b is the smallest positive integer such that x? € K. By Proposition 5

n
(n,b)’

Z=a=lKl=lbe=

sod = (n.b). In particular, d | b. Since b is a multiple of d, x* € (x?), hence
K =(x") = (x).

Since |(x?)] =a = |K|, wehave K = (x?).

The final assertion of (3) follows from the observation that (x™ ) is a subgroup of
(x@my (check this) and, it follows from Proposition 5(2) and Proposition 2 that they
have the same order. Since (n, m) is certainly a divisor of n, this shows that every
subgroup of H arises from a divisor of n, completing the proof.

Examples
(1) We can use Proposition 6 and Theorem 7 to list all the subgroups of Z/nZ for any

given n. For example, the subgroups of Z./12Z are

@) Z/12Z = (1) = (5) = (7) = (11) (order 12)

(b) (2) = (10) (order 6)

(©) (3) =(9) (order 4)

(d) (4) =(8) (order 3)

(e) (6) (order 2)

() (0) (order 1).
The inclusions between them are given by

(a) < (b) ifandonlyif(®, 12)]|(a,12), 1<a,b<12.

(2) We can also combine the results of this section with those of the preceding one. For
example, we can obtain subgroups of a group G by forming Cg({x )) and Ng({x)),
for each x € G. One can check that an element g in G commutes with x if and only
if g commutes with all powers of x, hence

Cc((x)) = Cc(x).

As noted in Exercise 6, Section 2, (x) < Ng({x)) but equality need not hold. For
instance, if G = Qg and x =i,

Co((i)) ={x1,£i} = (i) and Ng((i))= QOs.

Note that we already observed the first of the above two equalities and the second is
most easily computed using the result of Exercise 24 following.
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EXERCISES

1. Find all subgroups of Z45 = (x ), giving a generator for each. Describe the containments
between these subgroups.
2. If x is an element of the finite group G and |x| = |G|, prove that G = (x). Give an

10.
11
12

13.

14.

15.
16.

17.
18.

19.

21.
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explicit example to show that this result need not be true if G is an infinite group.
Find all generators for Z/48Z.

. Find all generators for Z/202Z.

Find the number of generators for Z/49000Z.

. In Z/48Z write out all elements of (a ) forevery a. Find all inclusions between subgroups

in Z/48Z.

. Let Z43 = (x ) and use the isomorphism Z/48Z == Z 43 givenby 1 > x to list all subgroups

of Z4g as computed in the preceding exercise.

. Let Z4g = (x ). For which integers a does the map ¢, defined by ¢, : 1 > x¢ extend to

an isomorphism from Z /487 onto Zg.

. Let Z3g = (x). For which integers a does the map , defined by ¢, : 1 > x9 extend

to a well defined homomorphism from Z/48Z into Z3¢. Can i, ever be a surjective
homomorphism?

What is the order of 30 in Z/54Z? Write out all of the elements and their orders in (30).
Find all cyclic subgroups of Dg. Find a proper subgroup of Dg whichis not cyclic.
Prove that the following groups are not cyclic:

@) Z, x 7,

(b) Z, xZ

(©) Z x Z.

Prove that the following pairs of groups are not isomorphic:

(@ ZxZyandZ

(b) Q@ x Z and Q.

Letoc =(123456789 1011 12). For each of the following integers a compute 0¢:
a =13, 65, 626, 1195, —6, —81, —570 and —1211.

Prove that Q x Qis not cyclic.

Assume |x| = n and |y| = m. Suppose that x and y commute: xy = yx. Prove that
|xy| divides the least common multiple of m and n. Need this be true if x and y do not
commute? Give an example of commuting elements x, y such that the order of xy is not
equal to the least common multiple of |x| and |y|.

Find a presentation for Z,, with one generator.

Show that if H is any group and A is an element of H with h" = 1, then there is a unique
homomorphism from Z, = (x ) to H such that x +> h.

Show that if H is any group and k is an elementof H, then there is a unique homomorphism
from Z to H such that 1 +— h.

. Let p be a prime and let n be a positive integer. Show that if x is an element of the group

G such that xP" = 1 then |x| = p"™ for some m < n.

Let p be an odd prime and let n be a positive integer. Use the Binomial Theorem to show
that (1 + p)”"_l = 1(mod p") but (1 + p)’JH # 1(mod p"). Deduce that 1 + p is an
element of order p"~! in the multiplicative group (Z/p"Z)*.
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22. Letn beaninteger > 3. Use the Binomial Theorem to show that (1+22)2"" = 1(mod 2")
but (1 + 22)2"~3 # 1(mod 2"). Deduce that 5 is an element of order 27=2 jn the multi-
plicative group (Z/2"Z)*.

23. Show that (Z/2"Z)* is not cyclic for any n > 3. [Find two distinct subgroups of order 2.]

24. Let G be a finite groupandletx € G.

(a) Prove thatif g € Ng({x)) then gxg~—" = x“ for some a € Z.

(b) Prove conversely that if gxg‘l = x“ for some a € Z then g € Ng({x)). [Show
first that gx*g~! = (gxg~1)* = x° for any integer k, so that g (x) g~! < (x). If
x has order n, show the elements gxg=1, i = 0,1,...,n — 1 are distinct, so that
lg(x) g~ = |(x)| = nand conclude that g (x) g~! = (x).]

Note that this cuts down some of the work in computing normalizers of cyclic subgroups

since one does not have to check ghg~! € (x) forevery h € (x).

1

25. Let G be a cyclic group of order n and let k be an integer relatively prime to n. Prove
that the map x — x* is surjective. Use Lagrange’s Theorem (Exercise 19, Section 1.7)
to prove the same is true for any finite group of order n. (For such k each element has a
k™ root in G. Tt follows from Cauchy’s Theorem in Section 3.2 that if k is not relatively

prime to the order of G then the map x — x* is not surjective.)

26. Let Z, be a cyclic group of order » and for each integer a let
Og:Zp—> Z, by oa(x) =x? forall x € Z,.

(a) Prove that o, is an automorphism of Z, if and only if @ and n are relatively prime
(automorphisms were introduced in Exercise 20, Section 1.6).

(b) Prove thato, = o} if and only if a = b (mod n).

(c) Prove that every automorphism of Z, is equal to o, for some integer a.

(d) Prove thato, oop = ggp. Deduce that the mapa — o is an isomorphism of (Z/nZ)>
onto the automorphism group of Z,, (so Aut(Z,) is an abelian group of order ¢ (n)).

2.4 SUBGROUPS GENERATED BY SUBSETS OF A GROUP

The method of forming cyclic subgroups of a given group is a special case of the general
technique where one forms the subgroup generated by an arbitrary subset of a group. In
the case of cyclic subgroups one takes a singleton subset {x} of the group G and forms
all integral powers of x, which amounts to closing the set {x} under the group operation
and the process of taking inverses. The resulting subgroup is the smallest subgroup of
G which contains the set {x} (smallest in the sense that if H is any subgroup which
contains {x}, then H contains ( x }). Another way of saying this is that { x ) is the unique
minimal element of the set of subgroups of G containing x (ordered under inclusion).
In this section we investigate analogues of this when {x} is replaced by an arbitrary
subset of G.

Throughout mathematics the following theme recurs: given an object G (such as
a group, field, vector space, etc.) and a subset A of G, is there a unique minimal
subobject of G (subgroup, subfield, subspace, etc.) which contains A and, if so, how
are the elements of this subobject computed? Students may already have encountered
this question in the study of vector spaces. When G is a vector space (with, say, real
number scalars) and A = {v, vz, ..., U,}, then there is a unique smallest subspace of
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G which contains A, namely the (linear) span of vj, v, ..., v, and each vector in this
span can be written as kyvy + kavo + - - - + k, vy, for some ky, ..., k, € R. When A is
a single nonzero vector, v, the span of {v} is simply the 1-dimensional subspace or line
containing v and every element of this subspace is of the form kv forsome k € R. This
is the analogue in the theory of vector spaces of cyclic subgroups of a group. Note that
the 1-dimensional subspaces contain kv, where k € R, not just kv, where k € Z; the
reason being that a subspace must be closed under all the vector space operations (e.g.,
scalar multiplication) not just the group operation of vector addition.

Let G be any group and let A be any subset of G. We now make precise the notion
of the subgroup of G generated by A. We prove that because the intersection of any set
of subgroups of G is also a subgroup of G, the subgroup generated by A is the unique
smallest subgroup of G containing A; it is “ smallest” in the sense of being the minimal
element of the set of all subgroups containing A. We show that the elements of this
subgroup are obtained by closing the given subset under the group operation (and taking
inverses). In succeeding parts of the text when we develop the theory of other algebraic
objects we shall refer to this section as the paradigm in proving that a given subset
is contained in a unique smallest subobject and that the elements of this subobject are
obtained by closing the subset under the operations which define the object. Since in the
latter chapters the details will be omitted, students should acquire a solid understanding
of the process at this point.

In order to proceed we need only the following.

Proposition 8. If A is any nonempty collection of subgroups of G, thenthe intersection
of all members of A is also a subgroup of G.

Proof: This is an easy application of the subgroup criterion (see also Exercise 10,
Section 1). Let
K=()H.

HeA

Since each H € Ais a subgroup, 1 € H,so 1 € K, thatis, K # 0. If a,b € K,
thena,b € H, for all H € A. Since each H is a group, ab™! € H, for all H, hence
ab™! € K. Proposition 1 gives that K < G.

Definition. If A is any subset of the group G define

(A)y= () H.

ACH
H<G

This is called the subgroup of G generated by A.

Thus ( A) is the intersection of all subgroups of G containing A. It is a subgroup
of G by Proposition 8 applied to the set A = {H < G | A € H} (Ais nonempty since
G € A). Since A liesineach H € A, A is a subset of their intersection, ( A ). Note that
( A) is the unique minimal element of .A as follows: ( A ) is a subgroup of G containing
A, so (A) € A; and any element of A contains the intersection of all elements in A,
i.e., contains ( A ).
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When A is the finite set {a;, ay, ..., a,} we write (a;, ay, ..., a, ) for the group
generated by ay, ay, ..., a, instead of ({a;,as, ..., a,}). If A and B are two subsets
of G we shall write (A, B) in place of (AU B).

This “top down” approach to defining ( A ) proves existence and uniqueness of the
smallest subgroup of G containing A but is not too enlightening as to how to construct
the elements in it. As the word “generates” suggests we now define the set which is the
closure of A under the group operation (and the process of taking inverses) and prove
this set equals ( A ). Let

A= {af'asz...a:" |ne€eZ, n>0anda; € A, ¢; = %1 for each i}

where A = {1} if A = @, so that A is the set of all finite products (called words) of
elements of A and inverses of elements of ‘A. Note that the g;’s need not be distinct,
so a? is written aa in the notation defining A. Note also that A is not assumed to be a
finite (or even countable) set.

Proposition9. A = (A).

Proof: We first prove A is a subgroup. Note that A # @ (even if A = @). If
a,b e Awitha = af'as’ ...a% and b = by'b%* ... blr, then

-1 _ & €& €  1,—8m 1, —Om-1 —8
ab™ =aj'ay}...a"-b,""b, " ... b

(where we used Exercise 15 of Section 1.1 to compute b~!). Thus ab™! is a product
of elements of A raised to powers £1, hence ab~! € A. Proposition 1 implies A is a
subgroup of G.

Since each a € A may be written al,itfollows that A C A, hence {(A) C ‘A. But
{ A) is a group containing A and, since it is closed under the group operation and the
process of taking inverses, ( A) contains each element of the form aj'ay’ ... a", that

is, A C ( A). This completes the proof of the proposition.

We now use ( A) in place of A and may take the definition of A as an equivalent
definition of ( A). As noted above, in this equivalent definition of ( A ), products of the
forma-a,a-a-a,a-a”!, etc. could have been simplified to a?, a3, 1, etc. respectively,
so another way of writing ( A) is

(A)={al"ay*...al" | foreachi, a; € A,a; €Z,a; #a;y1andn € Z*).

Infact, when A = {x} this was our definition of ( A).

If G is abelian, we could commute the g;’s and so collect all powers of a given
generator together. For instance, if A were the finite subset {a;, ay, ..., ax} of the
abelian group G, one easily checks that

(A) ={a]"al®...a;* | oy € Zforeachi}.

If in this situation we further assume that each a; has finite order d;, for all i, then

since there are exactly d; distinct powers of a;, the total number of distinct products of

the formaj'ay? ... a;" is at most did; . . . d, that is,

{A) < didy...4.
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It may happen that a®b? = a”b® even though a® # aY and b? # b®. We shall explore
exactly when this happens when we study direct products in Chapter 5.

When G is non-abelian the situation is much more complicated. For example, let
G = Dg andletr and s be the usual generators of Dg (note thatthe notation Dg = (r, s )
is consistent with the notation introduced in Section 1.2). Leta = s, let b = rs and
let A = {a, b}. Since both s andr (= rs - 5) belong to (a,b), G = (a, b), ie, G is
also generated by a and b. Both a and b have order 2, however Dg has order 8. This
means that it is not possible to write every element of Dg in the form a®b?, a, 8 € Z.
More specifically, the product aba cannot be simplified to a product of the form a®b”.
In fact, if G = Dy, for any n > 2, and r, s, a, b are defined in the same way as above,
it is still true that

lal =1bl =2, Dy =(a,b) and |Dy,|=2n.

This means that for large n, long products of the form abab. ..ab cannot be further
simplified. In particular, this illustrates that, unlike the abelian (or, better yet, cyclic)
group case, the order of a (finite) group cannot even be bounded once we know the
orders of the elements in some generating set.

Another example of this phenomenon is S, :

S, =((12),(123...n)).

Thus S, is generated by an element of order 2 together with one of order n, yet | S,,| = n!
(we shall prove these statements later after developing some more techniques).

One final example emphasizes the fact that if G is non-abelian, subgroups of G
generated by more than one element of G may be quite complicated. Let

01 0 2
G =GL®), "=(1 0)’ b=(1/2 0)

1/2

0o 2
(a, b) is an infinite subgroup of G L, (R) which is generated by two elements of order
2.

soa? =b*= lbutab = . It is easy to see that ab has infinite order, so

These examples illustrate that when |A| > 2 it is difficult, in general, to compute
even the order of the subgroup generated by A, let alone any other structural properties.
It is therefore impractical to gather much information about subgroups of a non-abelian
group created by taking random subsets A and trying to write out the elements of (or
other information about) ( A). For certain “well chosen” subsets A, even of a non-
abelian group G, we shall be able to make both theoretical and computational use of
the subgroup generated by A. One example of this might be when we want to find
a subgroup of G which contains (x ) properly; we might search for some element y
which commutes with x (i.e., y € Cg(x)) and form (x, y). It is easy to check that
the latter group is abelian, so its order is bounded by |x||y|. Alternatively, we might
instead take y in Ng((x )) — in this case the same order bound holds and the structure
of (x, y) is again not too complicated (as we shall see in the next chapter).

The complications which arise for non-abelian groups are generally not quite as
serious when we study other basic algebraic systems because of the additional algebraic
structure imposed.
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EXERCISES

1. Prove that if H is a subgroup of G then (H ) = H.

2. Prove that if A is a subset of B then (A) < (B). Give an example where A C B with
A#Bbut(A)=(B).

3. Prove thatif H is an abelian subgroup of a group G then ( H, Z(G) ) is abelian. Give an
explicit example of an abelian subgroup H of a group G such that ( H, C(H)) is not
abelian.

4. Prove that if H is a subgroup of G then H is generated by the set H — {1}.

5. Prove that the subgroup generated by any two distinct elements of order 2 in S3 is all of
S3.

6. Prove that the subgroup of S; generated by (1 2) and (1 2)(3 4) is a noncyclic group of
order 4.

7. Prove that the subgroup of S4 generated by (1 2) and (1 3)(2 4) is isomorphic to the
dihedral group of order 8.

8. Provethat S4 =((1234), (1243)).

1 1
call from Exercise 9 of Section 1 that SL2(IF3) is the subgroup of matrices of determinant
1. You may assume this subgroup has order 24 — this will be an exercise in Section 3.2.]

9. Prove that SL,([F3) is the subgroup of GL(IF3) generated by ( (1) 1 ) and ( 1 (1)) [Re-

10. Prove that the subgroup of SL(IF'3) generated by ((1) _01 ) and ( } _11 ) is isomorphic

to the quaternion group of order 8. [Use a presentation for QOg.]
11. Show that SL;(IF3) and S4 are two nonisomorphic groups of order 24.

12. Prove that the subgroup of upper triangular matrices in GL3([F2) is isomorphic to the
dihedral group of order 8 (cf. Exercise 16, Section 1). [First find the order of this subgroup.]

13. Prove that the multiplicative group of positive rational numbers is generated by the set
{% | pisaprime }.

14. A group H is called finitely generated if there is a finite set A such that H = (A).
(a) Prove that every finite group is finitely generated.

(b) Prove that Z is finitely generated.
(c) Prove that every finitely generated subgroup of the additive group Q is cyclic. [If H

is a finitely generated subgroup of Q, show that H < { — ), where k is the product of

all the denominators which appear in a set of generators for H.]
(d) Prove that Q is not finitely generated.

15. Exhibit a proper subgroup of Q which is not cyclic.

16. A subgroup M of a group G is called a maximal subgroup if M # G andthe only subgroups
of G which contain M are M and G.
(a) Prove that if H is a proper subgroup of the finite group G then there is a maximal
subgroup of G containing H.
(b) Show that the subgroup of all rotations in a dihedral group is a maximal subgroup.
(c) Show thatif G = (x ) is a cyclic group of order n > 1 then a subgroup H is maximal
ifand only H = (x? ) for some prime p dividing n.
17. Thisis an exercise involving Zorn’s Lemma (see Appendix I)to prove that every nontrivial
finitely generated group possesses maximal subgroups. Let G be a finitely generated
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group, say G = (g1, 82, ---, &n ), and let S be the set of all proper subgroups of G. Then

S is partially ordered by inclusion. Let C be a chain in S.

(a) Prove thatthe union, H, of all the subgroups in C is a subgroup of G.

(b) Prove that H is a proper subgroup. [If not, each g; must lie in H and so must lie in
some element of thechain C. Use the definition of a chain to arrive at a contradiction.]

(¢) Use Zorn’s Lemma to show that S has a maximal element (which is, by definition, a
maximal subgroup).

18. Let pbeaprimeandlet Z = {z € C | zP" = 1forsome n € Z*} (so Z is the multiplicative
group of all p-power roots of unity in C). Foreachk € Z*t let Hy = {z € Z | zpk =1}
(the group of p¥th roots of unity). Prove the following:

(@ Hy <H,ifandonlyifk <m

(b) Hy is cyclic for all k (assume that for any n € Z*, {e2™/" |t = 0,1,...,n— 1} is
the set of all n'® roots of 1 in C)

(c) every proper subgroup of Z equals Hy for some k € Z* (in particular, every proper
subgroup of Z is finite and cyclic)

(d) Z is not finitely generated.

A nontrivial abelian group A (written multiplicatively) is called divisible if for each element
a € A and each nonzero integer k there is an element x € A such that x* = g, i.e., each
element has a k™ root in A (in additive notation, each element is the k™ multiple of some
element of A).

(a) Prove that the additive group of rational numbers, Q, is divisible.

(b) Prove that no finite abelian group is divisible.

19

20. Prove that if A and B are nontrivial abelian groups, then A x B is divisible if and only if
both A and B are divisible groups.

2.5 THE LATTICE OF SUBGROUPS OF A GROUP

In this section we describe a graph associated with a group which depicts the relation-
ships among its subgroups. This graph, called the lattice? of subgroups of the group, is
a good way of “visualizing” a group — it certainly illuminates the structure of a group
better than the group table. We shall be using lattice diagrams, or parts of them, to
describe both specific groups and certain properties of general groups throughout the
chapters on group theory. Moreover, the lattice of subgroups of a group will play an
important role in Galois Theory.

The lattice of subgroups of a given finite group G is constructed as follows: plot
all subgroups of G starting at the bottom with 1, ending at the top with G and, roughly
speaking, with subgroups of larger order positioned higher on the page than those of
smaller order. Draw paths upwards between subgroups using the rule that there will
be a line upward from A to B if A < B and there are no subgroups properly between
A and B. Thus if A < B there is a path (possibly many paths) upward from A to B
passing through a chain of intermediate subgroups (and a path downward from B to
A if B > A). The initial positioning of the subgroups on the page, which is, a priori,
somewhat arbitrary, can often (with practice) be chosen to produce a simple picture.
Notice that for any pair of subgroups H and K of G the unique smallest subgroup

2The term “lattice” has a precise mathematical meaning in terms of partially ordered sets.
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which contains both of them, namely { H, K ) (called the join of H and K), may be
read off from the lattice as follows: trace paths upwards from H and K until a common
subgroup A which contains H and K is reached (note that G itself always contains all
subgroups so at least one such A exists). To ensure that A = ( H, K ) make sure there is
no A; < A (indicated by a downward path from A to A;) with both H and K contained
in A; (otherwise replace A with A and repeat the process to see if A} = ( H, K )). By
a symmetric process one can read off the largest subgroup of G which is contained in
both H and K, namely their intersection (which is a subgroup by Proposition 8).

There are some limitations to this process, in particular it cannot be carried out per
se for infinite groups. Even for finite groups of relatively small order, lattices can be
quite complicated (see the book Groups of Order 2", n < 6 by M. Hall and J. Senior,
Macmillan, 1964, for some hair-raising examples). At the end of this section we shall
describe how parts of a lattice may be drawn and used even for infinite groups.

Note thatisomorphic groups have the same lattices (i.e., the same directed graphs).
Nonisomorphic groups may also have identical lattices (this happens for two groups of
order 16 — see the following exercises). Since the lattice of subgroups is only part of
the data we shall carry in our descriptors of a group, this will not be a serious drawback
(indeed, it might even be useful in seeing when two nonisomorphic groups have some
common properties).

Examples
Except for the cyclic groups (Example 1) we have not proved that the following lattices
are correct (e.g., contain all subgroups of the given group or have the right joins and
intersections). For the moment we shall take these facts as given and, as we build up more
theory in the course of the text, we shall assign as exercises the proofs that these are indeed
correct.

(1) For G = Z, = Z/nZ, by Theorem 7 the lattice of subgroups of G is the lattice of
divisors of n (that is, the divisors of » are written on a page with » at the bottom, 1 at
the top and paths upwards froma to b if b | a). Some specific examples for various
values of » follow.

Z/27 = (1) Z/AZ = (1) (note: (1) =(3))

(2) = {0} (2)

(4) = {0}

Z/8Z = (1) (ote: (1)=(3)=(5)=(7))

(2)

(4)

(8) = {0}
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In general, if p is a prime, the lattice of Z/ p"Z is

(6) ={0}

Z/p"Z =(1)
(1:7)
(p?)
(p|3>
|
i
(p" 1)
(pl") = {0}
Z/6Z Z/12Z
S e
\
\ (3)
e /
e

(4)
(12) = {0}

(2) The Klein 4-group (Viergruppe), Vs, is the group of order 4 with multiplication table

Va
-1 a b ¢ |
111 a b c / \
ala 1 ¢ b and lattice (a) {b) (c)
blb ¢c 1 a \ /
clec b a 1 l

1

Note that V4 is abelian and is not isomorphic to Z4 (why?). We shall see that Dg has
an isomorphic copy of V4 as a subgroup, so it will not be necessary to check that the
associative law holds for the binary operation defined above.
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(3) The lattice of S3 is

(12)) (A3)) (23))

\

(4) Using our usual notation for Dg = (r, s ), the lattice of Dg is

(sr y Ar) (rsr

/I\

(s) (r2s) (r

AN

(5) The lattice of subgroups of Qg is

VAN

) (rs) (%)

1//

Osg

/

N

(1 () (k)
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(6) The lattice of Djg is not a planar graph (cannot be drawn on a plane without lines
crossing). One way of drawing it is

Dye
(s,7%) (r) (sr,r%)
N
(sr?, (s, r*) (sr3, 7 (sr3,r%)
AN //// \
(sr8)  (sr2) (srh) (s) (rty (s A(srTy (sr%) (sr)
=
1

In many instances in both theoretical proofs and specific examples we shall be
interested only in information concerning two (or some small number of) subgroups of
a given group and their interrelationships. To depict these graphically we shall draw a
sublattice of the entire group lattice which contains the relevant joins and intersections.
An unbroken line in such a sublattice will not, in general, mean that there is no subgroup
in between the endpoints of the line. These partial lattices for groups will also be used
when we are dealing with infinite groups. For example, if we wished to discuss only
the relationship between the subgroups (sr2, r*) and (r?) of D;s we would draw the
sublattice

D¢

N
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Note that (s, r2) and ( r*) are precisely the join and intersection, respectively, of these
two subgroups in Dj¢.

Finally, given the lattice of subgroups of a group, it is relatively easy to compute
normalizers and centralizers. For example, in Dg we can see that Cp, (s) = (s, r?) be-
cause we first calculate that r2 € C D5 (s) (see Section 2). This proves { s, r’y<c D5 (8)
(note that an element always belongs to its own centralizer). The only subgroups which
contain (s, r?) are that subgroup itself and all of Dg. We cannot have Cp,(s) = Dg
because r does not commute with s (i.e., r € Cp,(s)). This leaves only the claimed
possibility for Cp, (s).

EXERCISES

1. Let H and K be subgroups of G. Exhibit all possible sublattices which show only G, 1,
H, K and their joins and intersections. What distinguishes the different drawings?
2. In each of (a) to (d) list all subgroups of D¢ that satisfy the given condition.
(a) Subgroups that are contained in (sr2,r%)
(b) Subgroups that are contained in (sr7, %)
(c) Subgroups that contain (r*)
(d) Subgroups that contain (s ).
3. Show that the subgroup (s, 72 ) of Dy is isomorphic to V3.
4. Use the given lattice to find all pairs of elements that generate Dg (there are 12 pairs).
5. Use the given lattice to find all elements x € D¢ such that Djg = (x, s ) (there are 16
such elements x).
6. Use the given lattices to help find the centralizers of every element in the following groups:
@Ds (QPs ()83 (d) Die.
7. Find the center of Dj¢.
8. In each of the following groups find the normalizer of each subgroup:
@ S3  (b) Os.
9. Draw the lattices of subgroups of the following groups:
(@) Z/16Z (b) /247 (c) Z/48Z. [See Exercise 6 in Section 3.]
10. Classify groups of order 4 by proving that if |G| = 4 then G = Z4 or G = V4. [See
Exercise 36, Section 1.1.]
11. Consider the group of order 16 with the following presentation:

QD= (0, t |6 =12 =1, ot = 163)

(called the quasidihedral or semidihedral group of order 16). This group has three sub-
groups of order 8 (=, 02) = Dg, (0) = Zg and (oz,ar) = Qg and every proper
subgroup is contained in one of these three subgroups. Fill in the missing subgroups in the
lattice of all subgroups of the quasidihedral group on the following page, exhibiting each
subgroup with at most two generators. (This is another example of a nonplanar lattice.)

The next three examples lead to two nonisomorphic groups that have the same lattice of sub-
groups.

12. The group A = Zp x Z4 = (a,b | a? = b* = 1, ab = ba) has order 8 and has
three subgroups of order 4: (a, b2) = Vy, (b) = Z4 and (ab) = Z4 and every proper
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13.

14.

15.

16.

17.

18.
19.
20.

72

™

(02,7) (o) (62, 10)
(*x) (U T) (*x) (*x)

/\\\

(ta?)  (xx) (%x) (1)

subgroup is contained in one of these three. Draw the lattice of all subgroups of A, giving
each subgroup in terms of at most two generators.

The group G = Z x Zg = (x,y | x2 = y® =1, xy = yx) has order 16 and has three
subgroups of order 8 (x,y2) = Z; x Zs, (y) = Zg and (xy) = Zg and every proper
subgroup is contained in one of these three. Draw the lattice of all subgroups of G, giving
each subgroup in terms of at most two generators (cf. Exercise 12).

Let M be the group of order 16 with the following presentation:
(u,v|u2=v8=1, vu=uv5)

(sometimes called the modular group of order 16). It has three subgroups of order 8:
(u,v?), (v) and (uv) and every proper subgroup is contained in one of these three.
Prove that (u, v2) = Zy x Zs, (v) = Zg and (uv) = Zg. Show that the lattice of
subgroups of M is the same as the lattice of subgroups of Z; x Zg (cf. Exercise 13) but
that these two groups are not isomorphic.

Describe the isomorphism type of each of the three subgroups of Dj¢ of order 8.

Use the lattice of subgroups of the quasidihedral group of order 16 to show that every
element of order 2 is contained in the proper subgroup (t, o2 ) (cf. Exercise 11).

Use the lattice of subgroups of the modular group M of order 16 to show that the set
{x € M | x? = 1} is a subgroup of M isomorphic to the Klein 4-group (cf. Exercise 14).

Use the lattice to help find the centralizer of every element of Q D¢ (cf. Exercise 11).
Use the lattice to help find Np, ({5, r*)).

Use the lattice of subgroups of Q Dj¢ (cf. Exercise 11) to help find the normalizers
(@) Ngp,({to)) (b) Nop,, (. a4)).
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CHAPTER 3

Quotient Groups and
Homomorphisms

3.1 DEFINITIONS AND EXAMPLES

In this chapter we introduce the notion of a quotient group of a group G, which is
another way of obtaining a “smaller” group from the group G and, as we did with
subgroups, we shall use quotient groups to study the structure of G. The structure of
the group G is reflected in the swructure of the quotient groups and the subgroups of G.
For example, we shall see that the lattice of subgroups for a quotient of G is reflected
at the “top” (in a precise sense) of the lattice for G whereas the lattice for a subgroup
of G occurs naturally at the “bottom.” One can therefore obtain information about the
group G by combining this information and we shall indicate how some classification
theorems arise in this way.

The study of the quotient groups of G is essentially equivalent to the study of the
homomorphisms of G, i.e., the maps of the group G to another group which respect
the group structures. If ¢ is a homomorphism from G to a group H recall that the
fibers of ¢ are the sets of elements of G projecting to single elements of H, which we
can represent pictorially in Figure 1, where the vertical line in the box above a point a
represents the fiber of ¢ over a.

H Fig. 1

[ ]
®
®
[ ]
®
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The group operation in H provides a way to multiply two elements in the image
of ¢ (i.e., two elements on the horizontal line in Figure 1). This suggests a natural
multiplication of the fibers lying above these two points making the set of fibers into
a group: if X, is the fiber above a and X, is the fiber above b then the product of X,
with X}, is defined to be the fiber X,;, above the product ab, i.e., X, X;, = X p. This
multiplication is associative since multiplication is associative in H, the identity is the
fiber over the identity of H, and the inverse of the fiber over a is the fiber over a1,
as is easily checked from the definition. For example, the associativity is proved as
follows: (X, Xp)X: = (Xap)Xe = Xap)e and X, (XpXc) = Xa(Xpe) = Xape). Since
(ab)c = a(bc) in H, (X, Xp)X. = X.(XpX.:). Roughly speaking, the group G is
partitioned into pieces (the fibers) and these pieces themselves have the structure of a
group, called a quotient group of G (a formal definition follows the example below).

Since the multiplication of fibers is defined from the multiplication in H, by con-
struction the quotient group with this multiplication is naturally isomorphic to the image
of G under the homomorphism ¢ (fiber X, is identified with its image a in H).

Example

LetG=7Z,let H= Z, = (x) be the cyclic group of order n and define ¢ : Z — Z, by
¢(a) = x2. Since

(@ +b) = x**? = x°x> = p(a)p(b)
it follows that ¢ is a homomorphism (note that the operation in Z is addition and the
operation in Z, is multiplication). Note also that ¢ is surjective. The fiber of ¢ over x? is
then
el =meZ|x"=x%=meZ|x"°%=1)
={m € Z | n divides m — a} (by Proposition 2.3)

={meZ|m=a (mod n)} =a,

i.e., the fibers of ¢ are precisely the residue classes modulo n. Figure 1 here becomes:

0 1 a n—1
+n 1+n axn (n—1)xn
+2n 1£2n | --- | ax2n | --- (n—1)x2n YA
+3n 143n ax3n (n—1)43n
PR pr o Zn
Fig. 2
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The multiplication in Zj, is just xaxb = xatb The corresponding fibers are a, b,anda + b,
so the corresponding group operation for the fibers is @ - b = a + b. This is just the group
Z/nZ under addition, a group isomorphic to the image of ¢ (all of Z,).

Theidentity of this group (the fiber above the identity in Z,,) consists of all the multiples
of n in Z, namely nZ, a subgroup of Z, and the remaining fibers are just translates, a + nZ,
of this subgroup. The group operation canalso be defined directly by taking representatives
from these fibers, adding these representatives in Z and taking the fiber containing this sum
(this was the original definition of the group Z/nZ). From a computational point of view
computing the product of @ and b by simply adding representatives a and b is much easier
than first computing the image of these fibers under ¢ (namely, x? and x?), multiplying
these in H (obtaining x*?) and then taking the fiber over this product.

We first consider some basic properties of homomorphisms and their fibers. The
fiber of a homomorphism ¢ : G — H lying above the identity of H is given a name:

Definition. If ¢ is a homomorphism ¢ : G — H, the kernel of ¢ is the set

(8eGle@=1}
and will be denoted by ker ¢ (here 1 is the identity of H).

Proposition 1. Let G and H be groups and let ¢ : G — H be a homomorphism.
(1) ¢(1g) = 14, where 1 and 1 are the identities of G and H, respectively.
) p(g) =p(g) ' forallg € G.

3) e =¢(g)" foralln € Z.
(4) ker ¢ is a subgroup of G.
(5) im (@), the image of G under g, is a subgroup of H.

Proof: (1) Since ¢(1g) = ¢(1glg) = ¢(15)9¢(15), the cancellation laws show
that (1) holds.
@) ¢(16) = ¢(8g™") = ¢(&)9(g™") and, by part (1), ¢(16) = 1p, hence
1y = p(@)pE ™).
Multiplying both sides on the left by ¢(g) ! and simplifying gives (2).
(3) This is an easy exercise in induction for n € Z*. By part (2), conclusion (3)

holds for negative values of n as well.
(4) Since 1 € kerg, the kernel of ¢ is not empty. Let x, y € ker¢, that is

¢(x) = @(y) = lg. Then
ey™) = 9e(r™) = e = a1y =14
that is, xy~! € ker¢. By the subgroup criterion, ker¢ < G.
(5)Sincep(1g) = 1g, theidentity of H liesin the image of ¢, s 0im(¢) is nonempty.
If x and y are in im(p), say x = @(a), y = @(b), then y~! = ¢(b™!) by (2) so that
xy~! = g(a)p(™') = p(ab™') since ¢ is a homomorphism. Hence also xy~! is in
the image of ¢, so im(p) is a subgroup of H by the subgroup criterion.

We can now define some terminology associated with quotient groups.
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Definition. Let¢ : G > H be a homomorphism with kernel K. The quotient group
or factor group, G/K (read G modulo K or simply G mod K), is the group whose
elements are the fibers of ¢ with group operation defined above: namely if X is the
fiber above a and Y is the fiber above b then the product of X with Y is defined to be
the fiber above the product ab.

The notation emphasizes the fact that the kernel X is a single element in the group
G/K and we shall see below (Proposition 2) that, as in the case of Z/nZ above, the
other elements of G/K are just the “translates” of the kernel K. Hence we may think
of G/K as being obtained by collapsing or “dividing out” by K (or more precisely, by
equivalence modulo K). This explains why G/K is referred to as a “quotient” group.

The definition of the quotient group G/K above requires the map ¢ explicitly,
since the multiplication of the fibers is performed by first projecting the fibers to H
via ¢, multiplying in H and then determining the fiber over this product. Just as for
Z/nZ above, it is also possible to define the multiplication of fibers directly in terms
of representatives from the fibers. This is computationally simpler and the map ¢ does
not enter explicitly. We first show that the fibers of a homomorphism can be expressed
in terms of the kernel of the homomorphism just as in the example above (where the
kernel was nZ and the fibers were translates of the form a + nZ).

Proposition 2. Let ¢ : G - H be a homomorphism of groups with kernel K. Let
X € G/K be the fiber above a, i.e., X = ¢! (a). Then

(1) Foranyu € X, X ={uk|k € K}

(2) Foranyu e X, X ={ku|k e K}.

Proof: We prove (1) and leave the proof of (2) as an exercise. Let u € X so, by
definition of X, ¢(u) = a. Let

uK = {uk | k € K}.
We first prove uK C X. For any k € K,
ouk) = p(u)p(k) (since ¢ is a homomorphism)
=epw)l (since k € ker ¢)
=a,
that is, uk € X. This proves uK C X. To establish the reverse inclusion suppose
g€ Xandletk =u"'g. Then

pk) = o ™p(g) = p(u)'o(g)  (by Proposition 1)

1

=a a=1.

Thus k € kerg. Since k = u~!g, g = uk € uk, establishing the inclusion X C uK.
This proves (1).

The sets arising in Proposition 2 to describe the fibers of a homomorphism ¢ are
defined for any subgroup K of G, not necessarily the kernel of some homomorphism
(we shall determine necessary and sufficient conditions for a subgroup to be such a
kernel shortly) and are given a name:
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Definition. Forany N < G and any g € G let
gN={gn|neN} and Ng={ng|ne€ N}

called respectively a left coset and a right coset of N in G. Any element of a coset is
called a representative for the coset.

We have already seen in Proposition 2 that if N is the kernel of a homomorphism
and g is any representative for the coset g/N then g;N = gN (and if g € Ng then
Ng1 = Ng). Weshall see that this fact is valid for arbitrary subgroups N in Proposition
4 below, which explains the terminology of a representative.

If G is an additive group we shall write g + N and N + g for the left and right
cosets of N in G with representative g, respectively. In general we can think of the left
coset, g N, of N in G as the left translate of N by g. (The reader may wish to review
Exercise 18 of Section 1.7 which proves that the right cosets of N in G are precisely
the orbits of N acting on G by left multiplication.)

In terms of this definition, Proposition 2 shows that the fibers of a homomorphism
are the left cosets of the kernel (and also the right cosets of the kernel), i.e., the elements
of the quotient G/K are the left cosets gK, g € G. In the example of Z/nZ the
multiplication in the quotient group could also be defined in terms of representatives
for the cosets. The following result shows the same result is true for G/K in general
(provided we know that K is the kernel of some homomorphism), namely that the
product of two left cosets X and Y in G/K is computed by choosing any representative
u of X, any representative v of ¥, multiplying ¥ and v in G and forming the coset
(uv)K.

Theorem 3. Let G be a group and let K be the kernel of some homomorphism from
G to another group. Then the set whose elements are the left cosets of K in G with
operation defined by

ukK ovK = (uv)XK

forms a group, G/K . In particular, this operation is well defined in the sense thatifu; is
any element in K and v; is any element in vK, then u;v; € uvk,ie., u1v1 K = uvk
sothat the multiplication does not depend on the choice o f representatives for the cosets.
The same statement is true with “right coset” in place of “left coset.”

Proof: Let X,Y € G/K andlet Z = XY in G/K, so that by Proposition 2(1) X,
Y and Z are (left) cosets of K. By assumption, K is the kernel of some homomorphism
¢:G—> HsoX = ¢ '(a)and Y = ¢! (b) for some a, b € H. By definition of
the operation in G/K, Z = ¢ !(ab). Let u and v be arbitrary representatives of X,
Y, respectively, so that ¢(u) = a, ¢(v) = band X = uK, Y = vK. We must show
uv € Z. Now

weZ & uveg (ab)
& @(uv) =ab
& ee(v) =ab.
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Since the latter equality does hold, uv € Z hence Z is the (left) coset uvK. (Exercise
2 below shows conversely that every z € Z can be written as uv, for some u € X and
v € Y.) This proves that the product of X with Y is the coset uvK for any choice
of representatives u € X, v € Y completing the proof of the first statements of the
theorem. The last statement in the theorem follows immediately since, by Proposition
2,uK = KuandvK = Kvforallu and v in G.

Interms of Figure 1, the multiplicationin G /K via representatives can be pictured
as in the following Figure 3.

u
\\ //"'—‘ﬁ;{uv
v G
\ e o o e o o
\
v
1,-(\- \‘c H
a b ab

Fig. 3

We emphasize the fact that the muldtiplication is independent of the particular rep-
resentatives chosen. Namely, the product (or sum, if the group is written additively) of
two cosets X and Y is the coset uv K containing the product uv where u and v are any
representatives for the cosets X and Y, respectively. This process of considering only
the coset containing an element, or “reducing mod K” is the same as what we have been
doing, in particular, in Z/nZ. A useful notation for denoting the coset uK containing
a representative u is . With this notation (which we introduced in the Preliminaries in
dealing with Z/nZ), the quotient group G /K is denoted G and the product of elements
u and v is simply the coset containing uv, i.e., uv. This notation also reinforces the fact
that the cosets K in G/K are elements u in G/K.

Examples

(1) The first example in this chapter of the homomorphism ¢ from Z to Z,, has fibers the
left (and also the right) cosets a + nZ of the kernel nZ. Theorem 3 proves that these
cosets form a group under addition of representatives, namely Z/nZ, which explains
the notation for this group. The group is naturally isomorphic to its image under ¢, so
we recover the isomorphism Z/nZ = Z,, of Chapter 2.

(2) If ¢ : G > H is an isomorphism, then K = 1, the fibers of ¢ are the singleton
subsets of G and so G/1 = G.

78 Chap.3  Quotient Groups and Homomorphisms



(3) Let G be any group, let H = 1 be the group of order 1 and define ¢ : G - H by
¢(g) = 1,forall g € G. Itis immediate that ¢ is ahomomorphism. This map is called
the trivial homomorphism. Note that in this case ker ¢ = G and G/G is a group with
the single element, G, i.e., G/G = Z; = {1}.

@) Let G = R? (operation vector addition), let H = R (operation addition) and define
Q: R? > R by ¢((x, y)) = x. Thus ¢ is projection onto the x-axis. We show g is a
homomorphism:

o((x1, y1) + (x2, y2)) = 9((x1 +x2, y1 +y2))
=x1+x2 = @((x1, y1)) + ¢ ((x2, y2)).
Now
kerg = {(x, ) | ((x,y)) =0}

= {(x, y) | x = 0} = the y-axis.
Note that ker ¢ is indeed a subgroup of R? and that the fiber of ¢ over a € R is the
translate of the y-axis by 4, i.e., the line x = a. This is also the left (and the right) coset
of the kemel with representative (a, 0) (or any other representative point projecting to
a):

(@, 0) = (a,0) + y-axis.

Hence Figure 1 in this example becomes

________________________ e | R?

- R

Fig. 4

The group operation (written additively here) can be described either by using the map
¢: the sum of the line (x = a) and the line (x = b) is the line (x = a +b); or directly in
terms of coset representatives: the sum of the vertical line containing the point (a, y;)
and the vertical line containing the point (b, y,) is the vertical line containing the point
(a+ b, y1 + y2). Note in particular that the choice of representatives of these vertical
lines is not important (i.e., the y-coordinates are not important).

(5) (An example where the group G is non-abelian.) Let G = Qg and let H = V4 be the
Klein 4-group (Section 2.5, Example 2). Define ¢ : Og — V4 by

e =1, p(*i) =a, o)) =b, p(Fk) =c.
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The check that ¢ is a homomorphism is left as an exercise — relying on symmetry
minimizes the work in showing ¢(xy) = ¢(x)¢(y) forall x and y in Qg. It is clear
that ¢ is surjective and thatker ¢ = {£1}. One might think of ¢ as an “absolute value”
function on Qg so the fibers of ¢ are the sets E = {1}, A = {+i}, B = {£j} and
C = {%k}, which are collapsed to 1, a, b, and c respectively in Qg/(+1) and these
are the left (and also the right) cosets of ker ¢ (for example, A =i -ker ¢ = {i, —i} =
ker ¢ - i).

By Theorem 3, if we are given a subgroup K of a group G which we know is the
kernel of some homomorphism, we may define the quotient G/K without recourse to
the homomorphism by the multiplication uKvK = uvK. This raises the question of
whether it is possible to define the quotient group G/N similarly for any subgroup N
of G. The answer is no in general since this multiplication is not in general well defined
(cf. Proposition 5 later). In fact we shall see that it is possible to define the structure
of a group on the cosets of N if and only if N is the kernel of some homomorphism
(Proposition 7). We shall also give a criterion to determine when a subgroup N is such
a kernel — this is the notion of a normal subgroup and we shall consider non-normal
subgroups in subsequent sections.

We first show that the cosets of an arbitrary subgroup of G partition G (i.e., their
union is all of G and distinct cosets have trivial intersection).

Proposition 4. Let N be any subgroup of the group G. The set of left cosets of N in G
form a partition of G. Furthermore, forall u, v € G,uN = vN if and only if viueN
and in particular, u N = vN if and only if 4 and v are representatives of the same coset.

Proof: Firstof all note thatsince N is a subgroupof G,1 € N. Thusg = g-1 € gN

forall g € G, i.e,
G=|JeN.
geG

To show that distinct left cosets have empty intersection, suppose u N N vN # (. We
show uN = vN. Letx € uN NvN. Write

X =un = vm, for somen,m € N.

In the latter equality multiply both sides on the right by n~! to get

u=uvmn" ! =ovmy, where m; =mn~! € N.

Now for any element ut of u N (t € N),
ut = (vmy)t = v(mt) € vN.

This proves u N € vN. By interchanging the roles of # and v one obtains similarly that
vN C uN. Thus two cosets with nonempty intersection coincide.

By the first part of the proposition, uN = vN if and only if u € vN if and only
if u = vn, for some n € N if and only if v™!u € N, as claimed. Finally, v € uN is
equivalent to saying v is a representative for uN, hence u N = vN if and only if ¥ and
v are representatives for the same coset (namely the coset uN = vN).
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Proposition 5. Let G be a group and let NV be a subgroup of G.
(1) The operation on the set of left cosets of N in G described by

uN - vN = (uv)N

is well defined if and only if gng™' € N forallg € G and alln € N.

(2) If the above operation is well defined, then it makes the set of left cosets of N
in G into a group. In particular the identity of this group is the coset 1N and
the inverse of gN is the coset g~!N i.e., (gN)~! = g7 'N.

Proof: (1) Assume first that this operation is well defined, that is, for all 4, v € G,
ifu,u; € uN and v, v; € VN then uvN = ujuN.

Let g be an arbitrary element of G and let n be an arbitrary element of N. Letting
u=1,u; =nand v = v; = g~! and applying the assumption above we deduce that

1g7'N =ng”'N ie, g N = ng"N.

Since 1 € N,ng™'-1 eng™!N. Thusng=! € g~'N, hence ng~! = g~ 'n,, for some
ny € N. Multiplying both sides on the left by g gives gng~! = n; € N, as claimed.

Conversely, assume gng~! € N forallg € Gandalln € N. To prove the operation
stated above is well defined let u, u; € uN and v, v; € vN. We may write

u, = un and vy = vm, forsomen,m € N.
We must prove that u,v; € uvN:
uyv; = (un)(vm) = u(vv~Hnvm
= (uv)(v " 'nv)m = (uv)(nym),
where n; = v"lnv = (v)n(v"')7! is an element of N by assumption. Now N is
closed under products, so nym € N. Thus
uivy; = (uv)ny, for some n; € N.

Thus the left cosets uvN and u,v; N contain the common element «;v,. By the pre-
ceding proposition they are equal. This proves that the operation is well defined.

(2) If the operation on cosets is well defined the group axioms are easy to check
and are induced by their validity in G. For example, the associative law holds because
forall u, v, w € G,

(uN)(VNwN) = uN (vwN)
=u(vw)N
= (uv)wN = uNvN)(wN),

since u(vw) = (uv)w in G. The identity in G/N is the coset 1N and the inverse of
gN is g7!N as is immediate from the definition of the multiplication.

As indicated before, the subgroups N satisfying the condition in Proposition 5 for
which there is a natural group structure on the quotient G/N are given a name:
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Definition. The element gng~! is called the conjugate of n € N by g The set
gNg™! = {gng™! | n € N} is called the conjugate of N by g. The element g is
said to normalize N if gNg~! = N. A subgroup N of a group G is called normal if
every element of G normalizes N, i.e., if gNg~! = N forall g € G. If N is a normal

subgroup of G we shall write N < G.

Note that the structure of G is reflected in the structure of the quotient G/N when
N is a normal subgroup (for example, the associativity of the multiplication in G/N is
induced from the associativity in G and inverses in G/N are induced from inverses in
G). We shall see more of the relationship of G to its quotient G/N when we consider
the Isomorphism Theorems later in Section 3.

We summarize our results above as Theorem 6.

Theorem 6. Let N be a subgroup of the group G. The following are equivalent:
A NSG
(2) Ng(N) = G (recall Ng(N) is the normalizer in G of N)
(3) gN =Ngforallge G
(4) the operation on left cosets of N in G described in Proposition 5 makes the set
of left cosets into a group
(5) gNg ' C Nforallg € G.

Proof: We have already done the hard equivalences; the others are left as exercises.

As a practical matter, one tries to minimize the computations necessary to determine
whether a given subgroup N is normal in a group G. In particular, one tries to avoid as
much as possible the computation of all the conjugates gng~! forn € N and g € G. For
example, the elements of N itself normalize N since N is a subgroup. Also, if one has a
set of generators for N, it suffices to check that all conjugates of these generators lie in
N to prove that N is a normal subgroup (this is because the conjugate of a productis the
product of the conjugates and the conjugate of the inverse is the inverse of the conjugate)
— this is Exercise 26 later. Similarly, if generators for G are also known, then it suffices
to check that these generators for G normalize N. In particular, if generators for both
N and G are known, this reduces the calculations to a small number of conjugations
to check. If N is a finite group then it suffices to check that the conjugates of a set
of generators for N by a set of generators for G are again elements of N (Exercise
29). Finally, it is often possible to prove directly that Ng(N) = G without excessive
computations (some examples appear in the next section), again proving that N is a
normal subgroup of G without mindlessly computing all possible conjugates gng™!.

We now prove that the normal subgroups are precisely the same as the kernels of
homomorphisms considered earlier.

Proposition 7. A subgroup N of the group G is normal if and only if it is the kernel of
some homomorphism.

Proof: If N is the kernel of the homomorphism ¢, then Proposition 2 shows that
the left cosets of N are the same as the right cosets of N (and both are the fibers of the
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map ¢). By (3) of Theorem 6, N is then a normal subgroup. (Another direct proof of
this from the definition of normality for NV is given in the exercises).
Conversely, if N < G, let H = G/N anddefinenwr : G > G/N by

m(g) =gN forallg € G.
By definition of the operation in G/N,

7(8182) = (8182)N = g1Ng: N = 7 (g1)7(&2)-
This proves 7 is a homomorphism. Now
kerm ={g € G| 7(g) = 1N}
={ge€G|gN =1N}
={geG|geN}=N.
Thus N is the kernel of the homomorphism 7.

The homomorphism 7 constructed above demonstrating the normal subgroup N
as the kernel of a homomorphism is given a name:

Definition. Let N < G. The homomorphism 7 : G — G/N defined by m(g) = gN
is called the natural projection (homomorphism)' of G onto G/N. If H < G/N is a
subgroup of G/N, the complete preimage Of H in G is the preimage of H under the
natural projection homomorphism.

The complete preimage of a subgroup of G/N is a subgroup of G (cf. Exercise 1)
which contains the subgroup N since these are the elements which map to the identity
1 € H. We shall see in the Isomorphism Theorems in Section 3 that there is a natural
correspondence between the subgroups of G that contain N and the subgroups of the
quotient G/N.

We now have an “internal” criterion which determines precisely when a subgroup
N of a given group G is the kernel of some homomorphism, namely,

NG(N) = G.

We may thus think of the normalizer of a subgroup N of G as being a measure of
“how close” N is to being a normal subgroup (this explains the choice of name for this
subgroup). Keep in mind that the property of being normal is an embedding property,
that is, it depends on the relation of N to G, not on the internal structure of N itself
(the same group N may be a normal subgroup of G but not be normal in a larger group
containing G).

We began the discussion of quotient groups with the existence of a homomorphism
¢ of G to H and showed the kernel of this homomorphism is a normal subgroup N of
G and the quotient G/N (defined in terms of fibers originally) is naturally isomorphic

IThe word “natural” has a precise mathematical meaning in the theory of categories; for our
purposes we use the term to indicate that the definition of this homomorphism is a “coordinate free”
projection i.e., is described only in terms of the elements themselves, not in terms of generators for G
or N (cf. Appendix II).
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to the image of G under ¢ in H. Conversely, if N < G, we can find a group H
(namely, G/N) and a homomorphism 7 : G — H such that kerm = N (namely,
the natural projection). The study of homomorphic images of G (i.e., the images of
homomorphisms from G into other groups) is thus equivalent to the study of quotient
groups of G and we shall use homomorphisms to produce normal subgroups and vice
versa.

Wedeveloped the theory of quotient groups by way of homomorphisms rather than
simply defining the notion of a normal subgroup and its associated quotient group to
emphasize the fact that the elements of the quotient are subsets (the fibers or cosets of the
kernel N) of the original group G. The visualization in Figure 1 also emphasizes that N
(and its cosets) are projected (or collapsed) onto single elements in the quotient G/ N.
Computations in the quotient group G /N are performed by taking representatives from
the various cosets involved.

Some examples of normal subgroups and their associated quotients follow.

Examples

Let G be a group.
(1) The subgroups 1 and G are always normalin G; G/1 = G and G/G = 1.
(2) If G is an abelian group, any subgroup N of G is normal because for all g € G and

allneN,

1 1

gng~ =gg n=neN.

Note that it is important that G be abelian, not just that N be abelian. The structure of

G/N may vary as we take different subgroups N of G. For instance, if G = Z, then
every subgroup N of G is cyclic:

N=(n)=(—-n)=nZ, forsomen € Z

and G/N = Z/nZ is a cyclic group with generator 1 = 1 + nZ (note that 1 is a
generator for G).

Suppose now that G = Zj is the cyclic group of order k. Let x be a generator of
G and let N < G. By Proposition 2.6 N = (x ), where d is the smallest power of x
which lies in N. Now

G/N={gN|geG}={x*N|ae€Z}
and since x®* N = (xN)?* (see Exercise 4 below), it follows that

G/N = (xN) i.e., G/N is cyclic with x N as a generator.

G
By Exercise 5 below, the order of x N in G/N equals d. By Proposition 2.5, d = :_I\T'l
In summary,

quotient groups of a cyclic group are cyclic

and the image of a generator g for G is a generator g for the quotient. If in addition G
G

is a finite cyclic group and N < G, then |G/N| = % gives a formula for the order

of the quotient group.

(@) If N < Z(G), then N < G because forall g € Gandalln € N, gng" =ne€eN,
generalizing the previous example (where the center Z(G) is all of G). Thus, in
particular, Z(G) < G. The subgroup ( —1) of Qg was previously seen to be the kernel
of a homomorphism but since ( —1) = Z(Qg) we obtain normality of this subgroup
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now in another fashion. We already saw that Qg/(—1) = V4. The discussion for
Dg in the next paragraph could be applied equally well to Qg to give an independent
identification of the isomorphism type of the quotient.

Let G = Dg and let Z = (r?) = Z(Ds). Since Z = {1, r2}, each coset, gZ,
consists of the two element set {g, gr?}. Since these cosets partition the 8 elements of
Dy into pairs, there must be 4 (disjoint) left cosets of Z in Dg:

1=12Z, r=rZ, 5=sZ, and 7s=rsZ.

Now by the classification of groups of order 4 (Exercise 10, Section2.5) we know that
Dg/Z(Dg) = Z4 or V4. To determine which of these two is correct (i.e., determine
the isomorphism type of the quotient) simply observe that

#?=r2z=1Z=1
()il =s22=1Z=1
) =@s)?z=1Z2=1

so every nonidentity element in Dg/Z has order 2. In particular there is no element
of order 4 in the quotient, hence Dg/Z is not cyclic so Dg/Z(Dg) = V4.

EXERCISES

Let G and H be groups.

1.

Sec.

Lety : G » H beahomomorphism andlet E be asubgroupof H. Prove that:p‘l (E) <G
(i-e., the preimage or pullback of a subgroup under a homomorphism is a subgroup). If
E < H prove that ¢~ 1(E) < G. Deduce that kerp < G.

. Let ¢ : G — H be a homomorphism of groups with kernel K and let a, b € ¢(G).

Let X € G/K be the fiber above a and let Y be the fiber above b, ie., X = (p;l(a),

Y = gp_l (b). Fix an element u of X (so ¢(u) = a). Prove that if XY = Z in the quotient

group G/K and w is any member of Z, thenthere is some v € Y such that uv = w. [Show
-1

uweYl

. Let A be an abelian group and let B be a subgroup of A. Prove that A/B is abelian. Give

an example of a non-abelian group G containing a proper normal subgroup N such that
G/N is abelian.

. Prove that in the quotient group G/N, (gN)* = g*N foralla € Z.
. Use the preceding exercise to prove that the order of the element gN in G/N is n, where

n is the smallest positive integer such that g” € N (and gN has infinite order if no such
positive integer exists). Give an example to show that the order of gN in G/N may be
strictly smaller than the order of g in G.

. Define ¢ : R* — {£1} by letting ¢(x) be x divided by the absolute value of x. Describe

the fibers of ¢ and prove that ¢ is a homomorphism.

. Define 7 : R > R by m((x,y)) = x + y. Prove that 7 is a surjective homomorphism

and describe the kernel and fibers of 7 geometrically.

. Let ¢ : R* — R* be the map sending x to the absolute value of x. Prove that ¢ is a

homomorphism and find the image of ¢. Describe the kernel and the fibers of .

. Define ¢ : C* — R* by g(a + bi) = a? + b?. Prove that ¢ is a homomorphism and find

the image of ¢. Describe the kernel and the fibers of ¢ geometrically (as subsets of the
plane).
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10. Let ¢ : Z/8Z — Z/4Z by ¢(a) = a. Show that this is a well defined, surjective
homomorphism and describe its fibers and kernel explicitly (showing that ¢ is well defined
involves the fact that a has a different meaning in the domain and range of ¢).

a
0

(a) Prove that the map ¢ : (g

F* (recall that F* is the multiplicative group of nonzero elements in F). Describe
the fibers and kernel of ¢.

(b) Prove that the map ¢ : (

11 Let F be afieldandlet G = {( ’C’) la,b,ceF, ac # 0} < GLa(F).

b) > a is a surjective homomorphism from G onto
(o

g l:)  (a, ¢) is a surjective homomorphism from G

onto F* x F*. Describe the fibers and kernel of .
(¢) LetH = {( (1) 117) | b € F}. Prove that H is isomorphic to the additive group F.

12. Let G be the additive group of real numbers, let H be the multiplicative group of complex
numbsers of absolute value 1 (the unit circle S! in the complex plane) andlet ¢ : G — H
be the homomorphism ¢ : r + €#*7. Draw the points on a real line which lie in the
kernel of ¢. Describe similarly the elements in the fibers of ¢ above the points —1, i, and
&*mi/3 of H. (Figure 1 of the text for this homomorphism ¢ is usually depicted using the
following diagram.)

H=5 Fig. 5

13. Repeat the preceding exercise with the map ¢ replaced by the map ¢ : r > %77,

14. Consider the additive quotient group Q/Z.
(a) Show that every coset of Z in QQ contains exactly one representative ¢ € Q in the
range0 <g < 1.
(b) Show that every element of Q/Z has finite order but that there are elements of arbi-
trarily large order.
(c) Show that Q/Z is the torsion subgroup of R/Z (cf. Exercise 6, Section 2.1).
(d) Prove that Q/Z is isomorphic to the multiplicative group of root of unity in C*.

15. Prove that a quotient of a divisible abelian group by any proper subgroup is also divisible.
Deduce that Q/Z is divisible (cf. Exercise 19, Section 2.4).

16. Let G be a group, let N be a normal subgroup of G and let G = G/N. Prove that if
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G = (x,y) then G = (X,y). Prove more generally that if G = (S ) for any subset S of
G, then G = (S§).

17. Let G be the dihedral group of order 16 (whose lattice appears in Section 2.5):
G=(rs |r8=s2= 1, rs=sr‘1)

andlet G = G/(r*) be the quotient of G by the subgroup generated by r4 (this subgroup

is the center of G, hence is normal).

(a) Show that the order of G is 8.

(b) Exhibit each element of G in the form 527?, for some integers a and b.

(c) Find the order of each of the elements of G exhibited in (b).

(d) Write each of the following elements of G in the form 57, for some integers a and
basin(b): 7s, sr—2s, s~lr-lsr.

(e) Prove that H = (5, 72) is a normal subgroup of G and H is isomorphic to the Klein
4-group. Describe the isomorphism type of the complete preimage of H in G.

(f) Find the center of G and describe the isomorphism type of G/Z(G).

18. Let G be the quasidihedral group of order 16 (whose lattice was computed in Exercise 11
of Section 2.5):

G:(o,tlosztzzl, U‘t=‘to3)

andlet G = G/( 0*) be the quotient of G by the subgroup generated by o (this subgroup
is the center of G, hence is normal).
(a) Show that the order of G is 8.
(b) Exhibit each element of G in the form 797, for some integers a and b.
(c) Find the order of each of the elements of G exhibited in (b).
(d) Write each of the following elements of G inthe form T¢5?, for some integers a and
basin(b): o1, 1021, tlo-lro.
(e) Prove that G = Dg.
19. Let G be the modular group of order 16 (whose lattice was computed in Exercise 14 of
Section 2.5):

G=(u,v|?=v8=1, u=u’)

and let G = G/(v*) be the quotient of G by the subgroup generated by v* (this subgroup

is contained in the center of G, hence is normal).

(a) Show that the order of G is 8.

(b) Exhibit each element of G in the form #°w?, for some integers a and b.

(c) Find the order of each of the elements of G exhibited in (b).

(d) Write each of the following elements of G in the form #*%?, for some integers a and
basin(b): wm, wv—2u, wulv-luv.

(e) Prove that G is abelian and is isomorphic to Z; x Z4.

20. Let G = Z/24Z and let G = G/(12), where for each integer a we simplify notation by
writingaasa. _
(a) Showthat G ={0,1,...,11}. _
(b) Find the order of each element of G.
(c) Prove that G = Z/127Z. (Thus (Z/24Z) / (12Z/24Z) = Z/12Z, just as if we inverted
and cancelled the 247’s.)

21. Let G = Z4 x Z4 be given in terms of the following generators and relations:

G=(x,y|x4=y4=1, Xy =yx).
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22.

23.

24,
25.

26.

27.

28.

29.

30.
31

32.

33.

88

Let G = G/(x2y?) (note that every subgroup of the abelian group G is normal).

(a) Show thatthe order of G is 8.

(b) Exhibit each element of G in the form x?y?, for some integers a and b.

(c) Find the order of each of the elements of G exhibitedin (b).

(d) Prove that G = Z4 x Z;.

(a) Prove that if H and K are normal subgroups of a group G then their intersection
H N K is also a normal subgroup of G.

(b) Prove that the intersection of an arbitrary nonempty collection of normal subgroups
of a group is a normal subgroup (do not assume the collection is countable).

Prove that the join (cf. Section 2.5) of any nonempty collection of normal subgroups of a
group is a normal subgroup.

Prove that if N < G and H is any subgroupof Gthen NN H < H.

(a) Prove that a subgroup N of G is normal if and only if gNg~! € Nforall g € G.

(b) Let G = GL2(Q), let N be the subgroup of upper triangular matrices with integer
entries and 1’s on the diagonal, and let g be the diagonal matrix with entries 2,1. Show
that gNg~! C N but g does not normalize N.

Leta,b e G.

(a) Prove that the conjugate of the product of a and b is the product of the conjugate of
a and the conjugate of b. Prove that the order of a and the order of any conjugate of
a are the same.

(b) Prove that the conjugate of a~! is the inverse of the conjugate of a.

(c) Let N = (S) for some subset S of G. Prove that N < G if gSg~! € N forallg € G.

(d) Deduce thatif N is the cyclic group ( x ), then N is normal in G if and only if for each
g € G, gxg! = x* forsome k € Z.

(e) Let n be a positive integer. Prove that the subgroup N of G generated by all the
elements of G of order n is a normal subgroup of G.

Let N be afinite subgroup of agroup G. Show that gNg~! € NifandonlyifgNg~! = N.
Deduce that Ng(N) = {g € G | gNg~! € N}.

Let N be a finite subgroup of a group G and assume N = (§) for some subset S of G.
Prove that an element g € G normalizes N if and only if gSg~!1 € N.

Let N be a finite subgroup of G and suppose G = (T ) and N = (S for some subsets S
and T of G. Prove that N is normal in G if and only if £S~! € N forallt € T.

Let N < G andlet g € G. Prove that gN = Ngifand onlyif g € Ng(N).

Prove that if H < G and N is a normal subgroup of H then H < Ng(N). Deduce that
Ng(N) is the largest subgroup of G in which N is normal (i.e., is the join of all subgroups
H for which N < H).

Prove that every subgroup of Qg is normal. For each subgroup find the isomorphism type
of its corresponding quotient. [You may use the lattice of subgroups for Qg in Section
251]

Find all normal subgroups of Dg and for each of these find the isomorphism type of its
corresponding quotient. [You may use the lattice of subgroups for Dg in Section 2.5.]

.Let Dy, = (r,s | r" =52 =1, rs = sr~!) be the usual presentation of the dihedral

group of order 2n and let k be a positive integer dividing n.
(a) Prove that (r* ) is a normal subgroup of D,,,.
(b) Prove that D5,/ (rk) = Dy
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35. Prove that SL,(F) < GL,(F) and describe the isomorphism type of the quotient group
(cf. Exercise 9,Section 2.1).

36. Prove that if G/Z(G) is cyclic then G is abelian. [If G/Z(G) is cyclic with generator
xZ(G), show that every element of G can be written in the form x“z for some integer
a € Z and some element z € Z(G).]

37. Let A and B be groups. Show that {(a, 1) | a € A} is a normal subgroup of A x B and the
quotient of A x B by this subgroup is isomorphic to B.

38. Let Abeanabelian group and let D bethe (diagonal) subgroup {(a,a) | a € A}of A x A.
Prove that D is a normal subgroupof A x A and (A x A)/D = A.

39. Suppose A is the non-abelian group S3 and D is the diagonal subgroup
{(a,a) | a € A} of A x A. Prove that D is not normalin A x A.

40. Let G be a group, let N be a normal subgroup of G and let G = G/N. Prove that X and
y commute in G if and only if x~1y~lxy € N. (The element x~'y~lxy is called the
commutator of x and y and is denoted by [x, y].)

41. Let G bea group. Prove that N = (x "'y~ lxy | x, y € G) is a normal subgroup of G and
G/N is abelian (N is called the commutator subgroup of G).

Assume both H and K are normal subgroups of G with H N K = 1. Prove that xy = yx
forallx € H and y € K. [Show x 1y~ lxy e HNK.]

43. Assume P = {A; | i € I} is any partition of G with the property that P is a group under
the “quotient operation” defined as follows: to compute the product of A; with A; take any
element g; of A; and any element a; of Aj and let A; A; be the element of P containing g;a i
(this operation is assumed to be well defined). Prove that the element of P that contains
the identity of G is a normal subgroup of G and the elements of P are the cosets of this
subgroup (so P is just a quotient group of G in the usual sense).

42

3.2 MORE ON COSETS AND LAGRANGE’S THEOREM

In this section we continue the study of quotient groups. Since for finite groups one
of the most important invariants of a group is its order we first prove that the order of

a quotient group of a finite group can be readily computed: |G/N| = % In fact
we derive this as a consequence of a more general result, Lagrange’s Theorem (see
Exercise 19, Section 1.7). This theorem is one of the most important combinatorial
results in finite group theory and will be used repeatedly. After indicating some easy
consequences of Lagrange’s Theorem we study more subtle questions concerning cosets
of non-normal subgroups.

The proof of Lagrange’s Theorem is straightforward and important. It is the same
line of reasoning we used in Example 3 of the preceding section to compute | Dg/ Z (Dg)|.

Theorem 8. (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G,
then the order of H divides the orderof G (i.e., | H| | |G]) and the number of left cosets
G
of H in G equals l——l
|H|

Proof: Let |H| = n and let the number of left cosets of H in G equal k. By
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Proposition 4 the set of left cosets of H in G partition G. By definition of a left coset
the map:
H—> gH defined by hw— gh

is a surjection from H to the left coset g H. The left cancellation law implies this map
is injective since gh; = gh, implies hy = h,. This proves that H and g H have the
same order:

lgH| = |H| = n. ‘
Since G is partitioned into k disjoint subsets each o f which has cardinality n, |G| = kn.
G G
Thus k = 16l = I—l completing the proof.
n  |H|

Definition. If G is a group (possibly infinite) and H < G, the number of left cosets
of H in G is called the index of H in G and is denoted by |G : H|.

Gl

In the case of finite groups the index of H in G is llﬁl For G an infinite group

|G|

the quotient TH does not make sense. Infinite groups may have subgroups of finite

or infinite index (e.g., {0} is of infinite index in Z and (n ) is of index » in Z for every
n > 0).
We now derive some easy consequences of Lagrange’s Theorem.

Corollary 9. If G is a finite group and x € G, then the order of x divides the order of
G. In particular x'°! = 1forall x in G.

Proof: By Proposition 2.2, |x| = |{x )|. The first part of the corollary follows from
Lagrange’s Theorem applied to H = { x ). The second statement is clear since now |G|
is a multiple of the order of x.

Corollary 10. If G is a group of prime order p, then G is cyclic, hence G = Z,,.

Proof: Letx € G, x # 1. Thus |(x)] > 1 and |(x )| divides |G|. Since |G|
is prime we must have |{x )| = |G|, hence G = (x ) is cyclic (with any nonidentity
element x as generator). Theorem 2.4 completes the proof.

With Lagrange’s Theorem in hand we examine some additional examples of normal
subgroups.

Examples
(M) Let H=((123)) < S3andlet G = S3. Weshow H < S3. As noted in Section 2.2,

H < Ng(H) < G.

By Lagrange’s Theorem, the order of H divides the order of Ng(H) and the order
of Ng(H) divides the order of G. Since G has order 6 and H has order 3, the only
possibilities for Ng(H) are H or G. A direct computation gives

12)(123)(12)=(132)=(123)"L
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Since (1 2) = (12)~1, this calculation shows that (1 2) conjugates a generator of H to
another generator of H. By Exercise 24 of Section 2.3 this is sufficient to prove that
(12) € Ng(H). Thus Ng(H) # H so Ng(H) = G, i.e., H < S3, as claimed. This
argument illustrates that checking normality of a subgroup can often be reduced to a
small number of calculations. A generalization of this example is given in the next
example.

(2) Let G be any group containing a subgroup H of index 2. We prove H < G. Let
g € G — H so, by hypothesis, the two left cosets of H in G are 1H and gH. Since
1H = H and the cosets partition G, we must have gH = G — H. Now the two right
cosets of H in G are H1 and Hg. Since H1 = H, we again must have Hg = G — H.
Combining these gives gH = Hg, so every left coset of H in G is a right coset. By
Theorem 6, H < G. By definition of index, |G/H| = 2, so that G/H = Z;. One
must be careful to appreciate that the reason H is normal in this case is not because we
can choose the same coset representatives 1 and g for both the left and right cosets of
H but that there is a type of pigeon-hole principle at work: since 1H = H = H1 for
any subgroup H of any group G, the index assumption forces the remaining elements
to comprise the remaining coset (either left or right). We shall see that this result is
itself a special case of a result we shall prove in the next chapter.

Note that this result proves that (i), (j) and (k) are normal subgroups of Qg
and that (s, r2), (r) and (sr, r?) are normal subgroups of Dg.

(3) The property “is a normal subgroup of™ is not transitive. For example,

(s)<(s,r?) < Dy

(each subgroup is of index 2 in the next), however, (s ) is not normal in Dg because
rsrl =sr? & (s).

We now examine some examples of non-normal subgroups. Although in abelian
groups every subgroup is normal, this is not the case in non-abelian groups (in some
sense Qg is the unique exception to this). In fact, there are groups G in which the
only normal subgroups are the trivial ones: 1 and G. Such groups are called simple
groups (simple does not mean easy, however). Simple groups play an important role
in the study of general groups and this role will be described in Section 4. For now
we emphasize that not every subgroup of a group G is normal in G; indeed, normal
subgroups may be quite rare in G. The search for normal subgroups of a given group
is in general a highly nontrivial problem.

Examples
(1) Let H = ((12)) < S3. Since H is of prime index 3 in S3, by Lagrange’s Theorem
the only possibilities for Ng, (H) are H or S3. Direct computation shows
131203 '=13)1213)=23)¢H
so Ng,(H) # 83, that is, H is not a normal subgroup of $3. One can also see this by
considering the left and right cosets of H; for instance
(1 3)H ={(13),(123)} and H(13)={(13).(132)}.
Since the left coset (1 3)H is the unique left coset of H containing (1 3), the right

coset H(1 3) cannot be a left coset (see also Exercise 6). Note also that the “group
operation” on the left cosets of H in S3 defined by multiplying representatives is not
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even well defined. Forexample, consider the product of the two left cosets 1 H and (1 3) H.
The elements 1 and (1 2) are both representatives for the coset 1H, yet 1 - (1 3) = (1 3)
and (1 2) - (1 3) = (1 3 2) are not both elements of the same left coset as they should be if
the product of these cosets were independent of the particular representatives chosen. This
is an example of Theorem 6 which states that the cosets of a subgroup form a group only
when the subgroup is a normal subgroup.

(2) Let G =S, forsome n € Zt and fix some i € {1,2,...,n}. Asin Section 2.2 let

Gi={oceGlo()=i)

be the stabilizer of the point i. Suppose r € G and t(i) = j. It follows directly
from the definition of G; that forall o € G;, to(i) = j. Furthermore, if 4 € G and
w(i) = j, then t=u(i) =i, thatis, t"lu € G;, so u € tG;. This proves that

1G; = {u € G | n(i) = j},

i.e., the left coset TG; consists of the permutations in S,, which take i to j. We can
clearly see that distinct left cosets have empty intersection and that the number of
distinct left cosets equals the number of distinct images of the integer i under the
action of G, namely there are n distinct left cosets. Thus |G : G;|] = n. Using the
same notation let k = ~1(i), so that t(k) = i. By similar reasoning we see that

Git={r e G| Ak) =i},

i.e.,theright coset G; t consists of the permutations in S, whichtakek toi. If n > 2, for
some nonidentity element T we have t G; # G, since there are certainly permutations
which take i to j but do not take k to i. Thus G; is not a normal subgroup. In fact
NG(Gi) = G; by Exercise 30 of Section 1, so G; is in some sense far from being
normal in S,,. This example generalizes the preceding one.

(3) In Dg the only subgroup of order 2 which is normal is the center (r?).

We shall see many more examples of non-normal subgroups as we develop the
theory.

The full converse to Lagrange’s Theorem is not true: namely, if G is a finite group
and n divides |G|, then G need not have a subgroup of order n. For example, let A be the
group of symmetries of a regular tetrahedron. By Exercise 9 of Section 1.2, |A| = 12.

Suppose A had a subgroup H of order 6. Since lHﬂ = 2, H would be of index 2 in
A,hence H < A and A/H = Z,. Since the quotient group has order 2, the square of
every element in the quotient is the identity, so for all g € A, (gH)? = 1H, that s, for
all g € A, g% € H. If g is an element of A of order 3, we obtain g = (g%)?> € H, that
is, H must contain all elements of A of order 3. This is a contradiction since |H| = 6
but one can easily exhibit 8 rotations of a tetrahedron of order 3.

There are some partial converses to Lagrange’s Theorem. For finite abelian groups
the full converse of Lagrange is true, namely an abelian group has a subgroup of order
n foreach divisor n of |G| (in fact, this holds under weaker assumptions than “abelian”;
we shall see this in Chapter 6). A partial converse which holds for arbitrary finite groups
is the following result:
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Theorem 11. (Cauchy’s Theorem) If G is a finite group and p is a prime dividing |G|,
then G has an element of order p.

Proof: We shall give a proof of this in the next chapter and another elegant proof
is outlined in Exercise 9.
The strongest converse to Lagrange’s Theorem which applies to arbitrary finite

groups is the following:

Theorem 12. (Sylow) If G is a finite group of order p®m, where p is a prime and p
does not divide m, then G has a subgroup of order p®.

We shall prove this theorem in the next chapter and derive more information on the
number of subgroups of order p“.
We conclude this section with some useful results involving cosets.

Definition. Let H and K be subgroups of a group and define
HK ={hk | h € H, k € K}.

Proposition 13. If H and K are finite subgroups of a group then

|HIIK]
IHN K|

|HK| =

Proof: Notice that HK is a union of left cosets of K, namely,

HK = U hK.
heH
Since each coset of K has |K| elements it suffices to find the number of distinct left
cosets of the form hK, h € H. But hy K = hyK for h;,h, € H if and only if
hy'hy € K. Thus

mK=mK < h'mmeHNK & h(HNK)=h(HNK).
Thus the number of distinct cosets of the form A K, for h € H is the number of distinct
cosets h(H N K), for h € H. The latter number, by Lagrange’s Theorem, equals
H H
L Thus H K consists of _a distinct cosets of K (each of which has | K|

|[HNK| |HN K|
elements) which gives the formula above.

Notice that there was no assumption that H K be a subgroup in Proposition 13.
For example, if G = S3, H = ((12)) and K = ((23)), then |H| = |K| = 2 and
|[HNK|=1,s0|HK|=4. By Lagrange’s Theorem H K cannot be a subgroup. As a
consequence, we must have S3 = ((12), (23)).
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Proposition 14. If H and K are subgroups of a group, HK is a subgroup if and only
if HK = KH.

Proof: Assume first that HK = KH and leta,b € HK. We prove ab™' €e HK
so HK is a subgroup by the subgroup criterion. Let

a = hik, and b = hyky,

for some hi,h, € H and ki, k; € K. Thusb~! = k{lhz—l, soab™! = hlklkz'lhz_l.
Letk; = kik,' € K and h3 = h;"'. Thus ab™! = hjkshs. Since HK = K H,

k3hs = hgkg, forsome hg € H, k4 € K.

Thus ab™' = hh4ks, and since h hy € H, k4 € K, we obtainab™! € HK, as desired.

Conversely, assume that H K is a subgroup of G. Since K < HK and H < HK,
by the closure property of subgroups, KH € HK. To show the reverse containment
let hkk € HK. Since HK is assumed to be a subgroup, write hk = a~!, for some
a € HK. If a = hik;, then

hk = (hk) ™' =k7'h7! € K H,

completing the proof.

Note that HK = K H does not imply that the elements of H commute with those
of K (contrary to what the notation may suggest) but rather that every product kk is of
the form k’h’ (h need not be h’ nor k be k') and conversely. For example, if G = D5,
H = (r)and K = (s),then G = HK = KH so that HK is a subgroup and
rs = sr~! so the elements of H do not commute with the elements of K. This is an
example of the following sufficient condition for H K to be a subgroup:

Corollary 15. If H and K are subgroups of G and H < N (K),then HK is asubgroup
of G. In particular, if K < G then HK < G forany H < G.

Proof: We prove HK = KH. Leth € H, k € K. By assumption, hkh™! € K,
hence
hk = (hkh™")h € K H.

This proves HK C K H. Similarly, kh = h(h~'kh) € HK, proving the reverse
containment. The corollary follows now from the preceding proposition.

Definition. If A is any subset of Ng(K) (or Cg(K)), we shall say A normalizes K
(centralizes K, respectively).

With this terminology, Corollary 15 states that H K is a subgroup if H normalizes
K (similarly, H K is a subgroup if K normalizes H).

In some instances one can prove that a finite group is a product of two of its
subgroups by simply using the order formula in Proposition 13. For example, let
G = S4, H = Dg and let K = ((123)), where we consider Dg as a subgroup of
S4 by identifying each symmetry with its permutation on the 4 vertices of a square
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(under some fixed labelling). By Lagrange’s Theorem, H N K = 1 (see Exercise 8).
Proposition 13 then shows |H K| = 24 hence we must have HK = S4. Since HK is
a group, HK = K H. We leave as an exercise the verification that neither H nor K
normalizes the other (so Corollary 15 could not have been used to give HK = K H).

Finally, throughout this chapter we have worked with left cosets of a subgroup.
The same combinatorial results could equally well have been proved using right cosets.
For normal subgroups this is trivial since left and right cosets are the same, but for non-
normal subgroups some left cosets are not right cosets (for any choice of representative)
so some (simple) verifications are necessary. For example, Lagrange’s Theorem gives
that in a finite group G

. . 1G]
the number of right cosets of the subgroup H is m
Thus in a finite group the number of left cosets of H in G equals the number of right
cosets even though the left cosets are not right cosets in general. This is also true for
infinite groups as Exercise 12 below shows. Thus for purely combinatorial purposes
one may use either left or right cosets (but not a mixture when a partition of G is
needed). Our consistent use of left cosets is somewhat arbitrary although it will have
some benefits when we discuss actions on cosets in the next chapter. Readers may
encounter in some works the notation H \ G to denote the set of right cosets of H in G.

In some papers one may also see the notation G/H used to denote the set of left
cosets of H in G even when H is not normal in G (in which case G/H is called the
coset space of left cosets of H in G). We shall not use this notation.

EXERCISES

Let G be a group.

1. Which of the following are permissible orders for subgroups of a group of order 120: 1,
2,5,7,9, 15, 60, 240? For each permissible order give the corresponding index.

Prove that the lattice of subgroups of S3 in Section 2.5 is correct (i.e., prove that it contains
all subgroups of S3 and that their pairwise joins and intersections are correctly drawn).

2

3. Prove that the lattice of subgroups of Qg in Section 2.5 is correct.

4. Show that if |G| = pqg for some primes p and g (not necessarily distinct) then either G is
abelian or Z(G) = 1. [See Exercise 36 in Section 1.]

5. Let H be a subgroup of G and fix some element g € G.

(a) Prove that gHg™! is a subgroup of G of the same order as H.
(b) Deduce thatif n € Z* and H is the unique subgroup of G of order n then H < G.

6. Let H < G andlet g € G. Prove that if the right coset Hg equals some left coset of H in
G then it equals the left coset g H and g must be in NG (H).

7. Let H < G and define arelation ~ on G bya ~ b ifandonlyif b~ la € H. Prove
that ~ is an equivalence relation and describe the equivalence class of each a € G. Use
this to prove Proposition 4.

8. Prove that if H and K are finite subgroups of G whose orders are relatively prime then
HNK =1.
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9.

10.

11.

12.

13.

14.
15.
16.

17.

18.

19.

22

23.

96

This exercise outlines a proof of Cauchy’s Theorem due to James McKay (Another proof
of Cauchy’s group theorem, Amer. Math. Monthly, 66(1959), p. 119). Let G be a finite
group and let p be a prime dividing |G|. Let S denote the set of p-tuples of elements of
G the product of whose coordinates is 1:

S ={(x1,x2,...,xp) | xi € Gand x1x; ceexp = 1)
(a) Show that S has |G|P~! elements, hence has order divisible by p.

Define the relation ~ on S by letting @ ~ 8 if 8 is a cyclic permutation of .

(b) Show that a cyclic permutation of an element of S is again an element of S.

(c) Prove that ~ is an equivalence relation on S.

(d) Prove that an equivalence class contains a single element if and only if it is of the
form (x, x, ..., x) with x? = 1.

(e) Prove thatevery equivalence class has order 1 or p (this uses the factthat p is a prime).
Deduce that |G|P~! = k + pd, where k is the number of classes of size 1 and d is the
number of classes of size p.

(f) Since {(1, 1, ..., 1)} is an equivalence class of size 1, conclude from (e) that there
must be a nonidentity element x in G with x? = 1, i.e., G contains an element of
order p. [Show p | k andso k > 1.]

Suppose H and K are subgroups of finite index in the (possibly infinite) group G with
|G : Hl=mand |G : K| = n. Prove that l.c.m.(m,n) < |G : HN K| < mn. Deduce
that if m and n are relatively prime then |G : HNK|= |G : H|-|G : K|.

Let H < K <G. Provethat |G: H| = |G : K|-|K : H| (donot assume G is finite).
Let H < G. Prove that the map x > x~! sends each left coset of H in G onto a right
coset of H and gives a bijection between the set of left cosets and the set of right cosets of
H in G (hence the number of left cosets of H in G equals the number of right cosets).

Fix any labelling of the vertices of a square and use this to identify Dg as a subgroup of
S4. Prove that the elements of Dg and ( (12 3) ) do not commute in S4.

Prove that S4 does not have a normal subgroup of order 8 or a normal subgroup of order 3.
Let G=S, andforfixedi € {1.2, ..., n}let G; bethe stabilizer of i. Prove thatG; = S,,_;.
Use Lagrange’s Theorem in the multiplicative group (Z/pZ)* to prove Fermat’s Little
Theorem: if p is a prime then aP? = a(mod p) forall a € Z

Let p be a prime and let n be a positive integer. Find the order of p in (Z/(p"—1)Z)* and
deduce that n | @(p" — 1) (here ¢ is Euler’s function).

Let G be a finite group, let H be a subgroup of G and let N < G. Prove that if |H| and
|G : N] arerelatively prime then H < N.

Prove that if N is a normal subgroup of the finite group G and (|N|, |G : N|) = 1then N
is the unique subgroup of G of order |N|.

. If A is an abelian group with A < G and B is any subgroup of G prove that AN B < AB.
21.

Prove that @Q has no proper subgroups of finite index. Deduce that Q/Z has no proper
subgroups of finite index. [Recall Exercise 21, Section 1.6 and Exercise 15, Section 1.]

Use Lagrange’s Theorem in the multiplicative group (Z/nZ)* to prove Euler’s Theorem:
a®™ = 1modn for every integer a relatively prime to n, where ¢ denotes Euler’s ¢-
function.

3100

Determine the last two digits of 33", [Determine mod ¢(100) and use the previous

exercise.]
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3.3 THE ISOMORPHISM THEOREMS

In this section we derive some straightforward consequences of the relations between
quotient groups and homomorphisms which were discussed in Section 1. In particular
we consider the relation between the lattice of subgroups of a quotient group, G/N,
and the lattice of subgroups of the group G. The first result restates our observations in
Section 1 on the relation of the image of a homomorphism to the quotient by the kernel
(sometimes called the Fundamental Theorem of Homomorphisms):

Theorem 16. (The First Isomorphism Theorem) If ¢ : G — H is a homomorphism of
groups, then ker ¢ < G and G/ ker ¢ = ¢(G).

Corollary 17. Let ¢ : G — H be a homomorphism of groups.
(1) ¢ isinjective if and only if ker ¢ = 1.
) |G : kerg| = [p(G)|.

Proof: Exercise.

When we consider abstract vector spaces we shall see that Corollary 17(2) gives
a formula possibly already familiar from the theory of linear transformations: if
¢ : V — W isalinear transformation of vector spaces, then dim V = rank ¢+ nullity ¢.

Theorem 18. (The Second or Diamond Isomorphism Theorem) Let G be a group, let
A and B be subgroups of G and assume A < Ng(B). Then AB is a subgroup of G,
B<JAB,ANB < Aand AB/B= A/ANB.

Proof: By Corollary 15, AB is a subgroup of G. Since A < Ng(B) by assumption
and B < Ng(B) trivially, it follows that AB < Ng(B), i.e., B is a normal subgroup of
the subgroup AB.

Since B isnormalin A B, the quotient group AB/ B is well defined. Define the map
¢ : A —> AB/B by ¢(a) = aB. Since the group operation in AB/B is well defined it
is easy to see that ¢ is a homomorphism:

¢(a1az) = (@a)B = a1B - a B = ¢(a1)p(ay).

Alternatively, the map ¢ is just the restriction to the subgroup A of the natural projection
homomorphism 7 : AB — AB/B, so is also a homomorphism. It is clear from the
definition of AB that ¢ is surjective. The identity in AB/ B is the coset 1B, so the kernel
of ¢ consists of the elements a € A with aB = 1B, which by Proposition 4 are the
elements a € B, i.e., ker ¢ = A N B. By the First Isomorphism Theorem, AN B < A
and A/AN B = AB/B, completing the proof.

Note that this gives a new proof of the order formula in Proposition 13 in the special
case that A < Ng(B). The reason this theorem is called the Diamond Isomorphism is
because of the portion of the lattice of subgroups of G involved (see Figure 6). The
markings in the lattice lines indicate which quotients are isomorphic. The “quotient”
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AB /A need not be a group (i.e., A need not be normal in AB), however we still have
|[AB : A|=|B : AN B).

Fig. 6

The third Isomorphism Theorem considers the question of taking quotient groups
of quotient groups.

Theorem 19. (The Third Isomorphism Theorem) Let G be a group and let H and K be
normal subgroups of G with H < K. Then K/H < G/H and
(G/H)/(K/H) = G/K.
If we denote the quotient by H with a bar, this can be written
G/K = G/K.

Proof: We leave as an easy exercise the verification that K/H < G/H. Define
¢:G/H—> G/K
(gH) — gK.
To show ¢ is well defined suppose g H = g, H. Then g, = g2h, for some h € H.
Because H < K, the element 4 is also an element of K, hence g, K = gK i.e,

¢(g1H) = ¢(g2H), which shows ¢ is well defined. Since g may be chosen arbitrarily
in G, ¢ is a surjective homomorphism. Finally,

kero = {gH € G/H | ¢(gH) = 1K)
={gH € G/H | gK = 1K}
={gHeG/H|ge K} =K/H.
By the First Isomorphism Theorem, (G/H)/(K/H) = G/K.

An easy aid for remembering the Third Isomorphism Theorem is: “invert and
cancel” (as one would for fractions). This theorem shows that we gain no new structural
information from taking quotients of a quotient group.

The final isomorphism theorem describes the relation between the lattice of sub-
groups of the quotient group G/N and the lattice of subgroups of G. The lattice for
G/ N can be read immediately from the lattice for G by collapsing the group N to the
identity. More precisely, there is a one-to-one correspondence between the subgroups
of G containing N and the subgroups of G/N, so that the lattice for G/N (or rather,
an isomorphic copy) appears in the lattice for G as the collection of subgroups of G
between N and G. In particular, the lattice for G/ N appears at the “top” of the lattice
for G, aresult we mentioned at the beginning of the chapter.
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Theorem 20. (The Fourth or Lattice Isomorphism Theorem) Let G be a group and let
N be a normal subgroup of G. Then there is a bijection from the set of subgroups A of
G which contain N onto the set of subgroups A = A/N of G/N. In particular, every
subgroup of G is of the form A/N for some subgroup A of G containing N (namely,
its preimage in G under the natural projection homomorphism from G to G/N). This
bijection has the following properties: forall A, B < GwithN < Aand N < B,

(1) A < Bifandonlyif A < B,

(2) if A < B,then |B: Al = |B : A|,

3 (A,B)= (A, B),

@4 ANB=ANB, and

(5) A< Gifandonlyif A <G.

Proof: The complete preimage of a subgroup in G/N is a subgroup of G by
Exercise 1 of Section 1. The numerous details of the theorem to check are all completely
straightforward. We therefore leave the proof of this theorem to the exercises.

Examples

(1) Let G = Qg and let N be the normal subgroup ( —1). The (isomorphic copy of the)
lattice of G/N consists of the double lines in the lattice of G below. Note that we
previously proved that Qg/(—1) = Vj and the two lattices do indeed coincide (see
Section 2.5 for the lattices of Qg and V;).

7N
N
|

(2) The same process gives us the lattice of Dg/ (r2) (the double lines) in the lattice of
Dg:
Dg
(s,72) () (rs,r?)

ZINLZ TN

(s) (r¥sy (r?)  (rs) (r%s)

Note that in the second example above there are subgroups of G which do not
directly correspond to subgroups in the quotient group G/N, namely the subgroups
of G which do not contain the normal subgroup N. This is because the subgroup
N projects to a point in G/N and so several subgroups of G can project to the same
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subgroup in the quotient. The image of the subgroup H of G under the natural projection
homomorphism from G to G/N is the same as the image of the subgroup HN of G,
and the subgroup HN of G contains N. Conversely, the preimage of a subgroup H of
G/ N contains N and is the unique subgroup of G containing N whose image in G/N
is H. It is the subgroups of G containing N which appear explicitly in the lattice for
G/N.

The two lattices of groups of order 8 above emphasize the fact that the isomorphism
type of a group cannot in general be determined from the knowledge of the isomorphism
types of G/N and N, since Qg/{—1) = Dg/(rz) and (—1) = (r?) yet Qg and Dg
are not isomorphic. We shall discuss this question further in the next section.

We shall often indicate the index of one subgroup in another in the lattice of sub-
groups, as follows:

A
| n

B
where the integer n equals |A : B|. For example, all the unbroken edges in the lattices
of Qg and Dg would be labelled with 2. Thus the order of any subgroup, A4, is the
product of all integers which label any path upward from the identity to A. Also, by
Theorem 20(2) these indices remain unchanged in quotients of G by normal subgroups
of G contained in B, i.e., the portion of the lattice for G corresponding to the lattice of
the quotient group has the correct indices for the quotient as well.

Finally we include a remark concerning the definition of homomorphisms on quo-
tient groups. We have, in the course of the proof of the isomorphism theorems, encoun-
tered situations where a homomorphism ¢ on the quotient group G/N is specified by
giving the value of ¢ on the coset gN in terms of the representative g alone. In each
instance we then had to prove ¢ was well defined, i.e., was independent of the choice
of g. In effect we are defining ahomomorphism, @, on G itself by specifying the value
of ¢ at g. Then independence of g is equivalent to requiring that @ be trivial on N, so
that

¢ is well defined on G/ N if and only if N < ker ®.

This gives a simple criterion for defining homomorphisms on quotients (namely, define
a homomorphism on G and check that N is contained in its kernel). In this situation we
shall say the homomorphism @ factors through N and ¢ is the induced homomorphism
on G/N. This can be denoted pictorially as in Figure 7, where the diagram indicates
that @ = g om, i.e., the image in H of an element in G does not depend on which path
one takes in the diagram. If this is the case, then the diagram is said to commute.

G—= > G/N
@

xl
H Fig. 7

At this point we have developed all the background material so that Section 6.3 on
free groups and presentations may now be read.
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EXERCISES

Let G be a group.
L

2.
3.

8

Let F be a finite field of order g and letn € Z*. Prove that |GL, (F) : SL,(F)| =q—1.
[See Exercise 35, Section 1.]

Prove all parts of the Lattice Isomorphism Theorem.

Prove that if H is a normal subgroup of G of prime index p then forall K < G either

() K<Hor

(ii) G=HK and |K: KN H| = p.

Let C be a normal subgroup of the group A and let D be a normal subgroup of the group
B. Prove that (C x D) < (A x B) and (A x B)/(C x D) = (A/C) x (B/D).

. Let QD16 = (o, t) be the quasidihedral group described in Exercise 11 of Section 2.5.

Prove that (o) is normal in QD;6 and use the Lattice Isomorphism Theorem to draw the
lattice of subgroups of QDje/(c*). Which group of order 8 has the same lattice as this
quotient? Use generators and relations for QDje/(c*) to decide the isomorphism type
of this group.

Let M = (v, u) be the modular group of order 16 described in Exercise 14 of Section
2.5. Prove that (v*) is normal in M and use the Lattice Isomorphism Theorem to draw
the lattice of subgroups of M/(v*). Which group of order 8 has the same lattice as this
quotient? Use generators and relations for M/( v*) to decide the isomorphism type of this

group.

. Let M and N be normal subgroups of G such that G = M N. Prove that

b

G/(M N N) = (G/M) x (G/N). [Draw the lattice.]

Let p be a prime and let G be the group of p-power roots of 1 in C (cf. Exercise 18,
Section 2.4). Prove that the map z — z? is a surjective homomorphism. Deduce that G
is isomorphic to a proper quotient of itself.

. Let p be a prime and let G be a group of order p?m, where p does not divide m. Assume

10.

P is a subgroup of G of order p? and N is a normal subgroup of G of order p’n, where
p does not divide n. Prove that [P N N| = p? and |PN/N| = p*~*. (The subgroup P
of G is called a Sylow p-subgroup of G. This exercise shows that the intersection of any
Sylow p-subgroup of G with a normal subgroup N is a Sylow p-subgroup of N.)

Generalize the preceding exercise as follows. A subgroup H of a finite group G is called
a Hall subgroup of G if its index in G isrelatively prime to its order: (|G : H|, |H|) = 1.
Prove that if H is a Hall subgroup of G and N < G, then H N N is a Hall subgroup of N
and HN /N is a Hall subgroup of G/N.

3.4 COMPOSITION SERIES AND THE HOLDER PROGRAM

The remarks in the preceding section on lattices leave us with the intuitive picture that
aquotient group G/ N is the group whose structure (e.g., lattice) describes the structure
of G “above” the normal subgroup N. Although this is somewhat vague, it gives at least
some notion of the driving force behind one of the most powerful techniques in finite
group theory (and even some branches of infinite group theory): the use of induction. In
many instances the application of an inductive procedure follows a pattern similar to the
following proof of a special case of Cauchy’s Theorem. Although Cauchy’s Theorem is
valid for arbitrary groups (cf. Exercise 9 of Section 2), the following is a good example
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of the use of information on anormal subgroup N and on the quotient G/ N to determine
information about G, and we shall need this particular result in Chapter 4.

Proposition 21. If G is a finite abelian group and p is a prime dividing |G|, then G
contains an element of order p.

Proof: The proof proceeds by induction on |G|, namely, we assume the result
is valid for every group whose order is strictly smaller than the order of G and then
prove the result valid for G (this is sometimes referred to as complete induction). Since
|G| > 1, there is an element x € G with x # 1. If |G| = p then x has order p by
Lagrange’s Theorem and we are done. We may therefore assume |G| > p.

Suppose p divides |x| and write |x| = pn. By Proposition 2.5(3), |x"| = p, and
again we have an element of order p. We may therefore assume p does not divide |x|.

Let N = (x). Since G is abelian, N < G. By Lagrange’s Theorem, |G/N| = :—167:
andsince N # 1, |G/N| < |G]|. Since p does not divide | N |, we must have p | |G/N]|.
We can now apply the induction assumption to the smaller group G/N to conclude it
contains anelement, y = yN, of order p. Sincey ¢ N (y # 1) but y» € N (y* = 1),
we must have (y”) # (y), thatis, |y?| < |y|. Proposition 2.5(2) implies p | |y]. We
are now in the situation described in the preceding paragraph, so that argument again
produces an element of order p. The induction is complete.

The philosophy behind this method of proof is that if we have a sufficient amount of
information about some normal subgroup, N, of a group G and sufficient information
on G/ N, then somehow we can piece this information together to force G itself to have
some desired property. The induction comes into play because both N and G/N have
smaller order than G. In general, just how much data are required is a delicate matter
since, as we have already seen, the full isomorphism type of G cannot be determined
from the isomorphism types of N and G/N alone.

Clearly a basic obstruction to this approach is the necessity of producing a normal
subgroup, N, of G with N # 1 or G. In the preceding argument this was easy since
G was abelian. Groups with no nontrivial proper normal subgroups are fundamental
obstructions to this method of proof.

Definition. A (finite or infinite) group G is called simple if |G| > 1 and the only
normal subgroups of G are 1 and G.

By Lagrange’s Theoremif |G| is a prime, its only subgroups (let alone normal ones)
are 1 and G, so G is simple. In fact, every abelian simple group is isomorphic to Z,,,
for some prime p (cf. Exercise 1). There are non-abelian simple groups (of both finite
and infinite order), the smallest of which has order 60 (we shall introduce this group as
amember of an infinite family of simple groups in the next section).

Simple groups, by definition, cannot be “factored” into pieces like N and G/N and
as a result they play a role analogous to that of the primes in the arithmetic of Z. This
analogy is supported by a “unique factorization theorem” (for finite groups) which we
now describe.
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Definition. In a group G a sequence of subgroups
I=No=N SNy <-- N1 =N =G

is called a composition series if N; < N;,; and N; 1/N; asimple group,0 <i < k—1.
If the above sequence is a composition series, the quotient groups N;;/N; are called
composition factors of G.

Keep in mind that it is not assumed that each N; < G, only that N; < N; ;. Thus
1<9(s) Q9 (s,r?)<IDg and 1<d(r?)d(r) < Dg

are two composition series for Dg and in each series there are 3 composition factors,
each of which is isomorphic to (the simple group) Z,.

Theorem 22. (Jordan—Holder) Let G be a finite group with G # 1. Then
(1) G has a composition series and
(2) The composition factors in a composition series are unique, namely, if
1=Nog<N<---<N,=Gand1l = My < M} <--- <M, =G are
two composition series for G, then r = s and there is some permutation, 7, of
{1,2, ..., r} such that

M5y / Mz iy—1 = Ni/Ni_1, I<i=<r

Proof: This is fairly straightforward. Since we shall not explicitly use this theorem
to prove others in the text we outline the proof in a series of exercises at the end of this
section.

Thus every finite group has a “factorization” (i.e., composition series) and although
the series itself need not be unique (as Dg shows) the number of composition factors and
their isomorphism types are uniquely determined. Furthermore, nonisomorphic groups
may have the same (up to isomorphism) list of composition factors (see Exercise 2).
This motivates a two-part program for classifying all finite groups up to isomorphism:

The Holder Program

(1) Classify all finite simple groups.
(2) Find all ways of “putting simple groups together” to form other groups.

These two problems form part of an underlying motivation for much of the development
of group theory. Analogues of these problems may also be found as recurring themes
throughout mathematics. We include a few more comments on the current status of
progress on these problems.

The classification of finite simple groups (part (1) of the Holder Program) was
completed in 1980, about 100 years after the formulation of the Holder Program. Efforts
by over 100 mathematicians covering between 5,000 and 10,000 journal pages (spread
over-some 300 to 500 individual papers) have resulted in the proof of the following
result:
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Theorem. There is a list consisting of 18 (infinite) families of simple groups and 26
simple groups not belonging to these families (the sporadic simple groups) such that
every finite simple group is isomorphic to one of the groups in this list.

One example of a family of simple groups is {Z, | p aprime}. A second infinite
family in the list of finite simple groups is:

{SL,(F)/Z(SL,(F)) | n € Z*,n > 2 and FF a finite field }.

These groups are all simple except for SL;(F;) and SL;(IF3) where IF; is the finite field
with 2 elements and F3 is the finite field with 3 elements. This is a 2-parameter family
(n and F being independent parameters). We shall not prove these groups are simple
(although it is not technically beyond the scope of the text) but rather refer the reader to
the book Finite Group Theory (by M. Aschbacher, Cambridge University Press, 1986)
for proofs and an extensive discussion of the simple group problem. A third family of
finite simple groups, the alternating groups, is discussed in the next section; we shall
prove these groups are simple in the next chapter.

To gain some idea of the complexity of the classification of finite simple groups the
reader may wish to peruse the proof of one of the cornerstones of the entire classification:

Theorem. (Feit-Thompson) If G is a simple group of odd order. then G = Z, for some
prime p.

This proof takes 255 pages of hard mathematics.?

Part (2) of the Holder Program, sometimes called the extension problem, was rather
vaguely formulated. A more precise description of “putting two groups together” is:
given groups A and B, describe how toobtain allgroups G containing a normal subgroup
N such that N = B and G/N = A. For instance, if A = B = Z,, there are precisely
two possibilities for G, namely, Z4 and V, (see Exercise 10 of Section 2.5) and the
Holder program seeks to describe how the two groups of order 4 could have been built
fromtwo Z,’s without a priori knowledge of the existence of the groups of order 4. This
part of the Holder Program is extremely difficult, even when the subgroups involved
are of small order. For example, all composition factors of a group G have order 2
if and only if |G| = 2", for some n (one implication is easy and we shall prove both
implications in Chapter 6). It is known, however, that the number of nonisomorphic
groups of order 2" grows (exponentially) as a function of 2", so the number of ways
of putting groups of 2-power order together is not bounded. Nonetheless, there are a
wealth of interesting and powerful techniques in this subtle area which serve to unravel
the structure of large classes of groups. We shall discuss only a couple of ways of
building larger groups from smaller ones (in the sense above) but even from this limited
excursion into the area of group extensions we shall construct numerous new examples
of groups and prove some classification theorems.

One class of groups which figures prominently in the theory of polynomial equations
is the class of solvable groups:

2Solvability of groups of odd order, Pacific Journal of Mathematics, 13(1963), pp. 775-1029.
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Definition. A group G is solvable if there is a chain of subgroups
1=Go26G 1G6G,12...4G;=6G

such that G;,/G; is abelian fori = 0,1,...,s — 1.

The terminology comes from the correspondence in Galois Theory between these
groups and polynomials which can be solved by radicals (which essentially means there
is an algebraic formula for the roots). Exercise 8 shows that finite solvable groups are
precisely those groups whose composition factors are all of prime order.

One remarkable property of finite solvable groups is the following generalization
of Sylow’s Theorem due to Philip Hall (cf. Theorem 6.11 and Theorem 19.8).

Theorem. The finite group G is solvable if and only if for every divisor n of |G| such

G
that (n, u) =1, G has a subgroup of order n.
n

As another illustration of how properties of a group G can be deduced from com-
bined information from a normal subgroup N and the quotient group G/N we prove

if N and G/ N are solvable, then G is solvable.

Tosee thislet G = G/N,let1 = Ng < N; <... < N, = N be a chain of subgroups
of N such that N;;;/N; is abelian, 0 < i < nandletl1 =Gy <G <...4G, =G
be a chain of subgroups of G such that G;,/G; is abelian, 0 < i < m. By the Lattice
Isomorphism Theorem there are subgroups G; of G with N < G; suchthatG; /N = G;
and G; 9 G;41, 0 <i < m. By the Third Isomorphism Theorem

Gi+1/Gi = (Giy1/N)/(Gi/N) = Gi41/G:.

Thus
1=Ng<IN Q...dN,=N=Gp<6G,19...96G,, =G

is a chain of subgroups of G all of whose successive quotient groups are abelian. This
proves G is solvable.

It is inaccurate to say that finite group theory is concerned only with the Holder
Program. It is accurate to say that the Holder Program suggests a large number of
problems and motivates a number of algebraic techniques. For example, in the study
of the extension problem where we are given groups A and B and wish to find G and
N < Gwith N = Band G/N = A, we shall see that (under certain conditions) we
are led to an action of the group A on the set B. Such actions form the crux of the next
chapter (and will result in information both about simple and non-simple groups) and
this notion is a powerful one in mathematics not restricted to the theory of groups.

The final section of this chapter introduces another family of groups and although in
line with our interest in simple groups, it will be of independent importance throughout
the text, particularly in our study later of determinants and the solvability of polynomial
equations.
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EXERCISES

1. Prove that if G is an abelian simple group then G = Z,, for some prime p (do not assume
G is a finite group).

2. Exhibit all 3 composition series for Qg and all 7 composition series for Dg. List the
composition factors in each case.

3. Find acomposition series for the quasidihedral group of order 16 (cf. Exercise 11, Section
2.5). Deduce that Q D¢ is solvable.

4. Use Cauchy’s Theorem and induction to show that a finite abelian group has a subgroup
of order n for each positive divisor n of its order.

S. Prove that subgroups and quotient groups of a solvable group are solvable.
6. Prove part (1) of the Jordan—-Holder Theorem by induction on |G]|.

7. If G is a finite group and H < G prove that there is a composition series of G, one of
whose terms is H.

8. Let G be a finite group. Prove that the following are equivalent:
(i) G is solvable
(i) G hasachainof subgroups: 1 = Hp < Hy < Hy <... I Hg = G suchthat H;41/H;
iscyclic,0 <i<s—1
(iif) all composition factors of G are of prime order
(iv) G has a chain of subgroups: 1 = Ng < N1 I N, <... < N; = G such that each N;
is a normal subgroup of G and N;4/N; is abelian, 0 <i <¢ — 1.

[For (iv), prove that a minimal nontrivial normal subgroup M of G is necessarily abelian
and then use induction. To see that M is abelian, let N < M be of prime index (by (iii)) and
show that x"1y~lxy € N forall x,y € M (cf. Exercise 40, Section 1). Apply the same
argument to gNg~! to show that x~1y~lxy lies in the intersection of all G-conjugates of

N, and use the minimality of M to conclude that x 1y 1 xy = 1.]

9. Prove the following special case of part (2) of the Jordan—Ho6lder Theorem: assume the

finite group G has two composition series
1=NodN Q...4dN, =G and 1=MoIM I Mr=0G.

D

Show that r = 2 and that the list of composition factors is the same. [Use the Second
Isomorphism Theorem.]

10. Prove part (2) of the Jordan—Holder Theorem by induction on min{r, s}. [Apply the
inductive hypothesis to H = N,_1 N M;_1 and use the preceding exercises.]

11. Prove that if H is a nontrivial normal subgroup of the solvable group G then there is a
nontrivial subgroup A of H with A < G and A abelian.

12. Prove (without using the Feit—Thompson Theorem) that the following are equivalent:
(i) every group of odd order is solvable
(ii) the only simple groups of odd order are those of prime order.

3.5 TRANSPOSITIONS AND THE ALTERNATING GROUP

Transpositions and Generation of S,

As we saw in Section 1.3 (and will prove in the next chapter) every element of S, can
be written as a product of disjoint cycles in an essentially unique fashion. In contrast,
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every element of S,, can be written in many different ways as a (nondisjoint) product of
cycles. For example, even in S3 the element 0 = (12 3) may be written

oc=(123)=(13)(12)=(12)(13)(12)(13) =(12)(23)

and, in fact, there are an infinite number of different ways to write o. Not requiring the
cycles to be disjoint totally destroys the uniqueness of a representation of a permutation
as a product of cycles. We can, however, obtain a sort of “parity check” from writing
permutations (nonuniquely) as products of 2-cycles.

Definition. A 2-cycle is called a transposition.

Intuitively, every permutation of {1, 2, ..., n} can be realized by a succession of
transpositions or simple interchanges of pairs of elements (try this on a small deck of
cards sometime!). We illustrate how this may be done. First observe that

@ a...a,) = (a1ay)(a1am-1)(a1an_2) ... (a1 a2)

for any m-cycle. Now any permutation in S,, may be written as a product of cycles (for
instance, its cycle decomposition). Writing each of these cycles in turn as a product of
transpositions by the above procedure we see that

every element of S, may be written as a product of transpositions
or, equivalently,
S,=(T) where T={({ij)|1<i<j<n}
For example, the permutation o in Section 1.3 may be written

o =(1128104)(213)(5117)(69)
= (14)(110)(18)(112)(213)(57)(511)(69).

The Alternating Group

Again we emphasize that for any o € S, there may be many ways of writing o as a
product of transpositions. For fixed o we now show that the parity (i.e., an odd or even
number of terms) is the same for any product of transpositions equaling o.

Let xp, ..., x, be independent variables and let A be the polynomial
A= [] Gi-xp,
l<i<j<n

i.e., the product of all the terms x; — x; fori < j. For example, when n = 4,
A = (x1 — x2)(x1 — x3)(x1 — x4) (x2 — x3)(x2 — x4)(x3 — X4).

Foreacho € S, let o act on A by permuting the variables in the same way it permutes
their indices:
o(A) = l_[ (X0 () — Xa(j))-

I<i<j<n
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For example, if n = 4 and 0 = (1 2 3 4) then

0 (A) = (x2 — x3)(x2 — x4) (x2 — x1)(x3 — X4) (x3 — x1) (x4 — X1)

(we have written the factors in the same order as above and applied o to each factor to
get o (A)). Note (in general) that A contains one factor x; — x; foralli < j, and since
o is a bijection of the indices, o (A) must contain either x; — x; or x; — x;, but not both
(and certainly no x; — x; terms), foralli < j. If o (A) has a factor x; — x; where j > i,
write this term as —(x; — x;). Collecting all the changes in sign together we see that A
and o (A) have the same factors up to a product of —1’s, i.e.,

o(A) = A, forallo € S,.

Foreacho € S, let
+1, ifo(A)=A

In the example above withn = 4 and o = (1 2 3 4), there are exactly 3 factors of the
formx; — x; where j > i in 0 (A), each of which contributes a factor of —1. Hence

(1234)(A) = (-1)%(A) = —A,

€(0) = [

S0
€((1234)) =-1.
Definition.
(1) e(o) is called the sign of 0.
(2) oiscalledanevenpermutationif (o) = 1 and anoddpermutationife(o) = —1

The next result shows that the sign of a permutation defines a homomorphism.

Proposition 23. The map € : S, — {*1} is a homomorphism (where {£1} is a
multiplicative version of the cyclic group of order 2).

Proof: By definition,
(to)(A) = l—[ (Xzo@) — Xzo(j))-
1<i<j<n

Suppose that o (A) has exactly k factors of the form x; — x; with j > i, that is
€(0) = (—1)*. When calculating (o) (A), after first applying o to the indices we see
that (z0)(A) has exactly k factors of the form x.¢jy — x;) with j > i. Interchanging
the order of the terms in these k factors introduces the sign change (—1)* = €(o’), and
now all factors of (to)(A) are of the form x,(,) — x;(g), With p < g. Thus

@) =€@) [] Cup = xew)-
1<p<g=n
Since by definition of €

]_l (Xz(p) — Xz()) = €(T)A

1<p<g=<n
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we have (70)(A) = €(0)e(t)A. Thus €(to) = €(0)e(T) = €(1)€(0), as claimed.

To see the proof in action, letn = 4,0 = (1234),t =4 23)sotoc =(1324).
By definition (using the explicit A in this case),

(to)(A) = (1324)(A)
= (x3 — x4)(x3 — x2)(x3 — x1) (x4 — x2) (x5 — x1)(x2 — x1)
=(=D’A

where all factors except the first one are flipped to recover A . This shows e(t0) = —1.
On the other hand, since we already computed o (A)

(to)(Q) = 1(c(A))
= (Xz2) — X¢3))(Xz2) — Xe @) (Xe(2) — X)) (X (3) — Xe(4)) X

X (xr(3) - Xr(l))(xr(4) — Xe(1))

=D J] e = %)) = (—D*(D)
l<p<g=4
where here the third, fifth, and sixth factors need to have their terms interchanged in
order to put all factors in the form x,(,) — x;(;) With p < g. We already calculated that
€(0) = (—1) = —1 and, by the same method, it is easy to see that €(t) = (—1)2 = 1
soe(ta) = —1 = e(1)e(0). :

The next step is to compute €((i j)), for any transposition (i j). Rather than
compute this directly for arbitrary i and j we do it first fori = 1 and j = 2 and reduce
the general case to this. It is clear that applying (1 2) to A (regardless of what n is) will
flip exactly one factor, namely x; — x5; thus €((1 2)) = —1. Now for any transposition
@@ ) let A be the permutation which interchanges 1 and i, interchanges 2 and j, and
leaves all other numbers fixed (if i = 1 or j = 2, A fixes i or j, respectively). Then
it is easy to see that (i j) = A(1 2)A (compute what the right hand side does to any

k €(1,2,...,n)}). Since € is a homomorphism we obtain
€((@ j)) = e(A(12)2)
= €(Me((12))e(V)
= (=De(®)?
=—1.
This proves

Proposition 24. Transpositions are all odd permutations and € is a surjective homo-
morphism.

Definition. The alternating group of degree n, denoted by A,, is the kernel of the
homomorphism € (i.e., the set of even permutations).

Note that by the First Isomorphism Theorem S, /A, = €(S,) = {1}, so that the
1 1 .
order of A,, is easily determined: {A, | = 2 | S| = E(n N. Also, S, — A,, is the coset of
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A, which is not the identity coset and this is the set of all odd permutations. The signs
of permutations obey the usual Z/27Z laws:

(even)(even) = (odd)(odd) = even
(even)(odd) = (odd)(even) = odd.

Moreover, since € is a homomorphism and every o € S, is a product of transpositions,
sayo = 71Ty - - - Tk, then €(0) = €(11) - - - €(w); since e (r;) = —1,fori = 1,2, ...k,
€(0) = (—1)*. Thus the class of k (mod 2), i.e., the parity of the number of transposi-
tions in the product, is the same no matter how we write o as a product of transpositions:

@) l +1, if o is a product of an even number of transpositions
(o) =
—1, if o is aproduct of an odd number of transpositions.
Finally we give a quick way of computing €(c’) from the cycle decomposition of o.
Recall that an m-cycle may be written as a product of m — 1 transpositions. Thus

an m-cycle is an odd permutation if and only if m is even.

For any permutation o let aja; - - - o be its cycle decomposition. Then €(o) is
given by €(y) - - - €(ax) and €(e;) = —1 if and only if the length of ¢; is even. It
follows that for € (d) to be —1 the product of the €(c;)’s must contain an odd number
of factors of (—1). We summarize this in the following proposition:

Proposition 25. The permutation o is odd if and only if the number of cycles of even
length in its cycle decomposition is odd.

For example, 0 = (123456)(789)(1011)(1213 14 15)(16 17 18) has 3 cycles
of evenlength, so €(0c) = —1. Ontheotherhand, t = (1128 104)(213)(5117)(6 9)
has exactly 2 cycles of even length, hence €(7) = 1.

Be careful not to confuse the terms “odd” and “even” for a permutation o with the
parity of the order of . In fact, if o is of odd order, all cycles in the cycle decomposition
of o have odd length so ¢ has an even (in this case 0) number of cycles of even length
and hence is an even permutation. If |o| is even, o may be either an even or an odd
permutation; e.g., (1 2) is odd, (1 2)(3 4) is even but both have order 2.

As we mentioned in the preceding section, the alternating groups A,, will be im-
portant in the study of solvability of polynomials. In the next chapter we shall prove:

A,, is a non-abelian simple group for alln > 5.

For small values of n, A, is already familiar to us: A; and A, are both the trivial
group and |A3| = 3 (so Az = ((123)) = Z3). The group A4 has order 12. Exercise 7
shows A4 is isomorphic to the group of symmetries of a regular tetrahedron. The lattice
of subgroups of A4 appears in Figure 8 (Exercise 8 asserts that this is its complete
lattice of subgroups). One of the nicer aspects of this lattice is that (unlike “virtually
all groups”) it is a planar graph (there are no crossing lines except at the vertices; see
the lattice of D, for a nonplanar lattice).
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/
((12)(34), (13)(24)) \4 N F

2 2l 2 ((123)) (124) ((134) (234)

EXERCISES

1. InExercises 1 and 2 of Section 1.3 you were asked to find the cycle decomposition of some
permutations. Write each of these permutations as a product of transpositions. Determine
which of these is an even permutation and which is an odd permutation.

2. Prove that o2 is an even permutation for every permutation o.

3. Prove that S, is generated by {(i i+1) | 1 < i < n — 1}. [Consider conjugates, viz.
231 2)23)7"]

4. ShowthatS, =((12), 123...n))foralln > 2.

5. Show that if p is prime, S, = (o, ) where o is any transposition and 7 is any p-cycle.

6. Show that ( (1 3), (1 2 3 4)) is aproper subgroup of S4. What is the isomorphism type of
this subgroup?

7. Prove that the group of rigid motions of a tetrahedron is isomorphic to A4. [Recall Exercise
20 in Section 1.7.]

8. Prove thelattice of subgroups of A4 given inthe text is correct. [By the preceding exercise
and the comments following Lagrange’s Theorem, A4 has no subgroup of order 6.]

9. Prove that the (unique) subgroup of order 4 in A4 is normal and is isomorphic to V4.
10. Find a composition series for A4. Deduce that A4 is solvable.
11. Prove that S4 has no subgroup isomorphic to Qg.
12. Prove that A, contains a subgroup isomorphic to S,,_2 for eachn > 3.

13. Prove that every element of order 2in A,, is the square ofan element of order 4in S,,. [An
element of order 2 in A, is a product of 2k commuting transpositions.]

14. Prove that the subgroup of A4 generated by any element of order 2 and any element of
order 3 is all of Ag.

15. Prove that if x and y are distinct 3-cycles in S4 with x # y~1, then the subgroup of S4
generated by x and y is As.

16. Let x and y be distinct 3-cycles in Ss with x # y~L.

(a) Prove that if x and y fix acommon element of {1, ..., 5}, then (x, y) = A4.
(b) Prove thatif x and y do not fix a common elementof {1, ..., 5}, then (x, y) = As.

17. If x and y are 3-cycles in S, prove that ( x, y) is isomorphic to Z3, A4, As or Z3 X Z3.
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CHAPTER 4

Group Actions

In this chapter we consider some of the consequences of a group acting on a set. Itis
an important and recurring idea in mathematics that when one object acts on another
then much information can be obtained on both. As more structure is added to the
set on which the group acts (for example, groups acting on groups or groups acting
on vector spaces (considered in Chapter 18)), more information on the structure of the
group becomes available. This study of group actions culminates here in the proof of
Sylow’s Theorem and the examples and classifications which accrue from it.

The concept of an action will recur as we study modules, vector spaces, canonical
forms for matrices and Galois Theory, and is one of the fundamental unifying themes
in the text.

4.1 GROUP ACTIONS AND PERMUTATION REPRESENTATIONS

In this section we give the basic theory of group actions and then apply this theory to
subgroups of S, acting on {1, 2, ..., n} to prove that every element of S, has a unique
cycle decomposition. In Sections 2 and 3 we apply the general theory to two other
specific group actions to derive some important results.

Let G be a group acting on a nonempty set A. Recall from Section 1.7 that for each
g € G the map

o, A—> A defined by gg:ar>g-a
is a permutation of A. We also saw in Section 1.7 that there is a homomorphism
associated to an action of G on A:
¢:G—> S, defined by o(g) = gy,

called the permutation representation associated to the given action. Recall some
additional terminology associated to group actions introduced in Sections 1.7 and 2.2.

Definition.
(1) The kernel of the action is the set of elements of G that act trivially on every
elementof A: {g € G| g-a=aforalla € A}.
(2) For each a € A the stabilizer of a in G 1s the set of elements of G that fix the
elementa: (g € G | g - a = a} and is denoted by G,.
(3) An action is faithful if its kernel is the identity.
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Note that the kernel of an action is precisely the same as the kernel of the associated
permutation representation; in particular, the kernel is a normal subgroup of G. Two
group elements induce the same permutation on A if and only if they are in the same coset
of the kernel (if and only if they are in the same fiber of the permutation representation
¢). In particular an action of G on A may also be viewed as a faithful action of the
quotient group G/ ker¢ on A. Recall from Section 2.2 that the stabilizer in G of an
element a of A is a subgroup of G. If a is a fixed element of A, then the kernel of
the action is contained in the stabilizer G, since the kernel of the action is the set of
elements of G that stabilize every point, namely N,cs G,.

Examples

(1) Let n be a positive integer. The group G = S, acts on the set A = {1,2,...,n}
byo -i = o(i) foralli € {1,...,n}. The permutation representation associated
to this action is the identity map ¢ : S, — S,. This action is faithful and for each
i € {1, ..., n}thestabilizer G; (the subgroup of all permutations fixing ) is isomorphic
to S,_1 (cf. Exercise 15, Section 3.2).

(2) Let G = Dg act on the set A consisting of the four vertices of a square. Label these
vertices 1,2,3,4 in a clockwise fashion-as in Figure 2 of Section 1.2. Let r be the
rotation of the square clockwise by /2 radians and let s be the reflection in the line
which passes through vertices 1 and 3. Then the permutations of the vertices given by
r and s are

or=(1234) and o; = (24).

Note that since the permutation representation is a homomorphism, the permutation
of the four vertices corresponding to sr is o5, = 050, = (1 4)(2 3). The action of Dg
on the four vertices of a square is faithful since only the identity symmetry fixes all
four vertices. The stabilizer of any vertex a is the subgroup of Dg of order 2 generated
by the reflection about the line passing through a and the center of the square (so, for
example, the stabilizer of vertex 1is (s )).

(3) Label the four vertices of a square as in the preceding example and now let A be the set
whose elements consist of unordered pairs of opposite vertices: A = { {1,3}, {2,4} }.
Then Dg also acts on this set A since each symmetry of the square sends a pair of
opposite vertices to a pair of opposite vertices. The rotation r interchanges the pairs
{1, 3} and {2, 4}; the reflection s fixes both unordered pairs of opposite vertices. Thus
if we label the pairs {1, 3} and {2, 4} as 1 and 2, respectively, then the permutations of
A given by r and s are

or=(12) and o5 = the identity permutation.

This action of Dg is not faithful: its kemnel is (s, r2 ). Moreover, for eacha € A the
stabilizer in Dg of a is the same as the kernel of the action.

(4) Label the four vertices of a square as in Example 2 and now let A be the following set
of unordered pairs of vertices: { {1, 2}, {3, 4} }. The group Dg does not act on this set
A because {1,2} € Abutr-{1,2} ={2, 3} ¢ A.

The relation between actions and homomorphisms into symmetric groups may be
reversed. Namely, given any nonempty set A and any homomorphism ¢ of the group
G into S4 we obtain an action of G on A by defining

g-a=¢(g)a)
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for all g € G and all a € A. The kernel of this action is the same as ker ¢. The permu-
tation representation associated to this action is precisely the given homomorphism ¢.
This proves the following result.

Proposition 1. For any group G and any nonempty set A there is a bijection between
the actions of G on A and the homomorphisms of G into Sj.

In view of Proposition 1 the definition of a permutation representation may be
rephrased.

Definition. If G is a group, a permutation representation of G is any homomorphism
of G into the symmetric group S for some nonempty set A. We shall say a given action
of G on A affords or induces the associated permutation representation of G.

We can think of a permutation representation as an analogue of the matrix repre-
sentation of a linear transformation. In the case where A is a finite set of n elements we
have S; = S, (cf. Section 1.6), so by fixing a labelling of the elements of A we may
consider our permutations as elements of the group S, (which is exactly what we did in
Examples 2 and 3 above), in the same way that fixing a basis for a vector space allows
us to view a linear transformation as a matrix.

We now prove a combinatorial result about group actions which will have important
consequences when we apply it to specific actions in subsequent sections.

Proposition 2. Let G be a group acting on the nonempty set A. The relation on A
defined by
a~b ifandonlyif a=g-bforsomeg e G

is an equivalence relation. For each a € A, the number of elements in the equivalence
class containing a is |G : G|, the index of the stabilizer of a.

Proof: We first prove ~ is anequivalencerelation. By axiom2 of anaction,a = 1-a
foralla € A, i.e., a ~ a and the relation is reflexive. If a ~ b, thena = g - b for some
b € G so that

g'la=g"'-(g-H)=(g"'e)-b=1-b=b

that is, b ~ a and the relation is symmetric. Finally, ifa ~ band b ~ ¢c,thena = g- b
andb=h-c,forsome g, h € G so

a=g-b=g-(h-c)=(gh)-c

hence a ~ ¢, and the relation is transitive.

To prove the last statement of the proposition we exhibit a bijection between the
left cosets of G, in G and the elements of the equivalence class of a. Let C, be the class
of a, so

C.={g-algeG}

Suppose b = g - a € C,. Then gG, is a left coset of G, in G. The map
b=g-a— gG,

114 Chap.4  Group Actions



is a map from C, to the set of left cosets of G, in G. This map is surjective since for
any g € G the element g - a is an element of C,. Since g -a = h - a if and only if
h~'g € G, if and only if gG, = hG,,, the map is also injective, hence is a bijection.
This completes the proof.

By Proposition 2 a group G acting on the set A partitions A into disjoint equivalence
classes under the action of G. These classes are given a name:

Definition. Let G be a group acting on the nonempty set A.
(1) The equivalence class {g - a | g € G} is called the orbit of G containing a.
(2) The action of G on A is called transitive if there is only one orbit, i.e., given
any two elements a, b € A there is some g € G suchthata = g - b.

Examples

Let G be a group acting on the set A.

(1) If G acts trivially on A then G, = G for all a € A and the orbits are the elements of
A. This action is transitive if and only if |[A| = 1.

(2) The symmetric group G = S,, acts transitively in its usual action as permutations on
A = {1, 2,...,n). Note that the stabilizer in G of any point i has index n = |A| in §,,.

(3) When the group G acts on the set A, any subgroup of G also acts on A. If G is
transitive on A a subgroup of G need not be transitive on A. For example, if G =
((12),(34)) < S4then the orbits of G on {1, 2, 3, 4} are {1, 2} and {3, 4} and there
is no element of G that sends 2 to 3. The discussion below on cycle decompositions
shows that when (o ) is any cyclic subgroup of S,, then the orbits of (o ) consist of
the sets of numbers that appear in the individual cycles in the cycle decomposition of
o (for example, the orbits of { (1 2)(3 4 5)) are {1, 2} and {3, 4, 5}).

(4) The group Dg acts transitively on the four vertices of the square and the stabilizer of
any vertex is the subgroup of order 2 (and index 4) generated by the reflection about
the line of symmetry passing through that point.

(5) The group Dg also acts transitively on the set of two pairs of opposite vertices. In this
action the stabilizer of any point is ( s, r?) (which is of index 2).

Cycle Decompositions

We now prove that every element of the symmetric group S, has the unique cycle
decomposition described in Section 1.3. Let A = {1, 2, ..., n}, let o be an element
of S, and let G = (o). Then (o ) acts on A and so, by Proposition 2, it partitions
{1,2, ..., n}into a unique set of (disjoint) orbits. Let O be one of these orbits and let
x € O. By (the proof of) Proposition 2 applied to A = O we see that there is a bijection
between the left cosets of G, in G and the elements of O, given explicitly by

c'x = o'G,.

Since G is a cyclic group, G, < G and G/G, is cyclic of order d, where d is the
smallest positive integer for which 0 € G, (cf. Example 2 following Proposition 7 in
Section 3.1). Also, d = |G : G,| = |O|. Thus the distinct cosets of G, in G are

1G,, oGy, asz, cees ad_lGx.
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This shows that the distinct elements of O are
x, o(x), o%(x), ..., o\ (x).

Ordering the elements of O in this manner shows that o cycles the elements of O,
that is, on an orbit of size d, o acts as a d-cycle. This proves the existence of a cycle
decomposition for each o € §,,.

The orbits of (o ) are uniquely determined by o. The only latitude is in which
order the orbits are listed. Within each orbit, O, we may begin with any element as a
representative. Choosing o (x) instead of x as the initial representative simply produces
the elements of O in the order

' (x), ), ..., o), x, o(x), ..., o' (),

which is a cyclic permutation (forward i — 1 terms) of the original list. It follows that
the cycle decomposition above is unique up to a rearrangement of the cycles and up to
a cyclic permutation of the integers within each cycle.

Subgroups of symmetric groups are called permutation groups. For any subgroup
G of S,, the orbits of G will refer to its orbitson {1, 2, . . ., n}. The orbits of an element
o in S, will mean the orbits of the group (o ) (namely the sets of integers comprising
the cycles in its cycle decomposition).

The exercises below further illustrate how group theoretic information can be ob-
tained from permutation representations.

EXERCISES

Let G be a group and let A be a nonempty set.

1. Let G act on the set A. Prove that if a,b € A and b = g - a for some g € G, then
Gp = gGag ™ (G, is the stabilizer of a). Deduce that if G acts transitively on A then the

kernel of the action is NgeG §Gag™".

2. Let G be a permutation group on the set A (i.e., G < S4), leto € G and let a € A. Prove
that 0G0~ = G (q)- Deduce that if G acts transitively on A then

ﬂ oG,,o_l =1

oeG

3. Assume that G is an abelian, transitive subgroup of S4. Show that o(a) # a for all
o € G — {1} and all a € A. Deduce that |G| = |A|. [Use the preceding exercise.]

4. Let S3 acton the set 2 of ordered pairs: {(i, j) | 1 < i, j < 3}byo((i, j)) = (o (i), o (j)).
Find the orbits of S3 on 2. For each o € S3 find the cycle decomposition of o under this
action (i.e., find its cycle decomposition when o is considered as an element of Sy — first
fix a labelling of these nine ordered pairs). For each orbit O of S3 acting on these nine
points pick some a € O and find the stabilizer of a in S3.

5. For each of parts (a) and (b) repeat the preceding exercise but with S3 acting on the specified
set:
(a) the set of 27 triples {(Z, j, k) | 1 < i, j, k <3}
(b) the set P({1, 2, 3}) — {#} of all 7 nonempty subsets of {1, 2, 3}.

6. AsinExercise 12 of Section 2.2 let R be the set of all polynomials with integer coefficients
in the independent variables x], x2, x3, x4 and let S4 act on R by permuting the indices of
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the four variables:
o - p(x1, X2, x3, X4) = p(Xo (1), Xo(2)> X0 (3)> Xo (4))

forallo € S3.

(a) Find the polynomials in the orbit of S4 on R containing x; + x2 (recall from Exercise
12 in Section 2.2 that the stabilizer of this polynomial has order 4).

(b) Find the polynomials in the orbit of S4 on R containing x1x; + x3x4 (recall from
Exercise 12 in Section 2.2 that the stabilizer of this polynomial has order 8).

(c) Find the polynomials in the orbit of $4 on R containing (x1 + x2)(x3 + x4).

7. Let G be a transitive permutation group on the finite set A. A block is a nonempty subset
B of A such that for all 0 € G either 6(B) = B or 6(B) N B = @ (here o (B) is the set
{o(®) | b € B)).

(a) Prove that if B is a block containing the element a of A, then the set Gp defined by
Gp = {0 € G | 6(B) = B} is a subgroup of G containing G,.

(b) Show that if B is a block and o1 (B), 02(B), ..., 0,(B) are all the distinct images of
B under the elements of G, then these form a partition of A.

(c) A (transitive) group G on a set A is said to be primitive if the only blocks in A
are the trivial ones: the sets of size 1 and A itself. Show that S4 is primitive on
A = (1,2, 3,4}). Show that Dg is not primitive as a permutation group on the four
vertices of a square.

(d) Prove that the transitive group G is primitive on A if and only if for each a € A, the
only subgroups of G containing G, are G, and G (i.e., G, is a maximal subgroup of
G, cf. Exercise 16, Section 2.4). [Use part (a).]

8. A transitive permutation group G on a set A is called doubly transitive if for any (hence
all) a € A the subgroup G, is transitive on the set A — {a}.
(a) Prove that S,, is doubly transitiveon {1, 2, ...,n) foralln > 2.
(b) Prove that a doubly transitive group is primitive. Deduce that Dg is not doubly
transitive in its action on the 4 vertices of a square.

9. Assume G acts transitively on the finite set A and let H be a normal subgroup of G. Let

01, O;, ..., Oy be the distinct orbits of H on A.

(a) Prove that G permutes the sets Oy, O, ..., O, in the sense that for each g € G and
eachi € {1,..., r} thereisa j such that gO; = O;, where gO = {g-a | a € O} (i.e.,
in the notation of Exercise 7 the sets Oy, . . ., O, are blocks). Prove that G is transitive
on {01, ..., O,}). Deduce that all orbits of H on A have the same cardinality.

(b) Prove that if a € O then |Oy| = |H : HN G,| and prove that r = |G : HGy|.
[Draw the sublattice describing the Second Isomorphism Theorem for the subgroups
H and G, of G. Note that H N G, = H,.]

10. Let H and K be subgroups of the group G. For each x € G define the HK double coset
of x in G to be the set
HxK = {hxk | h € H, k € K).

(a) Prove that HxK is the union of the left cosets x| X, . .., x, K where {x;K,...,x,K}
is the orbit containing x K of H acting by left multiplication on the set of left cosets
of K.

(b) Prove that HxK is a union of right cosets of H.

(c) Show that HxK and HyK are either the same set or are disjoint for all x,y € G.
Show that the set of HK double cosets partitions G.

(d) Prove that |HxK| = |K|-|H : HNxKx71|.

(e) Prove that |[HxK|=|H|-|K : KNx"'Hx|.
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4.2 GROUPS ACTING ON THEMSELVES BY LEFT MULTIPLICATION
— CAYLEY’S THEOREM

In this section G is any group and we first consider G acting on itself (i.e., A = G) by
left multiplication:
g-a=ga forallge G, aeG

where ga denotes the product of the two group elements g and a in G (if G is written
additively, the action will be written g - a = g + a and called left translation). We saw
in Section 1.7 that this satisfies the two axioms of a group action.

When G is a finite group of order n it is convenient to label the elements of G with
the integers 1, 2, . . ., n in order to describe the permutation representation afforded by
this action. In this way the elements of G are listed as g, g2, ..., g and for each
g € G the permutation o, may be described as a permutation of the indices 1,2, ..., n
as follows:

o(i)=]j if and only if g8i = gj-

A different labelling of the group elements will give a different description of o, as a
permutation of {1, 2, ..., n} (cf. the exercises).

Example

Let G = {1,a, b, ¢} be the Klein 4-group whose group table is written out in Section
2.5. Label the group elements 1, a, b, ¢ with the integers 1,2,3,4, respectively. Under this
labelling we compute the permutation o, induced by the action of left multiplication by
the group element a:

a-1=al=aandsoaog,(1) =2

a-a=aa=1andsog;(2) =1

a-b=ab=candsoo,(3) =4and

a-c=ac=>bandsoog,(4) =3.
With this labelling of the elements of G we see that o, = (1 2)(3 4). In the permutation
representation associated to the action of the Klein 4-group on itself by left multiplication
one similarly computes that

a0, =(012)34 b—op,=(013)249 cHo.=(14)(23),

which explicitly gives the permutation representation G — S4 associated to this action
under this labelling.

It is easy to see (and we shall prove this shortly in a more general setting) that the
action of a group on itself by left multiplication is always transitive and faithful, and
that the stabilizer of any point is the identity subgroup (these facts can be checked by
inspection for the above example).

We now consider a generalization of the action of a group by left multiplication on
the setofits elements. Let H be any subgroup of G andlet A be the set of all left cosets
of H in G. Define an action of G on A by

g-aH = gaH forallge G, aHe A
where gaH is the left coset with representative ga. One easily checks that this satisfies
the two axioms for a group action, i.e., that G does act on the set of left cosets of H
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by left multiplication. In the special case when H is the identity subgroup of G the
coseta H is just {a} and if we identify the element a with the set {a}, this action by left
multiplication on left cosets of the identity subgroup is the same as the action of G on
itself by left multiplication.

When H is of finite index m in G itisconvenient to label the left cosets of H withthe
integers 1, 2, ..., m in order to describe the permutation representation afforded by this
action. In this way the distinct left cosets of H in G are listed as a1 H, a; H, . .., a, H
andforeach g € G the permutation o, may be described as a permutation of the indices
1,2, ..., m as follows:

0,(i)=j if and only if ga;H = a;H.
A different labelling of the group elements will give a different description of o as a
permutation of {1, 2, ..., m} (cf. the exercises).

Example

Let G = Dg and let H = (s). Label the distinct left cosets 1H, rH, r2H, r3 H with the
integers 1,2,3,4 respectively. Under this labelling we compute the permutation o induced
by the action of left multiplication by the group element s on the left cosets of H:

s-1H =sH = 1H and so 05(1) = 1

s-rH =srH =r3H andsoo,(2) = 4

s-r’H = srH = r?H andsoo;(3) = 3

s-r3H =sr3H = rH and so o,(4) = 2.
With this labelling of the left cosets of H we obtain o; = (2 4). In the permutation
representation associated to the action of Dg on the left cosets of (s ) by left multiplication
one similarly computes that o, = (1 2 3 4). Note that the permutation representation is a
homomorphism, so once its value has been determined on generators for Dy its value on
any other element can be determined (e.g., 0,,2 = 0;02).

Theorem 3. Let G be a group, let H be a subgroup of G and let G act by left multi-
plication on the set A of left cosets of H in G. Let my be the associated permutation
representation afforded by this action. Then
(1) G acts transitively on A
(2) the stabilizer in G of the point 1 H € A is the subgroup H
(3) the kernel of the action (i.e., the kernel of ) is Nyeg x Hx ™!, and ker gy is
the largest normal subgroup of G containedin H.

Proof: To see that G acts transitively on A, let aH and bH be any two elements
of A,andlet g = ba~!. Then g - aH = (ba~')aH = bH, and so the two arbitrary
elements aH and bH of A lie in the same orbit, which proves (1). For (2), the stabilizer
of the point 1 H is, by definition, {g € G | g-1H = 1H},ie.,{g € G| gH = H} = H.

By definition of 7y we have

kermy = {g € G| gxH = xH for all x € G}
={geG|(x"gx)H = H for all x € G}
={geG|x'gxeHforallx € G}
={geG|gexHx forallx € G} = ﬂxHx“l,

xeG
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which proves the first assertion of (3). The second assertion of (3) comes from observing
firstthatker my < G andkermy < H. If now N is any normal subgroup of G contained
in H then we have N = xNx~! < xHx ! for all x € G so that

N < ﬂ xHx ! = kermy.

xeG

This shows that ker r is the largest normal subgroup of G contained in H.

Corollary 4. (Cayley’s Theorem) Every group is isomorphic to a subgroup of some
symmetric group. If G is a group of order n, then G is isomorphic to a subgroup of ,,.

Proof: Let H = 1 and apply the preceding theorem to obtain a homomorphism of
G into S¢ (here we are identifying the cosets of the identity subgroup with the elements
of G). Since the kernel of this homomorphism is contained in H = 1, G is isomorphic
to its image in Sg.

Note that G is isomorphic to a subgroup of a symmetric group, not to the full sym-
metric group itself. For example, we exhibited an isomorphism of the Klein 4-group
with the subgroup ( (1 2)(3 4), (1 3)(2 4) ) of S4. Recall that subgroups of symmetric
groups are called permutation groups so Cayley’s Theorem states that every group is
isomorphic to a permutation group. The permutation representation afforded by left
multiplication on the elements of G (cosets of H = 1) is called the left regular rep-
resentation of G. One might think that we could study all groups more effectively by
simply studying subgroups of symmetric groups (and all finite groups by studying sub-
groups of S,,, for all n). This approach alone is neither computationally nor theoretically
practical, since to study groups of order n we would have to work in the much larger
group S,, (cf. Exercise 7, for example).

Historically, finite groups were first studied not in an axiomatic setting as we have
developed but as subgroups of S,,. Thus Cayley’s Theorem proves that the historical
notion of a group and the modern (axiomatic) one are equivalent. One advantage of
the modern approach is that we are not, in our study of a given group, restricted to
considering that group as a subgroup of some particular symmetric group (so in some
sense our groups are “coordinate free”).

The next result generalizes our result on the normality of subgroups of index 2.

Corollary S. If G is a finite group of order n and p is the smallest prime dividing |G|,
then any subgroup of index p is normal.

Remark: In general, a group of order n need not have a subgroup of index p (for
example, A4 has no subgroup of index 2).

Proof: Suppose H < G and |G : H| = p. Let my be the permutation represen-
tation afforded by multiplication on the set of left cosets of H in G, let K = kermy
andlet |H : K| =k Then |G : K| = |G : H||H : K| = pk. Since H has p
left cosets, G/K is isomorphic to a subgroup of S, (namely, the image of G under 7y )
by the First Isomorphism Theorem. By Lagrange’s Theorem, pk = |G/K | divides p!.
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!
Thus k | P (p — 1)!. But all prime divisors of (p — 1)! are less than p and by

the minimality of p, every prime divisor of k is greater than or equal to p. This forces
k=1,s0 H= K < G, completing the proof.

EXERCISES

Let G be a group and let H be a subgroup of G.
1. Let G = {1, a, b, c} be the Klein 4-group whose group table is written out in Section 2.5.
(a) Label 1, a, b, c with the integers 1,2,4,3, respectively, and prove that under the left
regular representation of G into S4 the nonidentity elements are mapped as follows:

ar> 12)34) b 1423 c— (13)24).

(b) Relabel 1, a, b, c as 1,4,2,3, respectively, and compute the image of each element of
G under the left regular representation of G into S4. Show that the image of G in S3
under this labelling is the same subgroup as the image of G in part (a) (even though
the nonidentity elements individually map to different permutations under the two
different labellings).

2. List the elements of S3as 1, (1 2), (2 3), (1 3), 0 2 3), (1 3 2) and label these with the
integers 1,2,3,4,5,6 respectively. Exhibit the image of each element of S3 under the left
regular representation of S3 into Se.

3. Let r and s be the usual generators for the dihedral group of order 8.

(a) List the elements of Dg as 1, r, r2, r3, s, sr, sr2, sr? and label these with the integers
1,2, ..., 8respectively. Exhibit theimage of each element of Dg under theleftregular
representation of Dg into Sg.

(b) Relabel this same list of elements of Dg with the integers 1,3, 5,7, 2, 4,6, 8 re-
spectively and recompute the image of each element of Dg under the left regular
representation with respect to this new labelling. Show that the two subgroups of Sg
obtained in parts (a) and (b) are different.

4. Use the left regular representation of Qg to produce two elements of Sg which generate a
subgroup of Sg isomorphic to the quaternion group Qsg.

5. Letr and s be the usual generators for the dihedral group of order 8 and let H = (s ). List
the left cosets of H in Dg as 1H, rH, r>H and r3H.

(a) Label these cosets with the integers 1,2,3,4, respectively. Exhibit the image of each
element of Dg under the representation gy of Dg into S4 obtained from the action
of Dg by left multiplication on the set of 4 left cosets of H in Dg. Deduce that this
representation is faithful (i.e., the elements of S4 obtained form a subgroup isomorphic
to Dg).

(b) Repeat part (a) with the list of cosets relabelled by the integers 1,3,2,4, respectively.
Show that the permutations obtained from this labelling form a subgroup of S4 that
is different from the subgroup obtained in part (a).

(¢) Let K = (sr), list the cosets of K in Dg as 1K, rK, r2K and r3 K, and label these
with the integers 1,2,3,4. Prove that, with respect to this labelling, the image of Dg
under the representation g obtained from left multiplication on the cosets of K is
the same subgroup of S4 as in part (a) (even though the subgroups H and K are
different and some of the elements of Dg map to different permutations under the two
homomorphisms).
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10.

11.

12.

13.

14.

. Let r and s be the usual generators for the dihedral group of order 8 and let N = (r2). List

the left cosets of N in Dg as 1N, rN, sN and srN. Label these cosets with the integers
1,2,3,4 respectively. Exhibit the image of each element of Dg under the representation
sty of Dg into S4 obtained from the action of Dg by left multiplication on the set of 4 left
cosets of N in Dg. Deduce that this representation is not faithful and prove that 7z (Dg)
is isomorphic to the Klein 4-group.

. Let Qg be the quaternion group of order 8.

(a) Prove that Qg is isomorphic to a subgroup of Sg.
(b) Prove that Qg is not isomorphic to a subgroup of S, forany n < 7. [If Qg acts on
any set A of order < 7 show that the stabilizer of any point a € A must contain the

subgroup ( —1).]

. Prove that if H has finite index n then there is a normal subgroup K of G with K < H

and |G : K| <n!.

. Prove that if p is a prime and G is a group of order p® for some ¢ € Z*, then every

subgroup of index p is normal in G. Deduce that every group of order p? has a normal
subgroup of order p.

Prove that every non-abelian group of order 6 has a nonnormal subgroup of order 2. Use
this to classify groups of order 6. [Produce an injective homomorphism into S3.]

Let G be a finite group and let 7 : G — S¢ be the left regular representation. Prove that
if x is an element of G of order n and |G| = mn, then 7 (x) is a product of m n-cycles.

G
Deduce that 7(x) is an odd permutation if and only if |x| is even and H is odd.
x

Let G and 7 be as in the preceding exercise. Prove thatif 7 (G) contains an odd permutation
then G has a subgroup of index 2. [Use Exercise 3 in Section 3.3.]

Prove that if |G| = 2k where k is odd then G has a subgroup of index 2. [Use Cauchy’s
Theorem to produce an element of order 2 and then use the preceding two exercises.]

Let G be a finite group of composite order n» with the property that G has a subgroup of
order k for each positive integer k dividing . Prove that G is not simple.

4.3 GROUPS ACTING ON THEMSELVES BY CONJUGATION

—THE CLASS EQUATION

In this section G is any group and we first consider G acting on itself (i.e., A = G) by
conjugation:

g-a=gag’! forallge G, ae G

where gag™! is computed in the group G as usual. This definition satisfies the two
axioms for a group action because

g1-(g2-a) = g1+ (g208,") = g1(g2a8; ey = (g182)a(g182) ™" = (g182) - a

and

l-a=1lal ' =a

forall g;,8, € Gandalla € G.
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Definition. Two elements a and b of G are said to be conjugate in G if there is some
g € G such that b = gag™! (i.e., if and only if they are in the same orbit of G acting
on itself by conjugation). The orbits of G acting on itself by conjugation are called the
conjugacy classes of G.

Examples

(1) If G is an abelian group then the action of G on itself by conjugation is the trivial
action: g-a = a, forall g, a € G, and for each a € G the conjugacy class of a is {a}.

(2) If |G| > 1 then, unlike the action by left multiplication, G does not act transitively
on itself by conjugation because {1} is always a conjugacy class (i.e., an orbit for this
action). More generally, the one element subset {a} is a conjugacy class if and only if
gag~! = aforall g € G if and only if a is in the center of G.

(3) In S3 one can compute directly that the conjugacy classes are {1}, {(1 2), (1 3), (2 3)}
and {(1 2 3), (1 3 2)}. We shall shortly develop techniques for computing conjugacy
classes more easily, particularly in symmetric groups.

As in the case of a group acting on itself by left multiplication, the action by

conjugation can be generalized. If S is any subset of G, define
gSg™" = (gsg™! | s € S).

A group G acts on the set P(G) of all subsets of itself by defining g - S = gSg~! for
any g € G and S € P(G). As above, this defines a group action of G on P(G). Note
that if S is the one element set {s} then g - S is the one element set {gsg~!} and so this
action of G on all subsets of G may be considered as an extension of the action of G
on itself by conjugation.

Definition. Two subsets S and T of G are said to be conjugate in G if there is some
g € G such that T = gSg~! (i.e., if and only if they are in the same orbit of G acting
on its subsets by conjugation).

We now apply Proposition 2 to the action of G by conjugation. Proposition 2 proves
that if S is a subset of G, then the number of conjugates of S equals the index |G : G5
of the stabilizer G of S. For action by conjugation

Gs ={g€G|gSg™" = S} = Ng(S)
is the normalizer of S in G. We summarize this as

Proposition 6. The number of conjugates of a subset S in a group G is the index of the
normalizer of S, |G : Ng(S)|. In particular, the number of conjugates of an element s
of G is the index of the centralizer of s, |G : Cg(s)].

Proof: The second assertion of the proposition follows from the observation that
N ({s}) = Cg(s).

The action of G on itself by conjugation partitions G into the conjugacy classes
of G, whose orders can be computed by Proposition 6. Since the sum of the orders of
these conjugacy classes is the order of G, we obtain the following important relation
among these orders.

Sec. 4.3  Groups Acting on Themselves by Conjugation 123



Theorem 7. (The Class Equation) Let G be a finite group and let g, g7, ..., g be
representatives of the distinct conjugacy classes of G not contained in the center Z(G)
of G. Then

IGI =1Z2(G)|+)_1G : Cs(g)l.
i=1

Proof: Asnoted in Example 2 above the element {x} is a conjugacy class of size 1 if
and only if x € Z(G), since then gxg~! = x forall g € G. Let Z(G) = {1, z2, ..., Zm}
let Ky, Ks, ..., K, be the conjugacy classes of G not contained inthe center, and let g;
be arepresentative of ; for each i. Then the full set of conjugacy classes of G is given
by

{1}’ {ZZ}, ey {Zm}y K], ’CZv DR ’Cr-

Since these partition G we have
m r
IGl=)_1+) IKi|
i=1 i=1

=1ZG)| + )_IG : Ce(g)l,

i=1

where |K;| is given by Proposition 6. This proves the class equation.

Note in particular that all the summands on the right hand side of the class equation
are divisors of the group order since they are indices of subgroups of G. This restricts
their possible values (cf. Exercise 6, for example).

Examples

(1) The class equation gives no information in an abelian group since conjugation is the
trivial action and all conjugacy classes have size 1.

(2) In any group G we have (g) < Cg(g); this observation helps to minimize com-
putations of conjugacy classes. For example, in the quaternion group Qg we see
that (i) < Cpy(i) < Qg. Since i ¢ Z(Qg) and [Qg : (i)| = 2, we must have
Cg, (i) = (i). Thus i has precisely 2 conjugates in Qg, namely i and —i = kik~1.
The other conjugacy classes in Qg are determined similarly and are

{1}, (=1}, (&}, {xj}. {*k}
The first two classes form Z(Qg) and the class equation for this group is
Q| =2+4+2+4+2+2.

(3) In Dg we may also use the fact-that the three subgroups of index 2 are abelian to
quickly see that if x ¢ Z(Dg), then |Cp,(x)| = 4. The conjugacy classes of Dg are

1, 3 (nri), (s sr?), {sr, sr3).
The first two classes form Z(Dg) and the class equation for this group is

|Dgl=2+2+2+2.
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Before discussing more examples of conjugacy we give two important conse-
quences of the class equation. The first application of the class equation is to show
that groups of prime power order have nontrivial centers, which is the starting point for
the study of groups of prime power order (to which we return in Chapter 6).

Theorem 8. If p is a prime and P is a group of prime power order p® for some @ > 1,
then P has a nontrivial center: Z(P) # 1.

Proof: By the class equation

|Pl=1Z(P)|+ ) _IP : Cr(gil
i=1
where g1, ..., g, are representatives of the distinct non-central conjugacy classes. By
definition, Cp(g;) # P fori = 1,2,...,r so p divides |P : Cp(g;)]. Since p also
divides | P| it follows that p divides | Z( P)|, hence the center must be nontrivial.

Corollary 9. If | P| = p? for some prime p, then P is abelian. More precisely, P is
isomorphic to either Z,: or Z, x Z,.

Proof: Since Z(P) # 1 by the theorem, it follows that P/Z(P) is cyclic. By
Exercise 36, Section 3.1, P is abelian. If P has an element of order p2, then P is
cyclic. Assume therefore that every nonidentity element of P has order p. Let x be
any nonidentity element of P andlet y € P — (x ). Since |{(x,y )| > |(x)| = p, we
must have that P = (x, y). Both x and y have order pso (x) x (y) =Z, x Z,. It
now follows directly that the map (x°, y*) > x°)? is an isomorphism from (x ) x {y)
onto P. This completes the proof.

Conjugacy in S,

We next consider conjugation in symmetric groups. Readers familiar with linear algebra
will recognize that in the matrix group G L, (F), conjugation is the same as “change of
basis”: A +> PAP~!. The situation in S, is analogous:

Proposition 10. Let o, T be elements of the symmetric group S, and suppose o has
cycle decomposition
(a1a2 akl) (b1b2 bkz)--- .

Then ot ! has cycle decomposition
) (@) t(a@) -.. (@) (z) t(d) ... t(by,)).- ..,
that is, o7 ! is obtained from o by replacing each entry i in the cycle decomposition
for o by the entry 7(i).
Proof: Observe that if o (i) = j, then
tot” (1()) = T(j).

Thus, if the ordered pair i, j appears in the cycle decomposition of o, then the ordered
pair 7(i), T(j) appears in the cycle decomposition of o7 ~!. This completes the proof.
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Example
Leto = (12)(345)(6789) andlett = (1357)(2468). Then

ror 1 = (34)(567)(8129).

Definition.
M If o € S, is the product of disjoint cycles of lengths ny, ny, ..., n, with
ny < m < --- < n, (including its 1-cycles) then the integers ny, n», ..., n, are
called the cycle type of .

(2) If n € Z*, a partition of n is any nondecreasing sequence of positive integers
whose sum is n.

Note that by the results of the preceding section the cycle type of a permutation is
unique. For example, the cycle type of an m-cyclein S, is 1, 1, ..., 1, m, where the m
is preceded by n — m ones.

Proposition 11. Two elements of S, are conjugate in S, if and only if they have the
same cycle type. The number of conjugacy classes of S, equals the number of partitions
of n.

Proof: By Proposition 10, conjugate permutations have the same cycle type. Con-
versely, suppose the permutations o; and o, have the same cycle type. Order the cycles
in nondecreasing length, including 1-cycles (if several cycles of o7 and o, have the
same length then there are several ways of doing this). Ignoring parentheses, each
cycle decomposition is a list in which all the integers from 1 to n appear exactly once.
Define 7 to be the function which maps the i™ integer in the list for o} to the i* integer
in the list for 3. Thus 7 is a permutation and since the parentheses which delineate the
cycle decompositions appear at the same positions in each list, Proposition 10 ensures
that o171 = 0, so that o} and o, are conjugate.

Since there is a bijection between the conjugacy classes of S, and the permissible
cycle types and each cycle type for a permutation in S, is a partition of n, the second
assertion of the proposition follows, completing the proof.

Examples

@) Letor = (1)(35)(89)(2476) and letoz = (3)(4 7)(8 1)(5 2 6 9). Then define T by
(1) =3,7(3) =4,t(5) =7, t(8) = 8, etc. Then

T=(013425769)@8)

and zo1t7 ! = 03.

(2) If in the previous example we had reordered o, as o2 = (3)(8 1)(4 7)(5 2 6 9) by
interchanging the two cycles of length 2, then the corresponding t described above is
defined by (1) = 3, t(3) = 8, t(5) = 1, t(8) = 4, etc., which gives the permutation

t=(138425)(697)

1 — 47, which shows that there are many elements conjugating o

again with o1t~
into 03.

126 Chap.4 Group Actions



(3) Ifn = 5, the partitions of 5 and corresponding representatives of the conjugacy classes
(with 1-cycles not written) are as given in the following table:

Partition of 5 Representative of Con jugacy Class
1,1,1,1,1 1

1,1,1,2 12

1,1,3 123)

1,4 1234

5 (12345)

1,2,2 12349

2,3 (12)345)

Proposition 11 and Proposition 6 can be used to exhibit the centralizers of some
elements in S,. For example, if o is an m-cycle in S,,, then the number of conjugates
of o (i.e., the number of m-cycles) is

n-n—1)---(n—m+1)
- ;

|Sn |

-———. Since |S,| = n!
|Cs, (0)]

By Proposition 6 this is the index of the centralizer of o:

we obtain
ICs, ()l =m-(n—m)l.

The element o certainly commutes with 1, 0,02, ..., 0™ 1. Italso commutes with any

permutation in S, whose cycles are disjoint from o and there are (n — m)! permutations
of this type (the full symmetric group on the numbers not appearing in o). The product
of elements of these two types already accounts for m - (n — m)! elements commuting
witho. By the order computation above, this is the full centralizer of o in S,,. Explicitly,

if o is an m-cycle in S, then Cs, (0) = {o't|0<i<m—1, t€S,_n}

where S,_,, denotes the subgroup of S, which fixes all integers appearing in the m-cycle
o (and is the identity subgroup if m = norm =n — 1).
For example, the centralizer of o = (1 3 5) in S7 is the subgroup

{(135)t|i=0,1o0r2, and fixes 1, 3 and 5}.

Notethat T € S, where A = {2, 4, 6, 7}, sothere are 4! choices for t and the centralizer
hasorder 3 - 4! = 72.

We shall discuss centralizers of other elements of S, in the next exercises and in
Chapter 5.

We can use this discussion of the conjugacy classes in S, to give a combinatorial
proof of the simplicity of As. We first observe that normal subgroups of a group G are
the union of conjugacy classes of G, i.e.,

if H < G, then for every conjugacy class K of G either K € HorK N H = 0.
This is because if x € K N H, then gxg~! € gHg ™! forall g € G. Since H is normal,
gHg™' = H, so that H contains all the conjugates of x, i.e., K C H.

Sec. 4.3  Groups Acting on Themselves by Conjugation 127



Theorem 12. As is a simple group.

Proof: We first work out the conjugacy classes of As and their orders. Proposition
11 does not apply directly since two elements of the same cycle type (which are conjugate
in Ss5) need not be conjugate in As. Exercises 19 to 22 analyze the relation of classes
in S, to classes in A, in detail.

We have already seen that representatives of the cycle types of even permutations
can be taken to be

1, (123), (12345) and (12)(34).

The centralizers of 3-cycles and 5-cycles in S5 were determined above, and checking
which of these elements are contained in A; we see that

Cas((123)) =((123)) and Cs((12345)=((12345)).

These groups have orders 3 and 5 (index 20 and 12), respectively, so there are 20 distinct
conjugates of (1 2 3) and 12 distinct conjugates of (1 23 4 5) in As. Since there are a
total of twenty 3-cycles in S5 (Exercise 16, Section 1.3) and all of these lie in As, we
see that

all twenty 3-cycles are conjugate in As.

There are a total of twenty-four 5-cycles in As but only 12 distinct conjugates of the
5-cycle (123 45). Thus some 5-cycle, o, is not conjugate to (1 23 4 5) in As (in fact,
(1352 4) isnot conjugate in As to (1 23 4 5) since the method of proof in Proposition
11 shows that any element of S5 conjugating (123 4 5) into (1 3 52 4) must be an odd
permutation). As above we see that o also has 12 distinct conjugates in As, hence

the 5-cycles lie in two conjugacy classes in As, each of which has 12 elements.

Since the 3-cycles and 5-cycles account for all the nonidentity elements of odd order,
the 15 remaining nonidentity elements of As must have order 2 and therefore have
cycle type (2,2). It is easy to see that (1 2)(3 4) commutes with (1 3)(2 4) but does not
commute with any element of odd order in As. It follows that |C4,((12)(34))| = 4.
Thus (1 2)(3 4) has 15 distinct conjugates in As, hence

all 15 elements of order 2 in As are conjugate to (1 2)(3 4).

In summary, the conjugacy classes of As have orders 1, 15, 20, 12 and 12.

Now, suppose H were a normal subgroup of As. Then as we observed above, H
would be the union of conjugacy classes of As. Then the order of H would be both
a divisor of 60 (the order of As) and be the sum of some collection of the integers
{1, 12, 12, 15, 20) (the sizes of the conjugacy classes in As). A quick check shows the
only possibilities are | H| = 1 or | H| = 60, so that As has no proper, nontrivial normal
subgroups.

Right Group Actions

As noted in Section 1.7, in the definition of an action the group elements appear to the
left of the set elements and so our notion of an action might more precisely be termed a
left group action. One can analogously define the notion of a right group action of the
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group G on the nonempty set A as a map from A x G to A, denoted by a - g fora € A
and g € G, that satisfies the axioms:

(1) (a-g1)-g82=a-(g1g2)foralla € A,and g1, g € G, and
2) a-1=aforalla € A.

In much of the literature on group theory, conjugation is written as a right group
action using the following notation:

a® =g lag forall g,a € G.

Similarly, for subsets S of G one defines S8 = g~!Sg. In this notation the two axioms
for a right action are verified as follows:

(@)% = g; ' (g7'ag1)gr = (g182) 'a(gi1g2) = a®8)

and

al=1lal=a

forall gy, 8, a € G. Thus the two axioms for this right action of a group on itself take
the form of the familiar “laws of exponentiation.” (Note that the integer power a” of
a group element a is easily distinguished from the conjugate aé of a by the nature of
the exponent: n € Z but g € G.) Because conjugation is so ubiquitous in the theory of
groups, this notation is a useful and efficient shorthand (as opposed to always writing
gag~! or g - a for action on the left by conjugation).

For arbitrary group actions it is an easy exercise to check that if we are given a left
group action of G on A then the map A x G — A definedbya-g = g~! - a is aright
group action. Conversely, given a right group action of G on A we can form a left group
action by g - @ = a - g~!. Call these pairs corresponding group actions. Put another
way, for corresponding group actions, g acts on the leftin the same way that g ! acts on
the right. This is particularly transparent for the action of conjugation because the “left
conjugate of a by g,” namely gag~!, is the same group element as the “right conjugate
ofabyg™!” namely a¥ ~'. Thus two elements or subsets of a group are “left conjugate”
if and only if they are “right conjugate,” and so the relation “conjugacy” is the same for
the left and right corresponding actions. More generally, it is also an exercise (Exercise
1) to see that for any corresponding left and right actions the orbits are the same.

Wehave consistently used left actions since they are compatible with the notation of
applying functions on the left (i.e., with the notation ¢(g)); in this way left multiplication
on the left cosets of a subgroup is a left action. Similarly, right multiplication on the
right cosets of a subgroup is aright action and the associated permutation representation
¢ is a homomorphism provided the function ¢ : G — S, is written on the right as
(g182)¢ (and also provided permutations in S, are written on the right as functions
from A to itself). There are instances where a set admits two actions by a group G: one
naturally on the left and the other on the right, so that it is useful to be comfortable with
both types of actions.
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EXERCISES

Let G be a group.

1

3

10.

11.

12.
13.
14.

Suppose G has a left action on a set A, denoted by g - a for all g € G anda € A. Denote
the corresponding right action on A by a - g. Prove that the (equivalence) relations ~ and
~' defined by

a~b if and only if a=g-b forsomegeG

and
a~'b ifandonlyif a=b-g forsomegeG

are the same relation (i.e., a ~ b if and only if a ~’ b).

. Find all conjugacy classes and their sizes in the following groups:

(@Dg (b) Qs (o) A4
Find all the conjugacy classes and their sizes in the following groups:
@ZyxS3 (b)S3x83 (¢)Z3 x Ay

. Prove that if § € G and g € G then gNG(S)g~! = Ng(gSg™!) and gCs(S)g™! =

Co(gSg™).

. If the center of G is of index n, prove that every conjugacy class has at most n elements.
. Assume G is a non-abelian group of order 15. Prove that Z(G) = 1. Use the fact that

(g) < Cg(g) forall g € G to show that there is at most one possible class equation for
G. [Use Exercise 36, Section 3.1.]

. Forn = 3, 4, 6 and 7 make lists of the partitions of n and give representatives for the

corresponding conjugacy classes of Sy

. Prove that Z(S,) = 1 foralln > 3.
. Show that |Cs, ((12)(34))| = 8 - (n — 4)! for all n > 4. Determine the elements in this

centralizer explicitly.

Let o be the 5-cycle (1 2 3 4 5) in Ss. In each of (a) to (c) find an explicit element T € S5
which accomplishes the specified conjugation:

@) tot ! =02

() rtor =071

(© tor =072

In each of (a) — (d) determine whether o1 and o7 are conjugate. If they are, give an explicit
permutation T such that tort =0y

@ o1=(012)345)ando2 =(123)@45)

() 061 =(15)372)(1068 11)ando2=(37510)(4 9)(13112)

(©) o1=(15)372)(1068 11) ando2 = 5}

d) o1 =(13)(246)ando2 = (35)(24)(5 6).

Find a representative for each conjugacy class of elements of order 4in Sg and in Sj2.
Find all finite groups which have exactly two conjugacy classes.

In Exercise 1 of Section 2 two labellings of the elements {1, a, b, c} of the Klein 4-group
V were chosen to give two versions of the left regular representation of V into Ss. Let
71 be the version of regular representation obtained in part (a) of that exercise and let
mp be the version obtained via the labelling in part (b). Let ¢ = (2 4). Show that
tom(g)ot ! = m(g) foreach g € V (ie., conjugation by t sends the image of 1o
the image of 72 elementwise).
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15.

16.

17.

18.

19.

20.

21.

23.

24.

25.

Find an element of Sg which conjugates the subgroup of Sg obtained in part (a) of Exercise
3, Section 2 to the subgroup of Sg obtained in part (b) of that same exercise (both of these
subgroups are isomorphic to Dg).

Find an element of S4 which conjugates the subgroup of S4 obtained in part (a) of Exercise
5, Section 2 to the subgroup of S4 obtained in part (b) of that same exercise (both of these
subgroups are isomorphic to Dg).

Let A be a nonempty set and let X be any subset of S4. Let
F(X)={a€ A|o(a) =aforall o € X} — the fixed set of X.

Let M(X) = A — F(X) be the elements which are moved by some element of X. Let
D ={o € S4 | IM(c)| < oo}. Prove that D is a normal subgroup of S4.

Let A be a set, let H be a subgroup of S4 and let F (H) be the fixed points of H on A as
defined in the preceding exercise. Prove thatif ¢ € N, (H) then 7 stabilizes the set F(H)
and its complement A — F(H).

Assume H is a normal subgroup of G, K is a conjugacy class of G contained in H

.and x € K. Prove that K is a union of k conjugacy classes of equal size in H, where

k =|G : HCg(x)|. Deduce that a conjugacy class in S,, which consists of even permuta-
tions is either a single conjugacy class under the action of A, or is a union of two classes
of the same size in A,,. [Let A = Cg(x) and B = H so AN B = Cy(x). Draw the lat-
tice diagram associated to the Second Isomorphism Theorem and interpret the appropriate
indices. See also Exercise 9, Section 1.]

Let 0 € A,. Show that all elements in the conjugacy class of ¢ in S, (i.e., all elements
of the same cycle type as o) are conjugate in A, if and only if o commutes with an odd
permutation. [Use the preceding exercise.]

Let K be a conjugacy class in S, and assume that C € A,. Show o € S, does not
commute with any odd permutation if and only if the cycle type of ¢ consists of distinct
odd integers. Deduce that K consists of two conjugacy classes in A,, if and only if the cycle
type of an element of K consists of distinct odd integers. [Assume first that o € K does
not commute with any odd permutation. Observe that o commutes with each individual
cycle in its cycle decomposition — use this to show that all its cycles must be of odd
length. If two cycles have the same odd length, k, find a product of k transpositions which
interchanges them and commutes with o. Conversely, if the cycle type of o consists of
distinct integers, prove that o commutes only with the group generated by the cycles in its
cycle decomposition.]

Show that if » is odd then the set of all n-cycles consists of two conjugacy classes of equal
size in A,,.

Recall (cf. Exercise 16, Section 2.4) that a proper subgroup M of G is called maximal if
whenever M < H < G, either H = M or H = G. Prove that if M is a maximal subgroup
of G theneither Ng (M) = M or Ng(M) = G. Deduce that if M is a maximal subgroup of
G that is not normal in G then the number of nonidentity elements of G that are contained
in conjugates of M is at most (|JM| — 1)|G : M]|.

Assume H is a proper subgroup of the finite group G. Prove G # UgzeggH g lie,Gis

not the union of the conjugates of any proper subgroup. [Put H in some maximal subgroup
and use the preceding exercise.]

LetG = GLy(C)andlet H = {(g lg) | @, b, c € C, ac # 0}. Prove that every element

of G is conjugate to some element of the subgroup H and deduce that G is the union of
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26.

27.

28.

29.

30.

31

32.

33.

34.

3s.

36.

conjugates of H. [Show that every element of GL,(C) has an eigenvector.)

Let G be a transitive permutation group on the finite set A with [A| > 1. Show that there
is some o € G such that o(a) # a forall a € A (such an element o is called fixed point
free).

Let g1, g2, - - -, g, be representatives of the conjugacy classes of the finite group G and
assume these elements pairwise commute. Prove that G is abelian.

Let p and g be primes with p < g. Prove that a non-abelian group G of order pq has a
nonnormal subgroup of index g, so that there exists an injective homomorphism into S,,.
Deduce that G is isomorphic to a subgroup of the normalizer in S, of the cyclic group
generated by the g-cycle (12...¢9).

Let p be a prime and let G be a group of order p®. Prove that G has a subgroup of order
pﬁ , for every S with 0 < 8 < ¢. [Use Theorem 8 and induction on ¢.]

If G is a group of odd order, prove for any nonidentity element x € G that x and x~! are
not conjugate in G.

Using the usual generators and relations for the dihedral group Dy, (cf. Section 1.2) show
that for n = 2k an even integer the conjugacy classes in Dy, are the following: {1}, {r*},
rEY, 22, L, ECD) (k22 | b =1,... .k} and {sr?*") | b = 1,..., k). Give
the class equation for D»,,.

For n = 2k + 1 an odd integer show that the conjugacy classes in Dy, are {1}, {rt1y,
(r¥2), ..., (#r**), (sr® | b=1,..., n}. Give the class equation for Ds,,.

This exercise gives a formula for the size of each conjugacy class in S,. Let o be a
permutation in S, and let my, ma, ..., m; be the distinct integers which appear in the
cycle type of o (including 1-cycles). For each i € (1, 2, ..., s} assume o has k; cycles of
length m; (so that X{_, kym; = n). Prove that the number of conjugates of o is

n!
Kk !my (a2 . (ks tmf)

[See Exercises 6 and 7 in Section 1.3 where this formula was given in some special cases.]

Prove thatif p is a prime and P is a subgroup of Sp, of order p, then |Ng, (P)| = p(p—1).
[Argue that every conjugate of P contains exactly p — 1 p-cycles and use the formula for
the number of p-cycles to compute the index of N, s, (P) in Sp.]

Let p be a prime. Find a formula for the number of conjugacy classes of elements of order
p in S, (using the greatest integer function).

Letm : G — S¢ be the left regular representation afforded by the action of G on itself by

left multiplication. For each g € G denote the permutation 7(g) by o, so that o, (x) = gx

forallx € G. Let A : G — S be the permutation representation afforded by the

corresponding right action of G on itself, and for each h € G denote the permutation A(h)

by t. Thus ;,(x) = xh~! forall x € G (A is called the right regular representation of

G).

(a) Prove that o, and r;, commute for all g, h € G. (Thus the centralizer in S of 7 (G)
contains the subgroup A(G), which is isomorphic to G).

(b) Prove that o, = 7, if and only if g is an element of order 1 or 2 in the center of G.

(c) Prove that o, = 7 if and only if g and h lie in the center of G. Deduce that
7(G) N AMG) = n(Z(G)) = MZ(G)).
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4.4 AUTOMORPHISMS

Definition.  Let G be a group. An isomorphism from G onto itself is called an
automorphism of G. The set of all automorphisms of G is denoted by Aut(G).

We leave as an exercise the simple verification that Aut(G) is a group under compo-
sition of automorphisms, the automorphism group of G (composition of automorphisms
is defined since the domain and range of each automorphism is the same). Notice that
automorphisms of a group G are, in particular, permutations of the set G so Aut(G) is
a subgroup of Sg.

One of the most important examples of an automorphism of a group G is provided
by conjugation by a fixed elementin G. The next result discusses this in a slightly more
general context. '

Proposition 13. Let H be a normal subgroup of the group G. Then G acts by con-
jugation on H as automorphisms of H. More specifically, the action of G on H by
conjugation is defined for each g € G by

h+> ghg™! foreach h € H.

For each g € G, conjugation by g is an automorphism of H. The permutation rep-
resentation afforded by this action is a homomorphism of G into Aut(H) with kernel
Cg(H). In particular, G/ Cs(H) is isomorphic to a subgroup of Aut(H).

Proof: (cf. Exercise 17, Section 1.7) Let ¢, be conjugation by g. Note that because
g normalizes H, ¢, maps H to itself. Since we have already seen that conjugation
defines an action, it follows that ¢y = 1 (the identity map on H) and ¢, o ¢p = @up
for all a, b € G. Thus each ¢, gives a bijection from H to itself since it has a 2-sided
inverse ¢,-1. Each ¢, is a homomorphism from H to H because

@e(hk) = g(hk)g™" = gh(gg kg™ = (ghg ") (gkg™") = ¢ (h)p, (k)

forall h, k € H. This proves that conjugation by any fixed element of G defines an
automorphism of H.

By the preceding remark, the permutation representation ¥ : G — Sy defined by
¥ (g) = ¢, (which we have already proved is a homomorphism) has image contained
in the subgroup Aut(H) of S;;. Finally,

kery ={g € G| g, =id}
={ge€G|ghg™ ' =hforallh € H}
= Cg(H).
The First Isomorphism Theorem implies the final statement of the proposition.

Proposition 13 shows that a group acts by conjugation on a normal subgroup as
Structure preserving permutations, i.e., as automorphisms. In particular, this action
must send subgroups to subgroups, elements of order n to elements of order n, etc. Two
specific applications of this proposition are described in the next two corollaries.
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Corollary 14. If K is any subgroup of the group G and g € G, then K = gKg!.
Conjugate elements and conjugate subgroups have the same order.

Proof: Letting G = H in the proposition shows that conjugation by g € G is an
automorphism of G, from which the corollary follows.

Corollary 1S5. For any subgroup H of a group G, the quotient group Ng(H)/Cc(H)
is isomorphic to a subgroup of Aut(H). In particular, G/Z(G) is isomorphic to a
subgroup of Aut(G).

Proof: Since H is a normal subgroup of the group N¢(H ), Proposition 13 (applied
with Ng(H) playing the role of G) implies the first assertion. The second assertion is
the special case when H = G, in which case Ng(G) = G and C(G) = Z(G).

Definition. Let G be a group and let g € G. Conjugation by g is called an inner
automorphism of G and the subgroup of Aut(G) consisting of all inner automorphisms
is denoted by Inn(G).

Note that the collection of inner automorphisms of G is in fact a subgroup of Aut(G)
and thatby Corollary 15, Inn(G) = G/Z(G). Note also that if H is a normal subgroup
of G, conjugation by an element of G when restricted to H is an automorphism of H
but need not be an inner automorphism of H (as we shall see).

Examples

(1) A group G is abelian if and only if every inner automorphism is trivial. If H is an
abelian normal subgroup of G and H is not contained in Z(G), then there is some
g € G such that conjugation by g restricted to H is not an inner automorphism of
H. An explicit example of this is G = A4, H is the Klein 4-group in G and g is any
3-cycle.

(2) Since Z(Qg) = (—1) we have Inn(Qg) = V3.

(3) Since Z(Dg) = (r?) we have Inn(Dg) = Vj.

(@) Sinceforalln > 3, Z(S,)) = 1 we have Inn(S,,) = S,,.

Corollary 15 shows that any information we have about the automorphism group
of a subgroup H of a group G translates into information about Ng(H)/C¢(H). For
example, if H = Z,, then since H has unique elements of orders 1 and 2, Corollary 14
forces Aut(H) = 1. Thusif H = Z,, Ng¢(H) = Cg(H); if in addition H is a normal
subgroup of G, then H < Z(G) (cf. Exercise 10, Section 2.2).

Although the preceding example was fairly trivial, it illustrates that the action of
G by conjugation on a normal subgroup H can be restricted by knowledge of the
automorphism group of H. This in turn can be used to investigate the structure of G
and will lead to some classification theorems when we consider semidirect products in
Section 5.5. -

A notion which will be used in later sections most naturally warrants introduction
here:
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Definition. A subgroup H of agroup G iscalled characteristic in G, denoted H char G,
if every automorphism of G maps H toitself, i.e., 0 (H) = H for all 0 € Aut(G).

Results concerning characteristic subgroups which we shall use later (and whose
proof's are relegated to the exercises) are

(1) characteristic subgroups are normal,

(2) if H is the unique subgroup of G of a given order, then H is characteristic in G,
and

(3) if K char H and H < G, then K < G (so although “normality” is not a transitive
property (i.e., a normal subgroup of a normal subgroup need not be normal), a
characteristic subgroup of a normal subgroup is normal).

Thus we may think of characteristic subgroups as “strongly normal” subgroups. For
example, property (2) and Theorem 2.7 imply that every subgroup of a cyclic group is
characteristic.

We close this section with some results on automorphism groups of specific groups.

Proposition 16. The automorphism group of the cyclic group of order n is isomorphic
to (Z/nZ)*, an abelian group of order ¢(n) (where ¢ is Euler’s function).

Proof: Letx be a generator of the cyclic group Z,,. If ¢ € Aut(Z,,), then y/(x) = x°
for some a € Z and the integer a uniquely determines . Denote this automorphism
by ¥,. As usual, since |x| = n, the integer a is only defined mod n. Since v/, is an
automorphism, x and x must have the same order, hence (a, n) = 1. Furthermore, for
every a relatively prime to n, the map x + x“ is an automorphism of Z,. Hence we
have a surjective map

v : Aut(Z,) - (Z/nZ)*>
Yo, > a (mod n).
The map W is a homomorphism because
Va 0 Yo(®) = Yu(x") = (6")* = x* = Y (x)
for all ¥, ¥, € Aut(Z,), so that
V(s oY) = W(Yap) = ab (mod n) = ¥ (V) ¥ (¥).
Finally, W is clearly injective, hence is an isomorphism.
A complete description of the isomorphism type of Aut(Z,) is given at the end of
Section 9.5.

Example

Assume G is a group of order pq, where p and g are primes (not necessarily distinct) with
p<q.If ptq —1, weprove G is abelian.

If Z(G) # 1, Lagrange’s Theorem forces G/Z(G) 1o be cyclic, hence G is abelian by
Exercise 36, Section 3.1. Hence we may assume Z(G) = 1.

Sec. 44  Automorphisms 135



If every nonidentity element of G has order p, thenthe centralizer of every nonidentity

element has index g, so the class equation for G reads

pg=1+kq.
This is impossible since g divides pg and kq but not 1. Thus G contains an element, x, of
order q.

Let H = (x). Since H has index p and p is the smallest prime dividing |G|, the
subgroup H is normal in G by Corollary S. Since Z(G) = 1, we must have Cg(H) = H.
Thus G/H = Ng(H)/Cg(H) is a group of order p isomorphic to a subgroup of Aut(H)
by Corollary 15. But by Proposition 16, Aut(H) has order ¢(q) = g — 1, which by
Lagrange’s Theorem would imply p | g — 1, contrary to assumption. This shows that G
must be abelian.

One can check that every group of order pg, where p and g are distinct primes
with p < g and p t g — 1 is cyclic (see the exercises). This is the first instance where
there is a unique isomorphism type of group whose order is composite. For instance,
every group of order 15 is cyclic.

The next proposition summarizes some results on automorphism groups of known
groups and will be proved later. Part 3 of this proposition illustrates how the theory of
vector spaces comes into play in group theory.

Proposition 17.

(1) If p is an odd prime and n € Z, then the automorphism group of the cyclic
group of order p is cyclic of order p — 1. More generally, the automorphism
group of the cyclic group of order p” is cyclic of order p"~!(p—1) (cf. Corollary
20, Section 9.5).

(2) For all n > 3 the automorphism group of the cyclic group of order 2" is iso-
morphic to Z; x Z;-2, and in particular is not cyclic but has a cyclic subgroup
of index 2 (cf. Corollary 20, Section 9.5).

(3) Let p be a prime and let V be an abelian group (written additively) with the
property that pv = Oforallv € V. If |V| = p", then V is an n-dimensional
vector space over the field F, = Z/ pZ. The automorphisms of V are precisely
the nonsingular linear transformations from V to itself, that is

Aut(V) = GL(V) = GL,(Fp).
In particular, the order of Aut(V) is as given in Section 1.4 (cf. the examples in
Sections 10.2 and 11.1).

(4) Forall n # 6 we have Aut(S,) = Inn(S,)) = S,, (cf. Exercise 18). Forn = 6 we
have |Aut(Sg) : Inn(S¢)| = 2 (cf. the following Exercise 19 and also Exercise
10 in Section 6.3).

(5) Aut(Dg) = Dg and Aut(Qg) = S, (cf. the following Exercises 4 and 5 and also
Exercise 9 in Section 6.3).

The group V described in Part 3 of the proposition is called the elementary abelian
group of order p" (we shall see in Chapter 5 that it is uniquely determined up to
isomorphism by p and n). The Klein 4-group, V4, is the elementary abelian group of
order 4. This proposition asserts that

Aut(Vy) = GL,y(IFy).
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By the exercises in Section 1.4, the latter group has order 6. But Aut(V4) permutes
the 3 nonidentity elements of V4, and this action of Aut(V4) on V4 — {1} gives an
injective permutation representation of Aut(V;) into S3. By order considerations, the
homomorphism is onto, so

Aut(Vy) = GLy(Fy) = 5.

Note that V4 is abelian, so Inn(Vy4) = 1.

For any prime p, the elementary abelian group of order p? is Z, x Z,. Its auto-
morphism group, GL,(F ), has order p(p — 1)?(p + 1). Thus Corollary 9 implies that
for p a prime

if |P| = p*, |Aut(P)| = p(p — D or p(p — 1)*(p + 1)
according to whether P is cyclic or elementary abelian, respectively.

Example

Suppose G is a group of order 45 = 325 with a normal subgroup P of order 32. We show
that G is necessarily abelian.

The quotient G /C¢ (P) is isomorphic to a subgroup of Aut(P) by Corollary 15, and
Aut(P) has order 6 or 48 (according to whether P is cyclic or elementary abelian, respec-
tively) by the preceding paragraph. On the other hand, since the order of P is the square
of a prime, P is an abelian group, hence P < Cg(P). It follows that |Cg(P)| is divisible
by 9, which implies |G/Cq(P)| is 1 or 5. Together these imply |G/Cg(P)| = 1, i.e.,
Cc(P) = G and P < Z(G). Since then G/Z(G) is cyclic, G must be an abelian group.

EXERCISES
Let G be a group.

1. If 0 € Aut(G) and ¢ is conjugation by g prove cnpgo" = ¢o(g)- Deduce that Inn(G) <
Aut(G). (The group Aut(G)/Inn(G) is called the outer automorphism group of G.)
2. Prove thatif G is anabelian group of order pg, where p and g are distinct primes, then G

is cyclic. [Use Cauchy’s Theorem to produce elements of order p and g and consider the
order of their product.]

3. Prove that under any automorphism of Dg, r has at most 2 possible images and s has at
most 4 possible images (r and s are the usual generators — cf. Section 1.2). Deduce that
|Aut(Dg)| < 8.

4. Use arguments similar to those in the preceding exercise to show |Aut(Qg)| < 24.

S. Use the factthat Dg < Dj¢ to prove that Aut(Dg) = Dg.

6. Prove that characteristic subgroups are normal. Give an example of a normal subgroup
that is not characteristic.

7. If H is the unique subgroup of a given order in a group G prove H is characteristic in G.

8. Let G be a group with subgroups H and K with H < K.
(a) Prove that if H is characteristic in K and K is normal in G then H is normal in G.
(b) Prove thatif H is characteristic in K and K is characteristic in G then H is charac-
teristic in G. Use this to prove that the Klein 4-group V; is characteristic in S4.
(c) Give an example to show that if H is normal in K and K is characteristic in G then
H need not be normal in G.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. If r, s are the usual generators for the dihedral group D»,, use the preceding two exercises

to deduce that every subgroup of ( r ) is normal in Dyp,.

Let G be a group, let A be an abelian normal subgroup of G, and write G = G/A. Show
that G acts (on the left) by conjugationon A by g-a = gag™!, where g is any representative
of the coset g (in particular, show that this action is well defined). Give an explicitexample
to show that this action is not well defined if A is non-abelian.

If p is a prime and P is a subgroup of S, of order p, prove N, (P)/Csp (P) = Aut(P).
[Use Exercise 34, Section 3.]

Let G be a group of order 3825. Prove that if H is a normal subgroup of order 17 in G
then H < Z(G).

Let G be a group of order 203. Prove that if H is a normal subgroup of order 7in G then
H < Z(G). Deduce that G is abelian in this case.

Let G be a group of order 1575. Provethat if H is a normal subgroup of order 9 in G then
H < Z(G).

Prove that each of the following (multiplicative) groups is cyclic: (Z/5Z)*, (Z/9Z)* and
(Z/18Z)*.

Prove that (Z/24Z)* is an elementary abelian group of order 8. (We shall see later that
(Z/ nZ)* is an elementary abelian group if and only if n [ 24)

Let G = (x) be a cyclic group of order n. For n = 2,3, 4,5, 6 write out the elements
of Aut(G) explicitly (by Proposition 16 above we know Aut(G) = (Z/nZ)*, so for each
elementa € (Z/nZ)*, write out explicitly what the automorphism v, does to the elements
{1, x. x2, ..., x"_l} of G).

This exercise shows thatforn # 6 every automorphism of S, is inner. Fix anintegern > 2

withn # 6.

(a) Prove that the automorphism group of a group G permutes the conjugacy classes of
G, i.e., foreach o € Aut(G) and each conjugacy class K of G the set o (K) is also a
conjugacy class of G.

(b) Let K be the conjugacy class of transpositionsin S, and let K’ be the conjugacy class
of any element of order 2 in S, that is not a transposition. Prove that |K| # |K'|.
Deduce that any automorphism of S,, sends transpositions to transpositions. [See
Exercise 33 in Section 3.]

(¢) Prove that for each o € Aut(S,,)

o:(12)- (aby), g:(13)—»(ab3), ..., o:(1n)- (aby)
for some distinct integers a, b, b3, ...,b, € {1,2,...,n}.
(d) Show that (1 2), (1 3), ..., (1 n) generate S,, and deduce that any automorphism

of S, is uniquely determined by its action on these elements. Use (c) to show that S,
has at most n! automorphisms and conclude that Aut(S,) = Inn(S,) forn # 6.

This exercise shows that |Aut(Sg) : Inn(Sg)| < 2 (Exercise 10 in Section 6.3 shows that

equality holds by exhibiting an automorphism of S that is not inner).

(a) Let K be the conjugacy class of transpositions in S¢ and let K’ be the conjugacy class
of any element of order 2 in S¢ thatis not a transposition. Prove that || # |K’| unless
K is the conjugacy class of products of three disjoint transpositions. Deduce that
Aut(S¢) has a subgroup of index at most 2 which sends transpositions to transpositions.

(b) Prove that |[Aut(Sg) : Inn(Se)| < 2. [Follow the same steps as in (c) and (d) of
the preceding exercise to show that any automorphism that sends transpositions to
transpositions is inner.]
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The next exercise introduces a subgroup, J(P), which (like the center of P) is defined for an
arbitrary finite group P (although in most applications P is a group whose order is a power of
a prime). This subgroup was defined by J. Thompson in 1964 and it now plays a pivotal role
in the study of finite groups, in particular, in the classification of finite simple groups.

20. For any finite group P let d(P) be the minimum number of generators of P (so, for
example, d(P) = 1 if and only if P is a nontrivial cyclic group and d(Qg) = 2). Let m(P)
be the maximum of the integers d(A) as A runs over all abelian subgroups of P (so, for
example, m(Qg) = 1 and m(Dg) = 2). Define

J(P) = (A | A is an abelian subgroup of P with d(A) = m(P)).

(J(P) is called the Thompson subgroup of P.)

(a) Prove that J(P) is a characteristic subgroup of P.

(b) For each of the following groups P list all abelian subgroups A of P that satisfy
d(A) = m(P): Qs, Dg, D1¢ and QD;¢ (Wwhere QD¢ is the quasidihedral group
of order 16 defined in Exercise 11 of Section 2.5). [Use the lattices of subgroups for
these groups in Section 2.5.]

(c) Show that J(Qg) = Qs, J(Dg) = Dg, J(D16) = D16 and J(Q Dje) is a dihedral
subgroup of order 8 in Q Djg.

(d) Provethatif Q < P and J(P) is a subgroup of Q, then J(P) = J(Q). Deduce that if
P is a subgroup (not necessarily normal) of the finite group G and J (P) is contained
in some subgroup Q of P such that Q < G, then J(P) < G.

4.5 SYLOW’S THEOREM

In this section we prove a partial converse to Lagrange’s Theorem and derive numerous
consequences, some of which will lead to classification theorems in the next chapter.

Definition. Let G be a group and let p be a prime.

(1) A group of order p* for some > 1is called a p-group. Subgroups of G which
are p-groups are called p-subgroups.

(2) If G is a group of order p*m, where p { m, then a subgroup of order p* is called
a Sylow p-subgroup of G.

(3) The set of Sylow p-subgroups of G will be denoted by Syl,(G) and the number
of Sylow p-subgroups of G will be denoted by n,(G) (or just n, when G is
clear from the context).

Theorem 18. (Sylow’s Theorem) Let G be a group of order p®m, where p is a prime
not dividing m.
(1) Sylow p-subgroups of G exist, i.e., Syl,(G) # 0.
(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G, then there
exists g € G such that Q < gPg~!, i.e., Q is contained in some conjugate of
P. In particular, any two Sylow p-subgroups of G are conjugate in G.
(3) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,

n, = 1(mod p).

Further, n,, is the index in G of the normalizer N ( P) forany Sylow p-subgroup
P, hence n, divides m.
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We first prove the following lemma:
Lemma19. Let P € Syl,(G). If Q is any p-subgroup of G, then ONNg(P) = QNP.

Proof: Let H = Ng(P) N Q. Since P < Ng(P) itis clear that PN Q < H, so
we must prove the reverse inclusion. Since by definition H < (, this is equivalent to
showing H < P. We do this by demonstrating that P H is a p-subgroup of G containing
both P and H; but P is a p-subgroup of G of largest possible order, so we must have
PH=P,ie,H<P.

Since H < Ng(P), by Corollary 15 in Section 3.2, P H is a subgroup. By Propo-
sition 13 in the same section
pr = JPIHL

|PNH|
All the numbers in the above quotient are powers of p, so P H is a p-group. Moreover,
P is a subgroup of P H so the order of P H is divisible by p®, the largest power of
p which divides |G|. These two facts force |PH| = p* = |P|. This in turn implies
P = PH and H < P. This establishes the lemma.

Proof of Sylow’s Theorem (1) Proceed by induction on |G|. If |G| = 1, there is nothing
to prove. Assume inductively the existence of Sylow p-subgroups for all groups of
order less than |G]|.

If p divides | Z(G)|, then by Cauchy’s Theorem for abelian groups (Proposition 21,
Section 3.4) Z(G) has a subgroup, N, of order p. Let G = G/N, sothat |G| = p®~'m.
By induction, G has a subgroup P of order p*~!. If we let P be the subgroup of G
containing N such that P/N = P then |P| = |P/N| - |N| = p® and P is a Sylow
p-subgroup of G. We are reduced to the case when p does not divide |Z(G)|.

Let g1, g2, . - ., & be representatives of the distinct non-central conjugacy classes
of G. The class equation for G is

IGI =1Z(G)|+ )_IG : Co(gi)-
i=1
If p | |G : Cg(g)| for all i, then since p | |G|, we would also have p | |Z(G)I,
a contradiction. Thus for some i, p does not divide |G : Cg(g;)|- For this i let
H = C¢(g;) so that
|H| = p®k, where p tk.

Since g; ¢ Z(G), |H| < |G|. By induction, H has a Sylow p-subgroup, P, which of
course is also a subgroup of G. Since |P| = p®, P is a Sylow p-subgroup of G. This
completes the induction and establishes (1).

Before proving (2) and (3) we make some calculations. By (1) there exists a Sylow
p-subgroup, P, of G. Let
{P,P,...,P}=S
be the set of all conjugates of P (i.e., S = {gPg~' | g € G)) and let Q be any p-
subgroup of G. By definition of S, G, hence also Q, acts by conjugation on S. Write
S as a disjoint union of orbits under this action by Q:

S=0,U0,U---U0O,
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wherer = |O)|+---+|Os|. Keep in mind that r does not depend on Q but the number
of Q-orbits s does (note that by definition, G has only one orbiton S but a subgroup Q of
G may have more than one orbit). Renumber the elements of S if necessary so that the
first s elements of S are representatives of the Q-orbits: P; € O;, 1 <i < s. It follows
from Proposition 2 that |O;| = |Q : Ng(P;)|. By definition, No(P;) = Ng(P) N Q
and by Lemma 19, Ng(P;) N Q = P; N Q. Combining these two facts gives

O:il=1Q : RN QI I<ic<s @.1)

We are now in a position to prove that » = 1(mod p). Since Q was arbitrary we
may take Q = P; above, so that (1) gives

O] = 1.
Now, foralli > 1, P, # P;,so PPN P; < P,. By (1)
Ol =P : ANP|>1, 2<ic<s.
Since P, is a p-group, |P; : P; N P;| must be a power of p, so that
pllOl,  2<is<s.

Thus
r =101+ (10:2| +... 4+ 10]) = 1(mod p).

We now prove parts (2) and (3). Let QO be any p-subgroup of G. Suppose Q is
not contained in F; foranyi € {1,2,..., r} (e, Q£ ng‘l for any g € G). Inthis
situation, O N P; < Q for all i, so by (1) 7

Gl =10 : QNPF|>1, 1<i<s.

Thus p | |O;| forall i, so p divides |O;| +. ..+ |Os| = r. This contradicts the fact that
r = 1(mod p) (remember, r does not depend on the choice of Q). This contradiction
proves O < gPg~! for some g € G.

To see that all Sylow p-subgroups of G are conjugate, let O be any Sylow p-
subgroup of G. By the preceding argument, Q < gPg~! for some g € G. Since
|ng_1| = |Q| = p“, we must have ng_l = Q. This establishes part (2) of the
theorem. In particular, S = Syl,(G) since every Sylow p-subgroup of G is conjugate
to P, and so n, = r = 1(mod p), which is the first part of (3).

Finally, since all Sylow p-subgroups are conjugate, Proposition 6 shows that

n, =|G : Ng(P)| forany P € Syl,(G),

completing the proof of Sylow’s Theorem.

Note that the conjugacy part of Sylow’s Theorem together with Corollary 14 shows
that any two Sylow p-subgroups of a group (for the same prime p) are isomorphic.
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Corollary 20. Let P be a Sylow p-subgroup of G. Then the following are equivalent:
(1) P is the unique Sylow p-subgroup of G, i.e, n, =1
(2) P isnormalin G
(3) P is characteristic in G
(4) All subgroups generated by elements of p-power order are p-groups, i.e., if X
is any subset of G such that |x]| is a power of p forall x € X, then (X ) is a

p-group.

Proof: If (1) holds, then gPg~! = P forall g € G since gPg~! € Syl,(G),ie., P
isnormal in G. Hence (1) implies (2). Conversely, if P < G and Q € Syl,(G), then by
Sylow’s Theorem there exists g € G such that Q = gPg~! = P. Thus Syl,(G) = {P}
and (2) implies (1).

Since characteristic subgroups are normal, (3) implies (2). Conversely, if P < G,
we just proved P is the unique subgroup of G of order p®, hence P char G. Thus (2)
and (3) are equivalent.

Finally, assume (1) holds and suppose X is a subset of G such that |x| is a power
of p forall x € X. By the conjugacy part of Sylow’s Theorem, for each x € X there
is some g € G such that x € gPg~! = P. Thus X € P,andso (X) < P, and (X )
is a p-group. Conversely, if (4) holds, let X be the union of all Sylow p-subgroups of
G. If P is any Sylow p-subgroup, P is a subgroup of the p-group ( X ). Since P is a
p-subgroup of G of maximal order, we must have P = ( X ), so (1) holds.

Examples
Let G be a finite group and let p be a prime.

(1) If p does not divide the order of G, the Sylow p-subgroup of G is the trivial group
(and all parts of Sylow’s Theorem hold trivially). If |G| = p?%, G is the unique Sylow
p-subgroup of G.

(2) A finite abelian group has a unique Sylow p-subgroup for each prime p. This subgroup
consists of all elements x whose order is a power of p. This is sometimes called the
p-primary component of the abelian group.

(3) S3 has three Sylow 2-subgroups: ((12) ), ((23)) and ( (1 3) ). It has a unique (hence
normal) Sylow 3-subgroup: ( (123)) = A3. Note that 3 = 1(mod 2).

(4) A4 has a unique Sylow 2-subgroup: ((12)(34), (1 3)(24)) = V4. It has four Sylow
3-subgroups: ((123)),((124)),((134))and ((234)). Note that 4 = 1(mod 3).

(5) S4 has np = 3 and n3 = 4. Since S4 contains a subgroup isomorphic to Dg, every
Sylow 2-subgroup of S4 is isomorphic to Dsg.

Applications of Sylow’s Theorem

We now give some applications of Sylow’s Theorem. Most of the examples use Sylow’s
Theorem to prove that a group of a particular order is not simple. After discussing
methods of constructing larger groups from smaller ones (for example, the formation
of semidirect products) we shall be able to use these results to classify groups of some
specific orders n (as we already did for n = 15).

Since Sylow’s Theorem ensures the existence of p-subgroups of a finite group, it
is worthwhile to study groups of prime power order more closely. This will be done in
Chapter 6 and many more applications of Sylow’s Theorem will be discussed there.
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For groups of small order, the congruence condition of Sylow’s Theorem alone
is often sufficient to force the existence of a normal subgroup. The first step in any
numerical application of Sylow’s Theorem s to factor the group order into prime powers.
The largest prime divisors of the group order tend to give the fewest possible values for
n, (for example, the congruence condition on n; gives no restriction whatsoever), which
limits the structure of the group G. In the following examples we shall see situations
where Sylow’s Theorem alone does not force the existence of a normal subgroup,
however some additional argument (often involving studying the elements of order p
for a number of different primes p) proves the existence of a normal Sylow subgroup.

Example: (Groups of order pq, p and g primes with p < q)
Suppose |G| = pq for primes p and g with p < g. Let P € Syl,(G) andlet Q € Syl;(G).
We show that Q is normal in G and if P is also normal in G, then G is cyclic.

Now the three conditions: n; = 1 + kq for some k > 0, n, divides p and p < g,
together force k = 0. Sinceng =1, 0 < G.

Since n, divides the prime g, the only possibilities are n, = 1 or ¢. In particular, if
ptq — 1, (thatis, if ¢ # 1(mod p)), then n,, cannot equal g, so P < G.

Let P =(x)and Q = (y). If P < G, then since G/Cg(P) is isomorphic to a
subgroup of Aut(Z,) and the latter group has order p — 1, Lagrange’s Theorem together
with the observation that neither p nor g can divide p — 1 implies that G = Cg(P). In
this case x € P < Z(G) so x and y commute. (Alternatively, this follows immediately
from Exercise 42 of Section 3.1.) This means |xy| = pq (cf. the exercises in Section 2.3),
hence in this case G is cyclic: G = Zp,.

Ifp | q — 1, we shall see in Chapter 5 that there is a unique non-abelian group of order
pq (in which, necessarily, n, = ). We can prove the existence of this group now. Let O be
a Sylow g-subgroup of the symmetric group of degree g, S;. By Exercise 34 in Section 3,
INs, (@) = q(q — 1). By assumption, p [ q — 1 so by Cauchy’s Theorem Ns,(Q) has a
subgroup, P, of order p. By Corollary 15 in Section 3.2, P Q is a group of order pq. Since
Cs,(Q) = Q (Example 2, Section 3), P Q is a non-abelian group. The essential ingredient
in the uniqueness proof of P Q is Theorem 17 on the cyclicity of Aut(Z,).

Example: (Groups of order 30)

Let G be a group of order 30. We show that G has a normal subgroup isomorphic to
Z15. We shall use this information to classify groups of order 30 in the next chapter. Note
that any subgroup of order 15 is necessarily normal (since it is of index 2) and cyclic
(by the preceding result) so it is only necessary to show there exists a subgroup of order
15. The quickest way of doing this is to quote Exercise 13 in Section 2. We give an
alternate argument which illustrates how Sylow’s Theorem can be used in conjunction
with a counting of elements of prime order to produce a normal subgroup.

Let P € Syl5(G) and let Q € Syl3(G). If either P or Q is normal in G, by Corollary
15, Chapter 3, PQ is a group of order 15. Note also that if either P or Q is normal, then
both P and Q are characteristic subgroups of PQ, and since PQ < G, both P and Q are
normal in G (Exercise 8(a), Section 4). Assume therefore that neither Sylow subgroup is
normal. The only possibilities by Part 3 of Sylow’s Theorem are ns = 6 and n3 = 10.
Each element of order 5 lies in a Sylow 5-subgroup, each Sylow 5-subgroup contains 4
nonidentity elements and, by Lagrange’s Theorem, distinct Sylow 5-subgroups intersect
in the identity. Thus the number of elements of order 5 in G is the number of nonidentity
elements in one Sylow 5-subgroup times the number of Sylow 5-subgroups. This would
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be 4 - 6 = 24 elements of order 5. By similar reasoning, the number of elements of order 3
would be 2- 10 = 20. This is absurd since a group of order 30 cannot contain 24 +20 = 44
distinct elements. One of P or Q (hence both) must be normal in G.

This sort of counting technique is frequently useful (cf. also Section 6.2) and works
particularly well when the Sylow p-subgroups have order p (as in this example), since then
the intersection of two distinct Sylow p-subgroups must be the identity. If the order of the
Sylow p-subgroup is p* with & > 2, greater care is required in counting elements, since
in this case distinct Sylow p-subgroups may have many more elements in common, i.e.,
the intersection may be nontrivial.

Example: (Groups of order 12)

Let G be a group of order 12. We show that either G has a normal Sylow 3-subgroup or
G = A4 (inthelattercase G has anormal Sylow 2-subgroup). We shall use this information
to classify groups of order 12 in the next chapter.

Suppose n3 # 1 and let P € Syl3(G). Since n3 | 4 and n3 = 1(mod 3), it follows that
n3 = 4. Since distinct Sylow 3-subgroups intersect in the identity and each contains two
elements of order 3, G contains 2-4 = 8 elements of order 3. Since |G : Ng(P)|=n3 =4,
NG(P) = P. Now G acts by conjugation on its four Sylow 3-subgroups, so this action
affords a permutation representation

¢0:G—> 8

(note that we could also act by left multiplication on the left cosets of P and use Theorem 3).
The kernel K of this action is the subgroup of G which normalizes all Sylow 3-subgroups
of G. In particular, K < Ng(P) = P. Since P is not normal in G by assumption, K =1,
i.e., ¢ isinjective and

G = 9(G) < 84.

Since G contains 8 elements of order 3 and there are precisely 8 elements of order 3 in
S4, all contained in A4, it follows that ¢( G) intersects A4 in a subgroup of order at least 8.
Since both groups have order 12 it follows that ¢(G) = A4, so that G = Ag4.

Note that A4 does indeed have 4 Sylow 3-subgroups (see Example 4 following Corol-
lary 20), so that such a group G does exist. Also, let V be a Sylow 2-subgroup of As.
Since |V | = 4, it contains all of the remaining elements of A4. In particular, there cannot
be another Sylow 2-subgroup Thus n2(A4) = 1, i.e, V <4 A4 (which one can also see
directly because V is the identity together with the three elements of S4 which are products
of two disjoint transpositions, that is, V is a union of conjugacy classes).

Example: (Groups of order p%q, p and q distinct primes)

Let G be a group of order p2q. We show that G has a normal Sylow subgroup (for either
p or g). We shall use this information to classify some groups of this order in the next
chapter (cf. Exercises 8 to 12 of Section 5.5). Let P € Syl,(G) and let Q € Syl,;(G).
Consider first when p > ¢. Since np, | g and n, = 1 + kp, we must have n, = 1.
Thus P < G.
Consider now the case p < g. Ifng =1, Q is normalin G. Assume therefore that

ng > 1,ie, ng = 1+1tq, for some t > 0. Now n, divides p? so ng = por p?. Since
g > p we cannothave n, = p, hence ny = p?. Thus

tg=p*—1=(p—-D(p+1).
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Since g is prime, either g | p—1lorg | p + 1. The former is impossible since g > p so
the latter holds. Since ¢ > p butg | p+ 1, we must have ¢ = p + 1. This forces p = 2,
g = 3 and |G| = 12. The result now follows from the preceding example.

Groups of Order 60

We illustrate how Sylow’s Theorems can be used to unravel the structure of groups of
a given order even if some groups of that order may be simple. Note the technique of
changing from one prime to another and the inductive process where we use results on
groups of order < 60 to study groups of order 60.

Proposition 21. If |G| = 60 and G has more than one Sylow 5-subgroup, then G is
simple.

Proof: Suppose by way of contradiction that |G| = 60 and ns > 1 but that there
exists H a normal subgroup of G with H # 1 or G. By Sylow’s Theorem the only
possibility for ns is 6. Let P € Syls(G), so that |[Ng(P)| = 10 since its index is ns.

Ifs | |H| then H contains a Sylow S5-subgroup of G and since H is normal, it
contains all 6 conjugates of this subgroup. In particular, |H| > 14 6 -4 = 25, and the
only possibility is |H| = 30. This leads to a contradiction since a previous example
proved that any group of order 30 has a normal (hence unique) Sylow S-subgroup. This
argument shows 5 does not divide | H| for any proper normal subgroup H of G.

If |H| = 6 or 12, H has a normal, hence characteristic, Sylow subgroup, which is
therefore also normal in G. Replacing H by this subgroup if necessary, we may assume
|H| =2,30r4. Let G = G/H, so |G| = 30, 20 or 15. In each case, G has a normal
subgroup P of order 5 by previous results. If we let H; be the complete preimage of
Pin G, then H < G, H; # G and 5 | | Hy|. This contradicts the preceding paragraph
and so completes the proof.

Corollary 22. As is simple.

Proof: Thesubgroups ((12345))and((13245)) aredistinct Sylow 5-subgroups
of As so the result follows immediately from the proposition.

The next proposition shows that there is a unique simple group of order 60.
Proposition 23. If G is a simple group of order 60, then G = As.

Proof: Let G be a simple group of order 60, so n, = 3,5 or 15. Let P € Syl,(G)
andlet N = Ng(P),s0 |G : N| =na.

First observe that G has no proper subgroup H of index less that 5, as follows: if
H were a subgroup of G of index 4, 3 or 2, then, by Theorem 3, G would have a normal
subgroup K contained in H with G/ K isomorphic to a subgroup of Sy, S3 or $,. Since
K # G, simplicity forces K = 1. This is impossible since 60 (= |G|) does not divide
4!. This argument shows, in particular, that n, 7# 3.

If n, = 5, then N has index 5 in G so the action of G by left multiplication on
the set of left cosets of N gives a permutation representation of G into Ss. Since (as
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above) the kemel of this representation is a proper normal subgroup and G is simple,
the kernel is 1 and G is isomorphic to a subgroup of Ss. Identify G with this isomorphic
copy so that we may assume G < Ss. If G is not contained in As, then S5 = GAs
and, by the Second Isomorphism Theorem, As N G is of index 2 in G. Since G has no
(normal) subgroup of index 2, this is a contradiction. This argument proves G < As.
Since |G| = | As|, the isomorphic copy of G in S5 coincides with As, as desired.

Finally, assume n, = 15. If for every pair of distinct Sylow 2-subgroups P and Q
of G, PN Q = 1, then the number of nonidentity elements in Sylow 2-subgroups of G
would be (4 — 1) - 15 = 45. But ns = 6 so the number of elements of order 5 in G is
(5 — 1) - 6 = 24, accounting for 69 elements. This contradiction proves that there exist
distinct Sylow 2-subgroups P and Q with |P N Q| = 2. Let M = Ng(P N Q). Since
P and Q are abelian (being groups of order 4), P and Q are subgroups of M and since
G is simple, M # G. Thus 4 divides |M| and |M| > 4 (otherwise, P = M = Q). The
only possibility is |[M| = 12, i.e., M has index 5 in G (recall M cannot have index 3
or 1). But now the argument of the preceding paragraph applied to M in place of N
gives G = As. This leads to a contradiction in this case because n;(As) = 5 (cf. the
exercises). The proof is complete.

EXERCISES

Let G be a finite group and let p be a prime.

1. Prove that if P € Syl,(G) and H is a subgroup of G containing P then P € Syl,(H).
Give an example to show that, in general, a Sylow p-subgroup of a subgroup of G need
not be a Sylow p-subgroup of G.

2. Prove that if H is a subgroup of G and Q € Syl,,(H) then g0g le Sylp(gHg_l) forall
g€eG.

3. Use Sylow’s Theorem to prove Cauchy’s Theorem. (Note that we only used Cauchy’s
Theorem for abelian groups — Proposition 3.21 — in the proof of Sylow’s Theorem so
this line of reasoning is not circular.)

. Exhibit all Sylow 2-subgroups and Sylow 3-subgroups of Dj; and S3 x S3.
. Show that a Sylow p-subgroup of D, is cyclic and normal for every odd prime p.
. Exhibit all Sylow 3-subgroups of A4 and all Sylow 3-subgroups of Ss.

I - WY B N

. Exhibit all Sylow 2-subgroups of S4 and find elements of S4 which conjugate one of these
into each of the others.

8. Exhibit two distinct Sylow 2-subgroups of S5 and an element of S5 that conjugates one
into the other.

9. Exhibit all Sylow 3-subgroups of SL;(F3) (cf. Exercise 9, Section 2.1).
10. Prove that the subgroup of SL,(F3) generated by ((1) _01 ) and ( i _11 ) is the unique
Sylow 2-subgroup of SL;(F3) (cf. Exercise 10, Section 2.4).

11. Show that the center of SL;(F3) is the group of order 2 consisting of £1, where I is the
identity matrix. Prove that SL;(F3)/Z(SLy(F3)) = A4. [Use facts about groups of order
12.]

12. Let 2n = 2%k where k is odd. Prove that the number of Sylow 2-subgroups of D,, is k.
[Prove thatif P € Syly(D3,) then Np, (P) = P.]
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13. Prove that a group of order 56 has a normal Sylow p-subgroup for some prime p dividing
its order.

14. Prove that a group of order 312 has a normal Sylow p-subgroup for some prime p dividing
its order.

15. Prove that a group of order 351 has a normal Sylow p-subgroup for some prime p dividing
its order.

16. Let |G| = pgqr, where p, g and r are primes with p < g < r. Prove that G has a normal
Sylow subgroup for either p, g or r.

17. Prove that if |G| = 105 then G has a normal Sylow 5-subgroup and a normal Sylow
7-subgroup.

18. Prove that a group of order 200 has a normal Sylow 5-subgroup.

19. Prove that if |G| = 6545 then G is not simple.

20. Prove that if |G| = 1365 then G is not simple.

21. Prove that if |G| = 2907 then G is not simple.

22. Prove that if |G| = 132 then G is not simple.

23. Prove that if |G| = 462 then G is not simple.

24. Provethat if G is a group of order 231 then Z (G) contains a Sylow 11-subgroup of G and
a Sylow 7-subgroup is normal in G.

25. Prove thatif G is a group of order 385 then Z(G) contains a Sylow 7-subgroup of G and
a Sylow 11-subgroup is normal in G.

26. Let G be a group of order 105. Prove that if a Sylow 3-subgroup of G is normal then G is
abelian.

27. Let G be a group of order 315 which has a normal Sylow 3-subgroup. Prove that Z(G)
contains a Sylow 3-subgroup of G and deduce that G is abelian.

28. Let G be a group of order 1575. Prove that if a Sylow 3-subgroup of G is normal then a
Sylow 5-subgroup and a Sylow 7-subgroup are normal. In this situation prove that G is
abelian.

29, If G is a non-abelian simple group of order < 100, prove that G = As. [Eliminate all
orders but 60.]

30. How many elements of order 7 must there be in a simple group of order 1687

31. For p=2,3 and 5 find n,(As) and n,(Ss). [Note that A4 < As.]

32. Let P be a Sylow p-subgroup of H and let H be a subgroup of K. If P < H and
H < K, prove that P is normal in K. Deduce thatif P € Syl,(G) and H = Ng(P), then
Ng(H) = H (in words: normalizers of Sylow p-subgroups are self-normalizing).

33. Let P be a normal Sylow p-subgroup of G and let H be any subgroup of G. Prove that
P N H is the unique Sylow p-subgroup of H.

34. Let P € Sylp(G) and assume N J G. Use the conjugacy part of Sylow’s Theorem to
provethat PN N is a Sylow p-subgroup of N. Deduce that PN/ N is a Sylow p-subgroup
of G/N (note that this may also be done by the Second Isomorphism Theorem — cf.
Exercise 9, Section 3.3).

Let P € Sylp'(G) and let H < G. Prove that gPg~! N H is a Sylow p-subgroup of H
for some g € G. Give an explicit example showing that . Ph~1 N H is not necessarily a

Sylow p-subgroup of H for any h € H (in particular, we cannot always take g = 1 in the
first part of this problem, as we could when H was normal in G).

35,
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36.
37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

49.

50.

Prove that if N is a normal subgroup of G then n,(G/N) < np(G).

Let R be a normal p-subgroup of G (not necessarily a Sylow subgroup).

(a) Prove that R is contained in every Sylow p-subgroup of G.

(b) If S is another normal p-subgroup of G, prove that RS is also a normal p-subgroup
of G.

(c) The subgroup O,(G) is defined to be the group generated by all normal p-subgroups
of G. Prove that Op(G) is the unique largest normal p-subgroup of G and O,(G)
equals the intersection of all Sylow p-subgroups of G.

(@) Let G = G/O,(G). Prove that Op(G) = 1 (i.e., G has no nontrivial normal p-
subgroup).

Use the method of proof in Sylow’s Theorem to show that if n, is not congruent to
1(mod p?) then there are distinct Sylow p-subgroups P and Q of G such that

[P:PNQ|I=|Q:PNQ|=p.

Show that the subgroup of strictly upper triangular matrices in GL, (Fp) (cf. Exercise 17,

Section 2.1) is a Sylow p-subgroup of this finite group. [Use the order formula in Section

1.4 to find the order of a Sylow p-subgroup of G L, (Fp).]

Prove that the number of Sylow p-subgroups of GL2(Fp) is p + 1. [Exhibit two distinct
Sylow p-subgroups.]
Prove that SL,(F4) = A5 (cf. Exercise 9, Section 2.1 for the definition of SL,(FF4)).

Prove that the group of rigid motions in R3 of an icosahedron is isomorphic to As. [Recall
that the order of this group is 60: Exercise 13, Section 1.2.]

Prove that the group of rigid motions in R3 of a dodecahedron is isomorphic to As. (As
with the cube and the tetrahedron, the icosahedron and the dodecahedron are dual solids.)
[Recall that the order of this group is 60: Exercise 12, Section 1.2.]

Let p be the smallest prime dividing the order of the finite group G. If P € Syl,(G) and
P is cyclic prove that Ng(P) = Cg(P).

Find generators for a Sylow p-subgroup of S35, where p is an odd prime. Show that this
is an abelian group of order p?.

Find generators for a Sylow p-subgroup of S,2, where p is a prime. Show that this is a
non-abelian group of order pPt1.

Write and execute a computer program which
(i) gives each odd number n < 10, 000 that is not a power of a prime and that has some
prime divisor p such that n, is not forced to be 1 for all groups of order n by the
congruence condition of Sylow’s Theorem, and
(ii) gives for each n in (i) the factorization of n into prime powers and gives the list of all
permissible values of nj, for all primes p dividing n (i.e., those values not ruled out
by Part 3 of Sylow’s Theorem).

Carry out the same process as in the preceding exercise for all even numbers less than
1000. Explain the relative lengths of the lists versus the number of integers tested.

Prove that if |G| = 2"m where m is odd and G has a cyclic Sylow 2-subgroup then G has
a normal subgroup of order m. [Use induction and Exercises 11 and 12 in Section 2.]

Prove thatif U and W are normal subsets of a Sylow p-subgroup P of G then U is conjugate
to W in G if and only if U is conjugate to W in Ng (P). Deduce that two elements in the
center of P are conjugate in G if and only if they are conjugate in N (P). (A subset U of
P isnormal in P if Np(U) = P.)
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51. Let P be a Sylow p-subgroup of G and let M be any subgroup of G which contains Ng (P).
Prove that |G : M| = 1(mod p).

The following sequence of exercises leads to the classification of all numbers # with the property
that every group of order r is cyclic (for example, n = 15 is such an integer). These arguments
are a vastly simplified prototype for the proof that every group of odd order is solvable in the
sense that they use the structure (commutativity) of the proper subgroups and their embedding
in the whole group (we shall see that distinct maximal subgroups intersect in the identity) to
obtain a contradiction by counting arguments. In the proof that groups of odd order are solvable
one uses induction to reduce to the situation in which a minimal counterexample is a simple
group — but here every proper subgroup is solvable (not abelian as in our situation). The
analysis of the structure and embedding of the maximal subgroups in this situation is much
more complicated and the counting arguments are (roughly speaking) replaced by character
theory arguments (as will be discussed in Part VI).

52. Suppose G is a finite simple group in which every proper subgroup is abelian. If M and
N are distinct maximal subgroups of G prove M N N = 1. [See Exercise 23 in Section 3.]

53. Use the preceding exercise to prove thatif G is any non-abelian group in whichevery proper
subgroup is abelian then G is not simple. [Let G be a counterexample to this assertion and
use Exercise 24 in Section 3 to show that G has more than one conjugacy class of maximal
subgroups. Use the method of Exercise 23 in Section 3 to count the elements which lie in
all conjugates of M and N, where M and N are nonconjugate maximal subgroups of G;
show that this gives more than |G| elements.]

54. Prove the following classification: if G is a finite group of order p;p; ... p, where the
pi’s are distinct primes such that p; does not divide p; — 1 for all i and j, then G is
cyclic. [By induction, every proper subgroup of G is cyclic, so G is not simple by the
preceding exercise. If N is a nontrivial proper normal subgroup, N is cyclic and G/N acts
as automorphisms of N. Use Proposition 16 to show that N < Z(G) and use induction to
show G/ Z(G) is cyclic, hence G is abelian by Exercise 36 of Section 3.1.]

55. Prove the converse to the preceding exercise: if n > 2 is an integer such that every group
of order n is cyclic, thenn = p;ps ... p, is a product of distinct primes and p; does not
divide p; — 1forall i, j. [If n is not of this form, construct noncyclic groups of order n
using direct products of noncyclic groups of order p? and pg, where p | q—1]

56. If G is a finite group in which every proper subgroup is abelian, show that G is solvable.

4.6 THE SIMPLICITY OF Ap

There are a number of proofs of the simplicity of A,, n > 5. The most elementary
involves showing A, is generated by 3-cycles. Then one shows that a normal subgroup
must contain one 3-cycle hence must contain all the 3-cycles so cannot be a proper
subgroup. We include a less computational approach.

Note that A3 is an abelian simple group and that A4 is not simple (n,(A4) = 1).

Theorem 24. A, is simple for alln > 5.

Proof: By induction on n. The result has already been established for n = 5,
so assume n > 6 and let G = A,. Assume there exists H < G with H # 1 or G.
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Foreachi € {1, 2, ..., n} let G; be the stabilizer of i in the natural action of G on
i €{l,2,...,n}). Thus G; < G and G; = A,_,. By induction, G; is simple for
1<i<n.

Suppose first that there is some T € H with T # 1 but t(i) = i for some
ie{l,2,...,n}). Sincet € HN G; and H N G; < G;, by the simplicity of G;
we must have H N G; = G;, thatis

G; < H.

By Exercise 2 of Section 1, 0Gio~! = G, so for all i, 0cGioc™' <oHo™ ! = H.
Thus
G;j <H, forallje{l,?2,...,n}

Any A € A, may be written as a product of an even number, 2¢, of transpositions, so
)\, = )\,1)\.2 s )k.,,

where A, is a product of two transpositions. Since n > 4 each A; € G;, for some j,
hence
G: (GI’GZ"--’GH) S H,

which is a contradiction. Therefore if T # 1 is an element of H then (i) # i for all
i €{l,2,...,n},ie., nononidentity element of H fixes any element of {1, 2, ..., n}.
It follows that if 7, T, are elements of H with

71(i) = 72(i) for some i, then 1} = 13 4.2)

since then 7, ! 71 (i) = i.
Suppose there exists a T € H such that the cycle decomposition of T contains a
cycle of length > 3, say

r=(a1a2a3...)(b1b2 ) .

Let o € G be an element with o (a;) = a;, o(a;) = a; but o (a3) # asz (note that such
a o exists in A, since n > 5). By Proposition 10

T1=o0t0" ! =(a1az0(a3) ... ob)o®B) ...) ...

so T and 1; are distinct elements of H with t(a;) = 11(a;) = a3, contrary to (2). This
proves that only 2-cycles can appear in the cycle decomposition of nonidentity elements
of H.

Let T € H with T # 1, so that

T = (a1ay)(aza4)(as ag) . ..
(note that n > 6 is used here). Let 0 = (a; a3)(as as) € G. Then
n =010 = (@ a)(asas) (@3 ae) . ...,

hence 7 and 1; are distinct elements of H with 7(a;) = 1;(a;) = a,, again contrary to
(2). This completes the proof of the simplicity of A,,.
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EXERCISES

Let G be a group and let 2 be an infinite set.
1. Prove that A,, does not have a proper subgroup of index < n for alln > 5.
2. Find all normal subgroups of S, for alln > 5.
3. Prove that A, is the only proper subgroup of index < nin §,, for alln > 5.
4. Prove that A, is generated by the set of all 3-cycles for each n > 3.

5. Prove that if there exists a chain of subgroups G1 < G < ... < G suchthat G = U2, G;
and each G; is simple then G is simple.

6. Let D be the subgroup of Sg consisting of permutations which move only a finite number
of elements of 2 (described in Exercise 17 in Section 3) and let A be the set of all elements
o € D suchthat o acts as an even permutation on the (finite) set of points it moves. Prove
that A is an infinite simple group. [Show that every pair of elements of D lie in a finite
simple subgroup of D.]

7. Under the notation of the preceding, exercise prove that if H < Sg and H # 1 then
A < H,i.e., A is the unique (nontrivial) minimal normal subgroup of Sg.

8. Under the notation of the preceding two exercises prove that |D| = |A| = |R2|]. Deduce
that
if Sg = Sa then || = |A|.

[Use the fact that D is generated by transpositions. You may assume that countable unions
and finite direct products of sets of cardinality |$2| also have cardinality |€2|.]
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CHAPTER 5

Direct and Semidirect Products
and Abelian Groups

In this chapter we consider two of the easier methods for constructing larger groups
from smaller ones, namely the notions of direct and semidirect products. This allows
us to state the Fundamental Theorem on Finitely Generated Abelian Groups, which in
particular completely classifies all finite abelian groups.

5.1 DIRECT PRODUCTS

We begin with the definition of the direct product of a finite and of a countable number
of groups (the direct product of an arbitrary collection of groups is considered in the
exercises).

Definition.
(1) The direct product G| x G2 X - - - X G,, of the groups G1, G, ..., G, with
operations «j, *3, .. ., %, respectively, is the set of n-tuples (g, &2, --., &n)

where g; € G; with operation defined componentwise:

(81, 82, ---, &) *x(hy, hay ..., hy) = (g1 %1 hy, g2x2ha, ..., 8n*n hy).
(2) Similarly, the direct product G} x G, x - - - of the groups G|, G, ... with

operations *j, %2, . . ., respectively, is the set of sequences (g;, &2, .. .) where
gi € G; with operation defined componentwise:

(gl, gz,...)*(hl, hz,...)=(g1 *] h], 82*2h2,---)-

Although the operations may be different in each of the factors of a direct product,
we shall, as usual, write all abstract groups multiplicatively, so that the operation in (1)
above, for example, becomes simply

(gl, 82y eees gn)(hls h2’ L) hn) = (glhla g2h2, ey gnhn)-

152



Examples

(1) Suppose G; = R (operation addition) fori = 1,2,...,n. Then R x R x - - - x R
(n-factors) is the familiar Euclidean n-space R" with usual vector addition:

(@ai.az,....ay) + (b1, b2,...,by) = (a1 + b1,a2 + b2, ..., an + byp).
(2) To illustrate that groups forming the direct product (and corresponding operations)
may be completely general, let G; = Z, let G, = 3 and let G3 = GL2(R), where the

group operations are addition, composition, and matrix multiplication, respectively.
Then the operation in G1 x G2 x G3 is defined by

a b A ANE ap+br aq+bs
(n,cr,(C d))(m,t,(r S))—(”+m"7°t’(cp+dr cq +ds )-

Proposition 1. If Gy, ..., G, are groups, their direct product is a group of order
IG111G2| - - - 1G,| (if any G; is infinite, so is the direct product).

Proof: Let G = G; x G2 X - - - X G,. The proof that the group axioms hold
for G is straightforward since each axiom is a consequence of the fact that the same
axiom holds in each factor, G;, and the operation on G is defined componentwise. For
example, the associative law is verified as follows:

Let (a1, a3, . -.,a,), (b1,b2,...,by), and (c1, C2, ..., c,) € G. Then

(a1, a2, ..., a)[(b1,b2, ..., ba)(cr, €2, - .., )]
‘ = (a1, az, ..-,ay)(bicy, brca, . .., bycy,)
= (a1(b1€1), a2(b2c2), - - ., Gn(bncCr))
= ((@b1)c1, (@br)cy, - - -, (@nby)cn)
= [(a1, az, - - @) (b1, b2, . .., B)](c1, €2, - ..., €0,

where in the third step we have used the associative law in each component. The
remaining verification that the direct product is a group is similar: the identity of
G is the n-tuple (14, 15,...,1,), where 1; is the identity of G; and the inverse of
(81,82,.-.,8n) 1S (gl_l, gz_l, cees gn‘l), where gi_1 is the inverse of g; in G;.

The formula for the order of G is clear.

If the factors of the direct product are rearranged, the resulting direct product is
isomorphic to the original one (cf. Exercise 7).

The next proposition shows that a direct product, G; x G, x - - - x G,,, contains an
isomorphic copy of each G;. One can think of these specific copies as the “coordinate
axes” of the direct product since, in the case of R x R, they coincide with the x and y
axes. One should be careful, however, not to think of these “coordinate axes” as the only
copies of the groups G; in the direct product. For example in R x R any line through
the origin is a subgroup of R x R isomorphic to R (and R x R has infinitely many pairs
of lines which are coordinate axes, viz. any rotation of a given coordinate system). The
second part of the proposition shows that there are projection homomorphisms onto
each of the components.
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Proposition 2. Let G, G3, ..., G, be groups and let G = G; x - - - X G, be their
direct product.
(1) Foreach fixed i the set of elements of G which have the identity of G| in the j th
position for all j # i and arbitrary elements of G; in position i is a subgroup
of G isomorphic to G;:

G ={(.1,...,1,g.1,...,1) | g € G},

(here g; appears in the i™ position). If we identify G; with this subgroup, then
G; < G and

G/G; =Gy x--- X Gi—1 XGijp1 X+---xGp.
(2) For each fixed i define 7r; : G — G; by
i ((81, 82 - - -+ &n)) = &i-
Then 7; is a surjective homomorphism with
kerm; ={(g1,...,8& -1, 1, 8i41,...,8n) | & € Gjforall j # i}
=Gy X+ XGio1 XGiyg X+ x Gy

(here the 1 appears in position i).
(3) Under the identifications in part (1), if x € G; and y € G; for some i # j, then

Xy =Yyx.
Proof: (1) Since the operation in G is defined componentwise, it follows easily
from the subgroup criterion that {(1, 1,..., 1, g, 1,..., 1) | & € G;}is a subgroup of
G. Furthermore, themapg; — (1,1,..., 1, g;, 1, ..., 1) is seen to be an isomorphism

of G; with this subgroup. Identify G; with this isomorphic copy in G.
To prove the remaining parts of (1) consider the map

90:G— Gy X -XGi_1 XGiz1 X+ -x Gy
defined by
(81,82, ---+8n) = (815 -5 &i—1, &i+1s - - - 8n)
(i.e., @ erases the i™ component of G). The map ¢ is a homomorphism since
o((g1, -, &n)(h1, ..., hy)) = 0 ((81h1, .-, gnhn))
= (g1h1, - .., i-1hi-1, i+1hit1, - - -, guhn)
= (&1, --->8i—18i+ls---» 8n)h1, ...  hiy, higy, ..., hy)
= @81, ---. 8))@((h1, ..., hn)).

Since the entries in position j are arbitrary elements of G; for all j, ¢ is surjective.
Furthermore,

kerg = {(g1,...,&n) | gj = 1forall j # i} = G;.

This proves that G ; is a normal subgroup of G (in particular, it again proves this copy
of G; is a subgroup) and the First Isomorphism Theorem gives the final assertion of
part (1).
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In (2) the argument that 7; is a surjective homomorphism and the kernel is the
subgroup described is very similar to that in part (1), so the details are left to the reader.

Inpart Q) ifx =(1,...,1,&,1,...,)andy =(1,...,1,g,1,..., 1), where
the indicated entries appear in positions i, j respectively, then

xy=(1,...,1,g,1,...,1,g,1,...,1) =yx

(where the notation is chosen so thati < j). This completes the proof.

A generalization of this proposition appears as Exercise 2.

We shall continue to identify the “coordinate axis” subgroups described in part (1)
of the proposition with their isomorphic copies, the G;’s. The i™ such subgroup is often
called the i component or i factor of G. For instance, when we wish to calculate in
Z, x Z,, we can let x be a generator of the first factor, let y be a generator of the second
factor and write the elements of Z,, x Z,, in the form x? yb . This replaces the formal
ordered pairs (x, 1) and (1, y) with x and y (so x®y? replaces (x%, y)).

Examples

(1) Under the notation of Proposition 2 it follows from part (3) thatif x; € G;, 1 <i <n,
then forallk € Z

k k_k k
(xX1x2...%,)" = x7%5 ... x.

Since the order of x1 x3 . . . x, is the smallest positive integer k such that x{‘ = 1forall
i, we see that

Ix1x2 ... xp| = Lem.(Ix1], Ix2l, ..., |xa])

(where this order is infinite if and only if one of the x;’s has infinite order).
(2) Let p be a prime and forn € Z* consider

Epn=2Z,x2Zpx---x2Z, (n factors).

Then E» isanabelian group of order p” with the property that x? = 1forallx € En.
This group is the elementary abelian group of order p” described in Section 4.4.

(3) For p a prime, we show that the elementary abelian group of order p? hasexactly p+ 1
subgroups of order p (in particular, there are more than the two obvious ones). Let
E = E . Since each nonidentity element of E has order p, each of these generates a
cyclic subgroup of E of order p. By Lagrange’s Theorem distinct subgroups of order
p intersect trivially. Thus the p?> — 1 nonidentity elements of E are partitioned into
subsets of size p — 1 (i.e., each of these subsets consists of the nonidentity elements
of some subgroup of order p). There must therefore be

-1
p-—1

subgroups of order p. When p = 2, E is the Klein 4-group which we have already
seen has 3 subgroups of order 2 (cf. also Exercises 10 and 11).
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EXERCISES

1. Show that the center of a direct product is the direct product of the centers:
Z(G1 x Gy x---xGp) =2Z(G1) x Z(G3) X --- x Z(Gp).

Deduce that a direct product of groups is abelianifand only ifeach of the factorsis abelian.

2. Let G1,G2,...,G, be groups andlet G = Gy x - - - X G,. Let I be a proper, nonempty
subset of {1,...,n} andlet J ={1,..., n} — I. Define G; to be the set of elements of G
that have the identity of G; in position j for all j € J.

(a) Prove that G is isomorphic tothe direct product of the groups G;, i € 1.
(b) Prove that G is a normal subgroup of G and G/G; = G .
(c¢) Provethat G = G; x Gy.

3. Under the notation of the preceding exercise let I and K be any disjoint nonempty subsets
of {1,2,...,n} and let G; and Gk be the subgroups of G defined above. Prove that
xy =yxforallx € Gy and all y € Gg.

4. Let A and B be finite groups and let p be a prime. Prove that any Sylow p-subgroup
of A x B is of the form P x Q, where P € Syl,(A) and Q € Syl,(B). Prove that
np(A x B) = np(A)np(B). Generalize both of these results to a direct product of any
finite number of finite groups (so that the number of Sylow p-subgroups of a direct product
is the product of the numbers of Sylow p-subgroups of the factors).

5. Exhibit a nonnormal subgroup of Qg x Z4 (note that every subgroup of each factor is
normal).

6. Show that all subgroups of Qg x E2» are normal.
7. Let G1, G2, ..., G, be groups and let 7 be a fixed element of S,,. Prove that the map

(72 2 Gl X Gz XX Gn e d G”—l(l) X G”—I(Z) XX Gﬂ—l(")

defined by
$r (gl, 82y ceen gn) = (gzr"l(l)s gn"(Z)v LRI gn_'(n))

is an isomorphism (so that changing the order of the factors in a direct product does not
change the isomorphism type).

8. Let Gy =G2 =---=Gpandlet G = G; x - - - X G,. Under the notation of the
preceding exercise show that ¢, € Aut(G). Show also that the map m +— ¢y is an
injective homomorphism of S, into Aut(G). (In particular, ¢r, © ¢r, = @rx,- Itis at this
point that the 7~1’s in the definition of ¢, are needed. The underlying reason for this is
because if ¢; is the n-tuple with 1 in position i and zeros elsewhere, 1 < i < n, then S,
actson {ej, ..., e,} by 7 - €; = en(;); this is aleft group action. If the n-tuple (g1, - . ., gr)
is represented by gi1e1 + - - - + gnen, then this left group action on {ey, .. ., e,} extends to
a left group action on sums by

7 -(g1e1 +g2e2 + - -- + gnen) = g1ex(1) + 826r(2) + -+ Gnén(n)-

The coefficient of er(;) on the right hand side is g;, so the coefficient of e; is g,-1(;). Thus
the right hand side may be rewritten as g-1(ye1 + gr-12)€2 + * - - + &x-1(m€n, Which is
precisely the sum attached to the n-tuple (gr-1(1y, 8z-1(2)» - - - » &x—1(n))- In other words,
any permutation of the “position vectors” ey, . . . . e, (which fixes their coefficients) is the
same as the inverse permutation on the coefficients (fixing the ¢;’s). If one uses s in place
of 7 ~1"s in the definition of ¢, then the map 7 > ¢y is not necessarily a homomorphism
— it corresponds to a right group action.)
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9. Let G; be a field F for all i and use the preceding exercise to show that the set of n x n

10.

11.

12.

13.
14.

matrices with one 1 in each row and each column is a subgroup of GL,, (F) isomorphic to
Sn (these matrices are called permutation matrices since they simply permute the standard
basis ey, ..., en (as above) of the n-dimensional vector space F X F x - -- x F).

Let p be a prime. Let A and B be two cyclic groups of order p with generators x and y,
respectively. Set E = A x B so that E is the elementary abelian group of order p?: E p2-
Prove that the distinct subgroups of E of order p are

(x), (xy), (x?), ... (oPTh, (y)
(note that there are p + 1 of them).

Let p be a prime and let n € Z*. Find a formula for the number of subgroups of order p
in the elementary abelian group E .

Let A and B be groups. Assume Z(A) contains a subgroup Z; and Z(B) contains a
subgroup Z; with Z; = Z;. Let this isomorphism be given by the map x; > y; for all
x; € Z1. A central product of A and B is a quotient

(Ax B)/Z where Z={(xi,y ") |xi€Z1)

and is denoted by A * B — it is not unique since it depends on Z;, Z; and the isomorphism

between them. (Think of A x B as the direct product of A and B “collapsed” by identifying

each element x; € Z; with its corresponding element y; € Z>.)

(a) Prove that the images of A and B in the quotient group A x B are isomorphic to A
and B, respectively, and that these images intersect in a central subgroup isomorphic
to Z;. Find |A x B|.

(b) Let Z4 = (x). Let Dg = (r,s) and Qg = (i, j) be given by their usual generators
and relations. Let Z4 % Dg be the central product of Z4 and Dg which identifies
x? and 2 (i.e., Z1 = (x?), Z; = (r?) and the isomorphism is x2 > r2) and let
Z4 % Qg be the central product of Z4 and Qg which identifies x2 and —1. Prove that
Z4x Dg = Z4 x Qg.

Give presentations for the groups Z4% Dg and Z4 % Qg constructed in the preceding exercise.

Let G = A x Az X --- X A, and for each i let B; be a normal subgroup of A;. Prove that
By x By x --- x B, < G and that

(A1 X Ay X --- X Ap)/(B1 X By X - - - X By) = (A1/B1) X (A2/B2) X - - - X (An/By).

The following exercise describes the direct product of an arbitrary collection of groups. The
terminology for the Cartesian product of an arbitrary collection of sets may be found in the
Appendix.

15.

Let I be any nonempty index set and let (G;, ;) be a group for each i € I. The direct
product of the groups G;, i € I is the set G = [ [;; Gi (the Cartesian product of the G;’s)
with a binary operation defined as follows: if [ | a; and [ b; are elements of G, then their

product in G is given by
(]‘[a.-) (]‘[b.-) =[]~ b

iel iel iel
(i.e., the group operation in the direct product is defined componentwise).
(a) Show that this binary operation is well defined and associative.
(b) Show that the element [] 1; satisfies the axiom for the identity of G, where 1; is the
identity of G; for all i.
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(c) Show that the element [ ] a,._1 is the inverse of [] a;, where the inverse of each com-
ponent element g; is taken in the group G;.
Conclude that the direct product is a group.
(Note that if I = {1,2,...,n}, this definition of the direct product is the same as the
n-tuple definition in the text.)
16. State and prove the generalization of Proposition 2 to arbitrary direct products.

17. Let I be any nonempty index set and let G; be a group for each i € I. The restricted
direct product or direct sum of the groups G; is the set of elements of the direct product
which are the identity in all but finitely many components, that is, the set of all elements
[Tai € ]_L-G, G; such that g; = 1; for all but a finite number of i € I.

(a) Prove that the restricted direct product is a subgroup of the direct product.

(b) Prove that the restricted direct product is normal in the direct product.

(¢) Let I = Z* and let p; be the ith integer prime. Show that if G; = Z/p;Z for all
i € Z™, then every element of the restricted direct product of the G; ’s has finite order
but [];z+ Gi has elements of infinite order. Show that in this example the restricted
direct product is the torsion subgroup of the direct product (cf. Exercise 6, Section
2.1).

18. Ineach of (a) to (e) give an example of a group with the specified properties:

(a) an infinite group in which every element has order 1 or 2

(b) an infinite group in which every element has finite order but for each positive integer
n there is an element of order n

(c) a group with an element of infinite order and an element of order 2

(d) agroup G such that every finite group is isomorphic to some subgroup of G

(e) anontrivial group G suchthat G = G x G.

5.2 THE FUNDAMENTAL THEOREM OF FINITELY GENERATED
ABELIAN GROUPS

Definition.
(1) A group G is finitely generated if there is a finite subset A of G such that
G=(A).
(2) Foreachr € Z withr > 0,let Z" = Z x Z x - - - x Z be the direct product of
r copies of the group Z, where Z° = 1. The group Z is called the free abelian
group of rank r.

Note that any finite group G is, a fortiori, finitely generated: simply take A = G
as a set of generators. Also, Z' is finitely generated by ey, €3, ..., e,, where ¢; is the
n-tuple with 1 in position i and zeros elsewhere. We can now state the fundamental
classification theorem for (finitely generated) abelian groups.

Theorem 3. (Fundamental Theorem of Finitely Generated Abelian Groups) Let G be
a finitely generated abelian group. Then

1
G=Z xZ, XZy, X+ XZp,

for some integers r, nj, ns, ..., n, satisfying the following conditions:
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(@) r >0and n; > 2forall j, and
(b) niy | nforl<i<s-—1
(2) the expressionin (1) is unique: if G = Z/ x Z,,, X Z,,, X -+ X Z,,,, Wwhere t and
my, my, ..., m, satisfy (a) and (b) (i.e.,t > 0, m; > 2 for all j and m; 4, | m;
for'l <i<u-—1),thent =r,u =s and m; = n; foralli.

Proof: We shall derive this theorem in Section 12.1 as a consequence of a more
general classification theorem. For finite groups we shall give an alternate proof at the
end of Section 6.1.

Definition. The integer r in Theorem 3 is called the free rank or Betti number of G
and the integers ny, ny, ..., n, are called the invariant factors of G. The description of
G in Theorem 3(1) is called the invariant factor decomposition of G.

Theorem 3 asserts that the free rank and (ordered) list of invariant factors of an
abelian group are uniquely determined, so that two finitely generated abelian groups
are isomorphic if and only if they have the same free rank and the same list of invariant
factors. Observe that a finitely generated abelian group is a finite group if and only if
its free rank is zero.

The order of a finite abelian group is just the product of its invariant factors (by
Proposition 1). If G is a finite abelian group with invariant factors n;, ny, .. ., ng, where
Niy1 | n;, 1 <i <s —1, then G is said to be of type (ny, na, ..., ny).

Theorem 3 gives an effective way of listing all finite abelian groups of a given
order. Namely, to find (up to isomorphism) all abelian groups of a given order n one
must find all finite sequences of integers ni, na, ..., n; such that

1) nj>2forall je{l,2,...,s},
@) niy1 |ni,1<i<s—1, and
3) nmny - - -ng =n.

Theorem 3 states that there is a bijection between the set of such sequences and
the set of isomorphism classes of finite abelian groups of order n (where each sequence
corresponds to the list of invariant factors of a finite abelian group).

Before illustrating how to find all such sequences for a specific value of n we make
some general comments. First note that n; > n; > - .- > nyg, so nj is the largest
invariant factor. Also, by property (3) each n; divides n. If p is any prime divisor of n
then by (3) we see that p must divide »; for some i. Then, by (2), p also divides n; for
all j < i. It follows that

every prime divisor of n must divide the first invariant factor n, .

In particular, if n is the product of distinct primes (all to the first power)! we see that
n | nj, hence n = n,. This proves that if n is squarefree, there is only one possible list
of invariant factors for an abelian group of order n (namely, the list n; = n):

1Such integers are called squarefree since they are not divisible by any square > 1.
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Corollary 4. If n is the product of distinct primes, then up to isomorphism the only
abelian group of order n is the cyclic group of order n, Z,,.

The factorization of n into prime powers is the first step in determining all possible
lists of invariant factors for abelian groups of order n.

Example

Suppose n = 180 = 22 - 32 . 5. As noted above we must have 2- 3 - 5 | np, so possible
values of ny are

ng=2%.32.5 2%2.3.5, 2.32.5 or 2-3.5.

For each of these one must work out all possible n;’s (subject to n; | npandnyn, | n). For
each resulting pair n;, n, one must work out all possible n3’s etc. until all lists satisfying
(1) to (3) are obtained.

For instance, if n; = 2- 32 - 5, the only number n, dividing n; with njn; dividing n
is n; = 2. In this case njny = n, so this list is complete: 2 - 32 - 5, 2. The abelian group
corresponding to this list is Zgg X Zj.

If p =2-3-5, the only candidates for ny are n, = 2,3 or 6. If np = 2 or 3, then
since n3 | np we would necessarily have n3 = ny (and there must be a third term in the
list by property (3)). This leads to a contradiction because nynyn3 would be divisible by
23 or 33 respectively, but n is not divisible by either of these numbers. Thus the only list
of invariant factors whose firsttermis 2-3-5is2-3 -5, 2 - 3. The corresponding abelian
group is Z3g x Zg.

Similarly, all permissible lists of invariant factors and the corresponding abelian groups
of order 180 are easily seen to be the following:

Invariant Factors | Abelian Groups
22.32.5 Z180
2.32.5,2 Zoo X Z»
22.3.5,3 Zeo X Z3
2-3.5,2-3 Z3g X Zg

The process we carried out above was somewhat ad hoc, however it indicates that
the determination of lists of invariant factors of all abelian groups of a given order n
relies strongly on the factorization of n. The following theorem (which we shall see
is equivalent to the Fundamental Theorem in the case of finite abelian groups) gives a
more systematic and computationally much faster way of determining all finite abelian
groups of a given order. More specifically, if the factorization of n is

—_ Q01,02 O
n=py Py - P>

it shows that all permissible lists of invariant factors for abelian groups of order n may
be determined by finding permissible lists for groups of order p;* for each i. For a
prime power, p®, we shall see that the problem of determining all permissible lists is
equivalent to the determination of all partitions of & (and does not depend on p).
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Theorem S. Let G be an abelian group of order n > 1 and let the unique factorization
of n into distinct prime powers be

a2 (74
n—pl pz ..'pk'

Then
1) G= Ay x Ay x - -+ X Ay, where |A;| = p*
(2) foreach A € {Ay, A, ..., Ay} with |A] = p°,

A g Zpﬂl X Zl,ﬁz X - X ZI)BI

withg; > B > --->B >1land By + B2+ ---+ B =  (where t and
Bi, .-, B depend on i)

(3) the decomposition in (1) and (2) is unique, i.e., if G = By x By X - - - X B,
with |B;| = p:-" for all i, then B; = A; and B; and A; have the same invariant
factors.

Definition. The integers p?i described in the preceding theorem are called the ele-
mentary divisors of G. The description of G in Theorem 5(1) and 5(2) is called the
elementary divisor decomposition of G.

The subgroups A; described in part (1) of the theorem are the Sylow p;-subgroups
of G. Thus (1) says that G is isomorphic to the direct product of its Sylow subgroups
(note thatthey are normal — since G is abelian —hence unique). Part 1 is oftenreferred
to as The Primary Decomposition Theorem for finite abelian groups. As with Theorem
3, we shall prove this theorem later.

Note that for p a prime, pf | p? if and only if 8 < y. Furthermore, p --. pf = p*
if and only if By + - - - + By = a. Thus the decomposition of A appearing in part
(2) of Theorem 5 is the invariant factor decomposition of A with the “divisibility”
conditions on the integers pfi translated into “additive” conditions on their exponents.
The elementary divisors of G are now seen to be the invariant factors of the Sylow
p-subgroups as p runs over all prime divisors of G.

By Theorem 5, in order to find all abelian groups of order n = p{'py* - - - pi*
one must find foreach i, 1 < i < k, all possible lists of invariant factors for groups
of order p{. The set of elementary divisors of each abelian group is then obtained
by taking one set of invariant factors from each of the k lists. The abelian groups are
the direct products of the cyclic groups whose orders are the elementary divisors (and
distinct lists of elementary divisors give nonisomorphic groups). The advantage of this
process over the one described following Theorem 2 is that it is easier to systematize
how to obtain all possible lists of invariant factors, p#, p, ..., pP, for a group of
prime power order p?. Conditions (1) to (3) for invariant factors described earlier then
become

M Bj=1forall je({l,2,...,1},
(2) Bi = Bi+ foralli, and
A Bi+p+-+p =8

2Recall that for abelian groups the Sylow p-subgroups are sometimes called the p-primary components.
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Hence, each list of invariant factors in this case is simply a partition of 8 (ordered in
descending order). In particular, the number of nonisomorphic abelian groups of order
p? (= the number of distinct lists) equals the number of partitions of 8. This number is
independent of the prime p. For example the number of abelian groups of order p? is

obtained from the list of partitions of 5:

Invariant Factors Abelian Groups
5 Zys
4, 1 ZyuxZ,
3, 2 sz X sz
3, 1,1 Zp xZ,xZ,
2,2, 1 ZpxZypxZ,
2,1, 1,1 Zp X Z,xZ,xZ,
1,1,1, 1,1 Zy,XZ,x2Z,x2Z,xZ,

Thus there are precisely 7 nonisomorphic groups of order p>, the first in the list being

the cyclic group, Zs, and the last in the list being the elementary abelian group, Es.
Ifn = py'p3? - - - pi* and g; is the number of partitions of ;, we see that the

number of (distinct, nonisomorphic) abelian groups of order n equals g1g; - - - gx.

Example

If n = 1800 = 233252 we list the abelian groups of this order as follows:

Orderpf | Partitionsof 8 | Abelian Groups
23 3 2,.1; 1,1,1 Zg, Z4a X Z2, Z2 X Zy X Z
3? 2 1,1 Zy, Z3 x Z3
52 2: 1,1 Zys, Zs X Zs

We obtain the abelian groups of order 1800 by taking one abelian group from each of the
three lists (right hand column above) and taking their direct product. Doing this in all
possible ways gives all isomorphism types:

Zg X Zg X 235

Zg X Zog X Zs X Zs

Zg X Z3 X Z3 X Z3s

Zg X Z3 X Z3 x Zs X Zs
Zy X Zy X Zo X Zys

Zy x Ly x Zogx Zs X Zs

Zy X 2y X Z3 X Z3 X Z3s

Za X Ly X 23 x Z3 X Zs X Zs

Zy X 2y X 2y x Zg X Zys

Zy X Zy Xx Zy X Zgx Zs X Zs

Zy X Zy x Zy x Z3 X Z3 X Zps

Zy x 2y X 2y x Z3 x Z3 X Zs X Zs.

By the Fundamental Theorems above, this is a complete list of all abelian groups of order
1800 — every abelian group of this order is isomorphic to precisely one of the groups
above and no two of the groups in this list are isomorphic.

We emphasize that the elementary divisors of G are not invariant factors of G (but
invariant factors of subgroups of G). For instance, in case 1 above the elementary
divisors 8, 9, 25 do not satisfy the divisibility criterion of a list of invariant factors.
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Our next aim is to illustrate how to pass from a list of invariant factors of a finite
abelian group toiits list of elementary divisors and vice versa. We show how to determine
these invariants of the group no matter how it is given as a direct product of cyclic groups.
We need the following proposition.

Proposition 6. Let tm, n € z*r.
M Z,xZ, = Z,,if and only if (m,n) = 1.
) Ifn=py'py*--- p;*thenZ, = Zo X Zym X -+ X Z .

Proof: Since (2) is an easy exercise using (1) and induction on k, we concentrate
on proving (1). Let Z,, = (x), Z, = (y) and let/ = l.c.m.(m, n). Note that [ = mn
if and only if (m, n) = 1. Let x°y” be a typical element of Z,, x Z,. Then (as noted
in Example 1, Section 1)

(xayb)/ _ xlaylb
=11’ =1 (because m | landn | D).
If (m, n) # 1, every element of Z,, x Z, has order at most /, hence has order strictly
less than mn, so Z,, x Z, cannot be isomorphic to Z,,,.
Conversely, if (m,n) = 1, then |xy| = l.c.m.(|x|, |y|) = mn. Thus, by order
considerations, Z,, X Z, = (xy ) is cyclic, completing the proof.

Obtaining Elementary Divisors from Invariant Factors

Suppose G is given as an abelian group of type (n;, n, ..., ng), that is
G=Zy X Zp, X+ X Zp,

Letn = p{'py® - - - py* = ning - - - n,. Factor each n; as

n; = pf“pf" . pf‘*, where 8;; > 0.

By the proposition above,
ZnigZﬂn X-"XZﬁ;k,

foreachi. If ;; = 0, Z P = = 1 and this factor may be deleted from the direct
product without changing the isomorphism type. Then the elementary divisors of G
are precisely the integers

p,  1<j<k, 1<i<ssuchthatp; #O0.

For example, if |G| = 23 - 32 - 5% and G is of type (30, 30, 2), then
G= Z30 X Z30 X Zz.
Since Z3g = Zy, X Z3 X Zs, G = Zy X Z3 X Zs5 X Z X Z3 X Zs X Z,. The elementary
divisors of G are therefore 2, 3, 5, 2, 3, 5, 2, or, grouping like primes together (note that
rearranging the order of the factors in a direct product does not affect the isomorphism
type (Exercise 7 of Section 1)), 2,2,2, 3,3, §,5. In particular, G is isomorphic to
the last group in the list in the example above.
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If for each j one collects all the factors Z ﬁ. ; together, the resulting direct product

forms the Sylow p;-subgroup, A;, of G. Thus the Sylow 2-subgroup of the group in
the preceding paragraph is isomorphic to Z, x Z; x Z; (i.e., the elementary abelian
group of order 8).

Obtaining Elementary Divisors from any cyclic decomposition

The same process described above will give the elementary divisors of a finite abelian
group G whenever G is given as a direct product of cyclic groups (not just when the
orders of the cyclic components are the invariant factors). For example, if G = Zg x Z;5,
the list 6, 15 is neither that of the invariant factors (the divisibility condition fails) nor
that of elementary divisors (they are not prime powers). To find the elementary divisors,
factor 6 = 2 -3 and 15 = 3 - 5. Then the prime powers 2, 3, 3, 5 are the elementary
divisors and
GQZQXZ3XZ3XZS.

Obtaining Invariant Factors from Elementary Divisors

Suppose G is an abelian group of order n, where n = p{" p;* - - - p;* and we are given
the elementary divisors of G. The invariant factors of G are obtained by following these
steps:

(1) First group all elementary divisors which are powers of the same prime together.
In this way we obtain k lists of integers (one for each p;).

(2) In each of these k lists arrange the integers in nonincreasing order.

(3) Among these k lists suppose that the longest (i.e., the one with the most terms) con-
sists of ¢ integers. Make each of the k lists of length ¢ by appending an appropriate
number of 1’s at the end of each list.

(4) Foreachi € {1,2,...,t} the i invariant factor, n;, is obtained by taking the
product of the i™ integer in each of the ¢ (ordered) lists.

The point of ordering the lists in this way is to ensure that we have the divisibility
condition n; 41 | n;.

Suppose, for example, that the elementary divisors of G are given as 2, 3, 2, 25, 3,
2 (so |G| =23-32.5?%). Regrouping and increasing each list to have 3 (= t) members
gives:

so the invariant factorsof Gare2-3-25, 2-3-1, 2-1-1and
G= Zl50 X 26 X Zz.

Note that this is the penultimate group in the list classifying abelian groups of order
1800 computed above.

The invariant factor decompositions of the abelian groups of order 1800 are as
follows, where the i'™ group in this list is isomorphic to the i group computed in the
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previous list:

Z1300 Z3p0 X Zg
Z36o X Zs Zeo X Z3p
26()0 X Z3 Z450 X 22 X 22
Zio X Zs5 Zoy X Z1o X 2,
Zoy X Z; Zyso X Zg x Z,
Zigo X Zyo Zyy X 23 X Z;.

Using the uniqueness statements of the Fundamental Theorems 3 and 5, we can use
these processes to determine whether any two direct products of finite cyclic groups are
isomorphic. For instance, if one wanted to know whether Z¢ x Z15s = Z;g x Zo, first
determine whether they have the same order (both are of order 90) and then (the easiest
way in general) determine whether they have the same elementary divisors:

Zg x Z1s has elementary divisors 2, 3, 3, 5 and is isomorphic to Z; x Z3 x Z3 x Zs
Zyp X Zg has elementary divisors 2, 5, 9 and is isomorphic to Z; x Zs x Zy.

The lists of elementary divisors are different so (by Theorem 5) they are not isomorphic.
Note that Zg x Z;5 has no element of order 9 whereas Z;, x Zg does (cf. Exercise 5).

The processes we described above (with some elaboration) form a proof (viaPropo-
sition 6) that for finite abelian groups Theorems 3 and 5 are equivalent (i.e., one implies
the other). We leave the details to the reader.

One can now better understand some of the power and some of the limitations of
classification theorems. On one hand, given any positive integer n one can explicitly
describe all abelian groups of order n, a significant achievement. On the other hand,
the amount of information necessary to determine which of the isomorphism types of
groups of order n a particular group belongs to may be considerable (and is large if n
is divisible by large powers of primes).

We close this section with some terminology which will be useful in later sections.

Definition.
(1) If G is a finite abelian group of type (n;, nz, ..., n,), the integer ¢ is called the
rank of G (the free rank of G is 0 so there will be no confusion).
(2) If G is any group, the exponent of G is the smallest positive integer n such that
x" = 1for all x € G (if no such integer exists the exponent of G is 00).

EXERCISES

1. Ineach of parts (a) to (e) give the number of nonisomorphic abelian groups of the specified
order — do not list the groups: (a) order 100, (b) order 576, (c) order 1155, (d) order
42875, (e) order 2704.

2. In each of parts (a) to (e) give the lists of invariant factors for all abelian groups of the
specified order:

(a) order 270, (b) order 9801, (c) order 320, (d) order 105, (e) order 44100.

3. Ineach of parts (a) to (e) give the lists of elementary divisors for all abelian groups of the

specified order and then match each list with the corresponding list of invariant factors
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9.

10.

11.

12.

13.

found in the preceding exercise:
(a) order 270, (b) order 9801, (c) order 320, (d) order 105, (e) order 44100.

. In each of parts (a) to (d) determine which pairs of abelian groups listed are isomorphic

(here the expression {a, a2, . . ., ax} denotes the abelian group Z,, x Z,, x - - - X Zg,).

(@ {4,9), (6,6}, (8,3}, (9,4), (6,4), {64).

(b) {22,2-3%), (22-3,2-3), (23-3?%), (22-32,2).

(c) (52-7%,3%2.5-7), (3%-52.7,5-7%), {3-5%,7%,3-5-7),
{5¢-7,32.5, 7).

@ (22.5.7,23.5%,2.5%), (23.53.7,23.53), (22,2.7,23,5% 5%,
(2-5%,22.53,23, 7).

. Let G be a finite abelian group of type (ny, n2, ..., n;). Prove that G contains an element

of order m if and only if m | ni. Deduce that G is of exponent nj.

. Prove that any finite group has a finite exponent. Give an example of an infinite group with

finite exponent. Does a finite group of exponent m always contain an element of order m?

. Let pbeaprime andlet A = (x;) x (x2) X --- x (x, ) be an abelian p-group, where

Ixil = p% > 1 for all i. Define the p™-power map
p:A—> A by p:x xP

(a) Prove that ¢ is a homomorphism.

(b) Describe the image and kernel of ¢ in terms of the given generators.

(c) Prove both ker ¢ and A/im ¢ have rank n (i.e., have the same rank as A) and prove
these groups are both isomorphic to the elementary abelian group, E~, of order p".

Let A be a finite abelian group (written multiplicatively) and let p be a prime. Let
AP ={aP |ae A) and Ap={x|xP =1}

(so AP and A , are the image and kernel of the pU-power map, respectively).

(a) Prove that A/AP = A,. [Show that they are both elementary abelian and they have
the same order.]

(b) Prove that the number of subgroups of A of order p equals the number of subgroups
of A of index p. [Reduce to the case where A is an elementary abelian p-group.]

Let A = Zgy x Z4s5 x Z12 x Z36. Find the number of elements of order 2 and the number
of subgroups of index 2 in A. .

Let n and k be positive integers and let A be the free abelian group of rank n (written
additively). Prove that A/kA is isomorphic to the direct product of n copies of Z/kZ
(here kA = {ka | a € A)}). [See Exercise 14, Section 1.]

Let G be a nontrivial finite abelian group of rank z.
(a) Prove that the rank of G equals the maximum of the ranks of its Sylow subgroups.
(b) Prove that G can be generated by ¢ elements but no subset with fewer than ¢ elements
generates G. [One way of doing this is by using part (a) together with Exercise 7.]
Letn and m be positive integers withd = (n,m). LetZ, = (x)and Z,, = (y). Let A
be the central product of (x ) and (y) with an element of order d identified, which has
presentation (x,y [ x" =y™ =1, xy = yx, xé = y§ ). Describe A as a direct product
of two cyclic groups.

Let A= (x1) x--- x (x;) be a finite abelian group with |x;| = n; for 1 <i < r.
Find a presentation for A. Prove that if G is any group containing commuting elements
g1, - - ., & such that g{'i = lfor1 <i < r, then there is a unique homomorphism from A

to G which sends x; to g; for alli.
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14. For any group G define the dual group of G (denoted G)tobe the set of all homomorphisms
from G into the multiplicative group of roots of unity in C. Define a group operation in
G by pointwise multiplication of functions: if x, ¥ are homomorphisms from G into the
group of roots of unity then x ¢ is the homomorphism given by (x ¥)(g) = x(g)¥(g) for
all g € G, where the latter multiplication takes place in C.
(a) Show that this operation on G makes G into an abelian group. [Show that the identity
is the map g — 1 forall g € G and the inverse of x € G is the map g — x(g)~1.]
(b) If G is a finite abelian group, prove that G=G. [Write G as (x1 ) X --- x (x, ) and
if n; = |x;| define x; to be the homomorphism which sends x; to ez”‘/ " and sends
xj to 1, forall j # i. Prove x; has order n; in GandG = (xi Yy X oo X (xr)]
(This result is often phrased: a finite abelian group is self-dual. It implies that the lattice
diagram of a finite abelian group is the same when it is tumed upside down. Note however
that there is no natural isomorphism between G and its dual (the isomorphism depends on
a choice of a set of generators for G). This is frequently stated in the form: a finite abelian
group is noncanonically isomorphic to its dual.)
15. Let G = (x) x (y) where |x] = 8 and |y| =
(a) Find all pairs a, b in G such that G = (a) x (b) (where a and b are expressed in
terms of x and y).
(b) Let H = (x2y , y2) = Z4 x Z,. Prove that there are no elements a, b of G such that
G = (a)x(b)and H = (a?) x (b?) (i.e., one cannot pick direct product generators
for G in such a way that some powers of these are direct product generators for H).
16. Prove that no finitely generated abelian group is divisible (cf. Exercise 19, Section 2.4).

5.3 TABLE OF GROUPS OF SMALL ORDER

At this point we can give a table of the isomorphism types for most of the groups of
small order.

Each of the unfamiliar non-abelian groups in the table on the following page will
be constructed in Section 5 on semidirect products (which will also explain the notation
used for them). For the present we give generators and relations for each of them (i.e.,
presentations of them).

The group Z3 x Z, of order 12 can be described by the generators and relations:

(x,ylxt=y"=1x"yx=y"),
namely, it has a normal Sylow 3-subgroup ({ y )) which is inverted by an element of
order 4 (x) acting by conjugation (x? centralizes y).
The group (Z3 x Z3) % Z, has generators and relations:

(x,y,z1x2=y3=23=1, yz=zy, x \yx =y, xlax =z7"),

namely, it has a normal Sylow 3-subgroup isomorphic to Z3 x Z3 (( y, z )) inverted by
an element of order 2 (x) acting by conjugation.
The group Zs x Z,4 of order 20 has generators and relations:

(x,ylx*=y" =1, xlyx=y"),

namely, it has a normal Sylow 5-subgroup ({ y }) which is inverted by an element of
order 4 (x) acting by conjugation (x? centralizes y).
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7 1 Z; none
Zg, Z4y x 2y,
8 3 Zz X Zz X Zz DS’ QS
9 2 Zy, 73 X Z3 none
10 2 Zy Dyp
11 1 VAT none
12 5 Z12, Ze x 7, A4, D12, Z3 X Z4
13 1 Zi3 none
14 2 Z1s Dy
15 1 Zis none
Zig, Zg X Zy,
16 14 Za X Zy, Zy X Zp X Z>, not listed
Zox Zo X Zy X Zy
17 1 Z17 none
Dy, S3 x Z3,
18 5 Z18, Ze X Z3 (Zs % Z3) % Z,
19 1 Zyg none
Doy
20 5 Zzo, Zl() X 22 Zs . Z4, on

The group Fyo of order 20 has generators and relations:

amely, it has anormal Sylow S-subgroup (( y )) whichis squared by an element of order
(x) acting by conjugation. One can check that this group occurs as the normalizer of
Sylow 5-subgroup in Ss, e.g.,

(x,y|x4=y5=1, xyx~

1

F0=((2354), (12345)).

his group is called the Frobenius group of order 20.
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EXERCISE

1. Prove that Dy¢, Z2 x Dg, Z2 X Qg, Z4* Dg, Q D16 and M are nonisomorphic non-abelian
groups of order 16 (where Z4 * Dg is described in Exercise 12, Section 1 and Q D¢ and
M are described in the exercises in Section 2.5).

5.4 RECOGNIZING DIRECT PRODUCTS

So far we have seen that direct products may be used to both construct “larger” groups
from “smaller” ones and to decompose finitely generated abelian groups into cyclic
factors. Even certain non-abelian groups, which may be given in some other form, may
be decomposed as direct products of smaller groups. The purpose of this section is
to indicate a criterion to recognize when a group is the direct product of some of its
subgroups and to illustrate the criterion with some examples.

Before doing so we introduce some standard notation and elementary results on
commutators which will streamline the presentation and which will be used again in
Chapter 6 when we consider nilpotent groups.

Definition. Let G be a group, let x, y € G and let A, B be nonempty subsets of G.
(1) Define [x, y] = x~'y~!xy, called the commutator of x and y.
(2) Define [A, B] = ([a,b] | a € A. b € B), the group generated by commuta-
tors of elements from A and from B.
(3) Define G’ = ([x, y]| x, y € G), the subgroup of G generated by commutators
of elements from G, called the commutator subgroup of G.

The commutator of x and y is 1 if and only if x and y commute, which explains
the terminology. The following proposition shows how commutators measure the “dif-
ference” in G between xy and yx.

Proposition 7. Let G be a group, let x, y € G and let H < G. Then

(1) xy = yx[x, y] (in particular, xy = yx if and only if [x, y] = 1).

(2) H< Gifandonlyif [H,G] < H.

3) olx, y] = [0 (x), o(y)] for any automorphism ¢ of G, G’ char G and G/G' is
abelian.

(4) G/G’ isthe largest abelian quotient of G in the sense thatif H < G and G/H
is abelian, then G’ < H. Conversely, if G' < H, then H Q G and G/H is
abelian.

(5) If ¢ : G - A is any homomorphism of G into an abelian group A, then ¢
factors through G’ i.e., G’ < ker ¢ and the following diagram commutes:

G—>G/G

S

A
Proof: (1) This is immediate from the definition of [x, y].
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(2) By definition, H < G if and only if g~'hg € H forallg € G and allh € H.
Forh € H, g 'hg € H if and only if k" 'g~'hg € H, so that H < G if and only if
[h,g] € H forallh € Hand all g € G. Thus H < G if and only if [H, G] < H,
which is (2).

(3) Let o € Aut(G) be an automorphism of G andlet x, y € G. Then

o([x, yD) = o (x 'y Ixy)
=ox)lo(y) oo (y)
=[o(x),c(M].

Thus for every commutator [x, y] of G’, o ([x, y]) is again a commutator. Since o has
a 2-sided inverse, it follows that it maps the set of commutators bijectively onto itself.
Since the commutators are a generating set for G’, 0 (G’) = G, that is, G’ char G.

To see that G/ G’ is abelian, let xG’ and yG’ be arbitrary elements of G/G’. By
definition of the group operation in G/G’ and since [x, y] € G’ we have

(xGH(YG) = (xy)G’
= (yx[x, yDG’
= (x)G’ = (yGH(xG),
which completes the proof of (3).

(4) Suppose H < G and G/H is abelian. Then for all x,y € G we have
xH)(yH) = (yH)(xH), so

1H = (xH)'(YH) ' (xH)(yH)
=x"ly lxyH
= [.X, y]H.

Thus [x, y] € H forallx,y € G,sothat G’ < H.

Conversely, if G’ < H, then since G/G’ is abelian by (3), every subgroup of G /G’
isnormal. In particular, H/G’ < G/G’. By the Lattice Isomorphism Theorem H < G.
By the Third Isomorphism Theorem

G/H =(G/G")/(H/G')

hence G/ H is abelian (being isomorphic to a quotient of the abelian group G/G’). This
proves (4).
(5) This is (4) phrased in terms of homomorphisms.

Passing to the quotient by the commutator subgroup of G collapses all commutators
to the identity so that all elements in the quotient group commute. As (4) indicates, a
strong converse to this also holds: a quotient of G by H is abelian if and only if the
commutator subgroup is contained in H (i.e., if and only if G’ is mapped to the identity
in the quotient G/H).

We shall exhibit a group (of order 96) in the next section with the property that one
of the elements of its commutator subgroup cannot be written as a single commutator
[x, y] for any x and y. Thus G’ does not necessarily consist only of the set of (single)
commutators (but is the group generated by these elements).
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Examples
(1) A group G is abelian if and only if G’ = 1.

(v))

3)

@

Sometimes it is possible to compute the commutator subgroup of a group without
actually calculating commutators explicitly. For instance, if G = Dg, then since
Z(Dg) = (r?) < Dg and Dg /Z(Dg) is abelian (the Klein 4-group), the commutator
subgroup Dy is a subgroup of Z(Dg). Since Dg is not itself abelian its commutator
subgroup is nontrivial. The only possibility is that Dy = Z(Dg). By a similar
argument, Qg = Z(Qg) = (—1). More generally, if G is any non-abelian group of
order p3, where p is a prime, G’ = Z(G) and |G’| = p (Exercise 7).

Let Dy, = (r,s | r* = s2 = 1,s7lrs = r~1). Since [r,s] = r~2, we have
(r2y = (r?) < Dj,. Furthermore, (r?) < Dy, and the images of r and s in
Dy, /( r2 ) generate this quotient. They are commuting elements of order < 2, so the
quotient is abelian and D), < (r?). Thus Dén = (r2 ). Finally, note that if n (= |r|)
isodd, (r?) = (r) whereasif nis even, (r?) is of index 2in (r ). Hence D}, is of
index 2 or 4 in D, according to whether n is odd or even, respectively.

Since conjugation by g € G is an automorphism of G, [a®, b8] = [a, b} foralla, b €
G by (3) of the proposition, i.e., conjugates of commutators are also commutators.
For example, once we exhibit an element of one cycle type in S,, as a commutator,
every element of the same cycle type is also a commutator (cf. Section 4.3). For
example, every 5-cycle is a commutator in S5 as follows: labelling the vertices of a
pentagonas 1, ..., 5 wesee that Djg < S5 (asubgroup of As infact). By the preceding
example an element of order S is a commutator in Do, hence also in Ss5. Explicitly,
(14253) =[(12345),(25)43)].

2

The next result actually follows from the proof of Proposition 3.13 but we isolate
it explicitly for reference:

Proposition 8. Let H and K be subgroups of the group G. The number of distinct
ways of writing each element of the set H K in the form hk, for some h € H andk € K
is |H N K|. In particular, if H N K = 1, then each element of H K can be written
uniquely as a product hk, for some h € H and k € K.

Proof: Exercise.

The main result of this section is the following recognition theorem.

Theorem 9. Suppose G is a group with subgroups H and K such that

@
2

H and K are normal in G, and
HNK=1.

Then HK = H x K.

Proof: Observe that by hypothesis (1), H K is a subgroup of G (see Corollary 3.15).
Let h € H and let k € K. Since H < G, k"'hk € H, so that h~1(k"'hk) € H.
Similarly, (h"'k~'h)k € K. Since H N K = 1 it follows that A~ 1k~ 1hk = 1, i.e.,
hk = kh so that every element of H commutes with every element of K.

Sec. 54

Recognizing Direct Products 171



By the preceding proposition each element of HK can be written uniquely as a
product hk, with h € H and k € K. Thus the map

¢: HK > Hx K
hk — (h, k)

is well defined. Tosee that ¢ is ahomomorphismnote thatif hy, h, € H andk,, k; € K,
then we have seen that h; and k; commute. Thus

(h1kq) (hakz) = (hih2)(kik2)

and the latter product is the unique way of writing (h1k1)(h2k2) in the form hk with
h € H and k € K. This shows that

@(hikihak2) = @(h1h2kik,)
= (h1h2, kikz)
= (h1, k1) (h2, k2) = @(hiki)@(haks)

so that ¢ is a homomorphism. The homomorphism ¢ is a bijection since the represen-
tation of each element of HK as a product of the form hk is unique, which proves that
¢ is an isomorphism.

Definition. If G is agroup and H and K are normal subgroupsof Gwith HNK = 1,
we call H K the internal direct product of H and K. We shall (when empbhasis is called
for) call H x K the external direct product of H and K.

The distinction between internal and external direct product is (by Theorem 9)
purely notational: the elements of the internal direct product are written in the form
hk, whereas those of the external direct product are written as ordered pairs (h, k). We
have in previous instances passed between these. For example, when Z,, = (a) and
Z,, = (b) we wrote x = (a, 1) and y = (1, b) so that every element of Z,, x Z,, was
written in the form x”y*.

Examples
(1) If n is a positive odd integer, we show Dy, = D;, x Z;. To see this let

Dgp=(rs|r*"=s?=1,srs=r"")

be the usual presentation of Dy,,. Let H = (s, r2) and let K = (r"). Geometrically,
if Day is the group of symmetries of a regular 2n-gon, H is the group of symmetries of
the regular n-gon inscribed in the 2n-gon by joining vertex 2i to vertex 2i + 2, for all
i mod 2n (and if one lets r; = r?, H has the usual presentation of the dihedral group
of order 2n with generators r; and s). Note that H < Dy, (it has index 2). Since
|r| = 2n, [r"*| = 2. Since srs = r~1, we have sr''s = r " = r", thatis, s centralizes
r". Since clearly r centralizes r", K < Z(Ds,). Thus K < Dg,. Finally, K £ H
since r2 has odd order (or because r" sends vertex i into vertex i + n, hence does
not preserve the set of even vertices of the 2n-gon). Thus H N K = 1 by Lagrange.
Theorem 9 now completes the proof.
(2) LetI beasubsetof {1,2,...,n}andlet G be the setwise stabilizer of I in S,,, i.e.,

G={oe€S,|o@)eIforallie I}.
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Let J ={1,2,...,n} — I be the complement of 7 and note that G is also the setwise
stabilizer of J. Let H be the pointwise stabilizer of I and let K be the pointwise
stabilizerof {1,2,...,n} — I, i.e.,

* H={oceG|o@) =iforalli € I}
K={t €eG|t(j)=jforall j € J}.

Itis easy to see that H and K are normal subgroups of G (in fact they are kernels of
the actions of G on I and J, respectively). Since any element of H N X fixes all of
{1,2,...,n}, wehave H N K = 1. Finally, since every element o of G stabilizes the
sets I and J, each cycle in the cycle decomposition of o involves only elements of 1
or only elements of J. Thus o may be written as a product o;0,, where oy € H and
oy € K. This proves G = H K. By Theorem 9, G = H x K. Now any permutation
of J can be extended to a permutation in S, by letting it act as the identity on 7.
These are precisely the permutations in H (and similarly the permutations in K are
the permutations of 7 which are the identity on J), so

H=S; K=8S and GZ= S, X Sp—m,
where m = |J| (and, by convention, Sg = 1).
(3) Leto € S, and let I be the subset of {1, 2, ..., n} fixed pointwise by o:
I={iefl,2,...,n}|o@) =i}

If C = Cs,(0), then by Exercise 18 of Section 4.3, C stabilizes the set I and its
complement J. By the preceding example, C is isomorphic to a subgroup of H x K,
where H is the subgroup of all permutations in S,, fixing I pointwise and X is the set
of all permutations fixing J pointwise. Note that 0 € H. Thus each element, «, of C
can be written (uniquely) as @ = ajay, for some ¢y € H and a;y € K. Note further
that if 7 is any permutation of {1, 2, .. ., n} which fixes each j € J (i.e., any element
of K), then o and T commute (since they move no common integers). Thus C contains
all such 7, i.e., C contains the subgroup K. This proves that the group C consists of
all elements ajay € H x K such that « is arbitrary in K and oy commutes with o
in H:

Cs,(0) =CH(0) x K

=Cs,(0).x 8.

In particular, if o is an m-cycle in S,,,

Cs,(0)=(0) X Spn—m.

The latter group has order m(n — m)!, as computed in Section 4.3.

EXERCISES

Let G be a group.

1. Prove that if x, y € G then [y, x] = [x, y]~L. Deduce that for any subsets A and B of G,
[A, B] = [B, A] (recall that [A, B] is the subgroup of G generated by the commutators
[a, B]).

2. Prove that a subgroup H of G is normal if and only if [G, H] < H.

3. Leta, b, ¢ € G. Prove that
@) [a,bcl = a, cl(c[a, blc)

Sec. 54  Recognizing Direct Products 173



- I - WY B

10.
11.

12.
13.
14.

15.

16.
17.

18.

19.

20.

®) [ab, c] = (b a, clb)[b, c].

. Find the commutator subgroups of S4 and A4.
. Prove that 4,, is the commutator subgroup of S,, foralln > 5.
. Exhibit a representative of each cycle type of A5 as a commutator in Ss.

.

. Prove that if p is a prime and P is a non-abelian group of order p> then P’ = Z(P).
. Assume x,y € G and both x and y commute with [x, y]. Prove that for all n € Zt,

n(n—1)

@xy)" =x"y"ly,x]" 7 .

. Prove that if p is an odd prime and P is a group of order p? then the p® power map

x > xP is ahomomorphism of P into Z(P). If P is not cyclic, show that the kernel of the
p'® power map has order p? or p3. Is the squaring map a homomorphism in non-abelian
groups of order 87 Where is the oddness of p needed in the above proof? [Use Exercise 8.]

Prove that a finite abelian group is the direct product of its Sylow subgroups.

Prove thatif G = HK where H and K are characteristic subgroups of G with HN K =1
then Aut(G) = Aut(H) x Aut(K). Deduce that if G is an abelian group of finite order
then Aut(G) is isomorphic to the direct product of the automorphism groups of its Sylow
subgroups.

Use Theorem 4.17 to describe the automorphism group of a finite cyclic group.

Prove that Dg,, is not isomorphic to Dg, X Z3.

Let G = {(a;j) € GL,(F) | ajj = 0ifi > j, andayy = azn = --- = au,}, where F is
a field, be the group of upper triangular matrices all of whose diagonal entries are equal.
Prove that G = D x U, where D is the group of all nonzero multiples of the identity
matrix and U is the group of upper triangular matrices with 1’s down the diagonal.

If A and B are normal subgroups of G such that G/A and G/B are both abelian, prove
that G/(A N B) is abelian.

Prove that if K is a normal subgroup of G then K’ < G.

If K is a normal subgroup of G and K is cyclic, prove that G’ < C(K). [Recall that the

automorphism group of a cyclic group is abelian.]

Let K1, K5, ..., K, be non-abelian simple groups and let G = K; x K3 x .-+ x K,,.

Prove that every normal subgroup of G is of the form G for some subset I of {1, 2, ..., n}

(where G is defined in Exercise 2 of Section 1). [If N < Gand x = (qy,...,a,) € N

with some g; # 1, then show that there is some g; € G; not commuting with @;. Show

[1,...,8,...,1),x] € Ki N N and deduce K; < N.]

A group H is called perfect if H' = H (i.e., H equals its own commutator subgroup).

(a) Prove that every non-abelian simple group is perfect.

(b) Provethatif H and K are perfect subgroups of a group G then ( H, K ) is also perfect.
Extend this to show that the subgroup of G generated by any collection of perfect
subgroups is perfect.

(c) Prove that any conjugate of a perfect subgroup is perfect.

(d) Prove that any group G has a unique maximal perfect subgroup and that this subgroup
is normal.

Let H(F) be the Heisenberg group over the field F, cf. Exercise 11 of Section 1.4. Find

an explicit formula for the commutator [X, Y], where X, Y € H(F), and show that the
commutator subgroup of H(F) equals the center of H (F) (cf. Section 2.2, Exercise 14).

174 Chap.5 Direct and Semidirect Products and Abelian Groups



5.5 SEMIDIRECT PRODUCTS

In this section we study the “semidirect product” of two groups H and K, which is a
generalization of the notion of the direct product of H and K obtained by relaxing the
requirement that both H and K be normal. This construction will enable us (in certain
circumstances) to build a “larger” group from the groups H and K in such a way that
G contains subgroups isomorphic to H and K, respectively, as in the case of direct
products. In this case the subgroup H will be normal in G but the subgroup K will not
necessarily be normal (as it is for direct products). Thus, for instance, we shall be able
to construct non-abelian groups even if H and K are abelian. This construction will
allow us to enlarge considerably the set of examples of groups at our disposal. As in
the preceding section, we shall then prove a recognition theorem that will enable us to
decompose some familiar groups into smaller “factors,” from which we shall be able to
derive some classification theorems.

By way of motivation suppose we already have a group G containing subgroups H
and K such that

(@) H < G (but K is not necessarily normal in G), and
(b)) HNK =1.

It is still true that H K is a subgroup of G (Corollary 3.15) and, by Proposition 8,
every element of HK can be written uniquely as a product hk, for some h € H and
k € K, i.e., there is a bijection between H K and the collection of ordered pairs (A, k),
given by hk — (h, k) (so the group H appears as the set of elements (h, 1) and K
appears as the set of elements (1, k)). Given two elements h1k; and hyk; of HK, we
first see how to write their product (in G) in the same form:

(h1k1)(hako) = hikiho(ky  kyk,

= hy (kyhak; kiky .1
= hsks,

where h3 = hl(klhzkl_l) and k3 = kik,. Note that since H < G, klhzkl_l € H, so
h3 € Handk; € K.

These calculations were predicated on the assumption that there already existed a
group G containing subgroups H and K with H < G and H N K = 1. The basic
idea of the semidirect product is to turn this construction around, namely start with two
(abstract) groups H and K and try to define a group containing (an isomorphic copy
of) them in such a way that (a) and (b) above hold. To do this, we write equation (1),
which defines the multiplication of elements in our group, in a way that makes sense
even if we do not already know there is a group containing H and K as above. The
point is that k3 in equation (1) is obtained only from multiplication in K (namely k;k;)
and hj is obtained from multiplying h; and klhzkl_l in H. If we can understand where
the element k; hok; ! arises (in terms of H and K and without reference to G), then the
group HK will have been described entirely in terms of H and K. We can then use
this description to define the group H K using equation (1) to define the multiplication.
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Since H is normal in G, the group K acts on H by conjugation:
k-h=khk™  forhe HkeK
(we use the symbol -to emphaéaéme\a\(:tion) so that (1) can be written
 (hiki) (ko) 2(h ki-ho) (Kiks). (5:2)

The action of K on H by conjugation gives a homomorphism ¢ of K into Aut(H), so
(2) shows that the multiplication in H K depends only on the multiplication in H, the
multiplication in K and the homomorphism ¢, hence is defined intrinsically in terms
of Hand K.

We now use this interpretation to define a group given two groups A and K and a
homomorphism ¢ from K to Aut(H) (which will turn out to define conjugation in the
resulting group).

Theorem 10. Let H and K be groups and let ¢ be a homomorphism from K into
Aut(H). Let-denote the (left) action of K on H determined by ¢. Let G be the set of
ordered pairs (h, k) with h € H and k € K and define the following multiplication on
G:

(h1, k1) (ha, ko) = (hy k1-ha, kikz).

(1) This multiplication makes G into a group of order |G| = |H||K]|.

(2) The sets {(h,1) | h € H} and ((1,k) | kK € K} are subgroups of G and the
maps h — (h,1) forh € H and k — (1,k) for k € K are isomorphisms of
these subgroups with the groups H and K respectively:

H=Z((h,1)|heH) and K ={(1,k) |k € K}).

Identifying H and K with their isomorphic copies in G described in (2) we have
3 HIG
@ HNK=1
(5) forallh € H andk € K, khk™! = k-h = @(k)(h).

Proof: 1t is straightforward to check that G is a group under this multiplication
using the fact that-is an action of K on H. For example, the associative law is verified
as follows:

((a, x)(B, y)) (c,z) = (@ x-b, xy)(c,2)
= (a x-b (xy)-c, xyz)
=(@x-bx-(y-c), xyz)
=(ax-(by-c), xyz)
=(a,x)(by-c, y2)
= (a, x) ((b, y)(c, 2))

for all (a, x), (b, y), (c, z7) € G. We leave as an exercise the verification that (1,1) is
the identity of G and that

(h, k)= @& -n kY
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foreach (h, k) € G. The order of the group G is clearly the product of the orders of H
and K, vyvhich proves (1). _
Let H={(h,1) | h e H}and K = {(1,k) | kK € K}. We have

@a®,1)=(al-b,1)=(ab,1)

foralla,b € H and
1,x)1,y) =, xy)

for all x, y € K, which show that Hand K are subgroups of G and that the maps in
(2) are isomorphisms.
It is clear that H N K = 1, which is (4). Now,

(1, k)(h, DA, ™" = (1, k)(h, D)L, k7Y
= (k-h, k)(1.k™Y)
= (k-h k-1, kk™1)
= (k-h, 1)

so that identifying (k, 1) with h and (1, k) with k by the isomorphisms in (2) we have
khk~! = k-h, which is (5).

Finally, we have just seen that (under the identifications in (2)) K < Ng(H). Since
G = HK and certainly H < Ng(H), we have Ng(H) = G, i.e., H < G, which
proves (3) and completes the proof.

Definition. Let H and K be groups and let ¢ be ahomomorphism from K into Aut(H).
The group described in Theorem 10 is called the semidirect product of H and K with
respect to ¢ and will be denoted by H >, K (when there is no danger of confusion we
shall simply write H x K).

The notation is chosen to remind us that the copy of H in H % K is the normal
“factor” and that the construction of a semidirect product is not symmetric in A and
K (unlike that of a direct product). Before giving some examples we clarify exactly
when the semidirect product of H and KX is their direct product (in particular, we see
that direct products are a special case of semidirect products). See also Exercise 1.

Proposition 11. Let H and K be groups and letp : K — Aut(H) be a homomorphism.
Then the following are equivalent:
(1) the identity (set) map between H X K and H x K is a group homomorphism
(hence an isomorphism)
(2) ¢ is the trivial homomorphism from K into Aut(H)
3 K<HXxK.

Proof: (1) = (2) By definition of the group operation in H x K
(hy, ki) (ha, k2) = (hy ky-ha, kiko)

forall hy, h; € H and ky, k; € K. By assumption (1), (hy, k1)(ha, k) = (h1ha, k1k).
Equating the first factors of these ordered pairs gives k-h, = h, forall h; € H and all
ki € K, i.e., K acts trivially on H. This is (2).
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(2) = (3) If ¢ is trivial, then the action of K on H is trivial, so that the elements of
H commute with those of K by Theorem 10(5). In particular, H normalizes K. Since
K normalizes itself, G = H K normalizes K, whichis (3).

(3) = (1) If X is normal in H x K then (as in the proof of Theorem 9) for all
he€ Handk € K, [h,k] € HN K = 1. Thus hk = kh and the action of K on H
is trivial. The multiplication in the semidirect product is then the same as that in the
direct product:

(h1, k1) (h2, k2) = (h1ha, kik2)

for all hy, hy € H and kq, k; € K. This gives (1) and completes the proof.

Examples

In all examples H and K are groups and ¢ is a homomorphism from K into Aut (H) with
associated action of K on H denoted by a dot. Let G = H % K and as in Theorem 10 we
identify H and K as subgroups of G. We shall use Propositions 4.16 and 4.17 to determine
homomorphisms ¢ for some specific groups H. In each of the following examples the
proof that ¢ is a homomorphism is easy (since K will often be cyclic) so the details are
omitted.

(1) Let H be any abelian group (even of infinite order) and let K = (x) = Z; be the
group of order 2. Define ¢ : K — Aut(H) by mapping x to the automorphism of
inversion on H so that the associated action is x-h = h~!, forall h € H. Then G
contains the subgroup H of index 2 and

xhx ' =p"1 forallh € H.

Of particular interest is the case when H is cyclic: if H = Z,, one recognizes G as
D,, and if H = Z we denote G by Deo.

(2) Wecan generalize the preceding example in a number of ways. One way is to let H be
any abelian group and tolet K = (x ) = Z, be cyclic of order 2n. Define ¢ again by
mapping x to inversion, so that x2 acts as the identity on H. In G, xhx~! = h~! and
x2hx~2 = hforallh € H. Thus x2 € Z(G). In particular, if H = Z3 and K = Z4,
G is a non-abelian group of order 12 which is not isomorphic to A4 or Dj2 (since its
Sylow 2-subgroup, K, is cyclic of order 4).

(3) Following up on the preceding example let H = (h) = Zy andlet K = (x) = Z4
with xhx~! = b~ ! in G. As noted above, x2 € Z (G). Since x inverts k (i.e., inverts
H), x inverts the unique subgroup (z) of order 2 in H, where z = h?""'. Thus
xzx~1 = z7! = z, s0 x centralizes z. It follows that z € Z(G). Thus x2z € Z(G)
hence (x?z) <4 G. Let G = G/(xzz). Since x? and z are distinct commuting
elements of order 2, the order of x2z is 2, s0 [G| = %lGl =ntl By factoring out the
product x2z to form G we identify x? and h?"”" in the quotient. In particular, when
n = 2, both x and A have order 4, x inverts » and h? = %2. Tt follows that G = Qg in
this case. In general, one can check that G has a unique subgroup of order 2 (namely
(%2)) which equals the center of G. The group G is called the generalized quaternion
group of order 2"*1 and is denoted by Qon+1:

et = (hx | hY =x* =1, x Thx = b7, K27 = x2).
0> {

(4) Let H = Q (under addition) and let K = (x) = Z. Define ¢ by mapping x to the
map “multiplication by 2” on H, so that x acts on h € H by x-h = 2h. Note that
multiplication by 2 is an automorphism of H because it has a 2-sided inverse, namely
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multiplication by % In the group G, Z < Q and the conjugate xZx 1 of Zis a
proper subgroup of Z (namely 2Z). Thus x ¢ N (Z) eventhough xZx~! < Z (note
that x~1Zx is not contained in Z). This shows that in order to prove an element g
normalizes a subgroup A in an infinite group it is not sufficient in general to show that
the conjugate of A by g is just contained in A (which is sufficient for finite groups).

(5) For H any group let K = Aut(H) with ¢ the identity map from K to Aut(H). The
semidirect product H x Aut(H) is called the holomorph of H and will be denoted by
Hol(H). Some holomorphs are described below; verifications of these isomorphisms
are given as exercises at the end of this chapter.

(@) Hol(Z; x Z3) = S4. '

(b) If |G| =nand n : G - §, is the left regular representation (Section 4.2), then
Ns, (7(G)) = Hol(G). In particular, since the left regular representation of a
generator of Z, is an n-cycle in S,, we obtain that for any n-cycle (12 ... n):

Ns,(((12...n))) =Hol(Z,) = Z, x Aut(Z,).

Note that the latter group has order ng(n).

(6) Let p and g be primes with p < g,let H = Z, and let K = Z,. Wehave already seen
that if p does not divide g — 1 then every group of order pq is cyclic (see the example
following Proposition 4.16). This is consistent with the fact that if p does not divide
q — 1, there is no nontrivial homomorphism from Z,, into Aut(Z,) (the latter group is
cyclic of order g — 1 by Proposition 4.17). Assume now that p | q — 1. By Cauchy’s
Theorem, Aut(Z,) contains a subgroup of order p (which is unique because Aut(Z,)
is cyclic). Thus there is a nontrivial homomorphism, ¢, from K into Aut(H). The
associated group G = H x K has order pg and K is not normal in G (Proposition 11).
In particular, G is non-abelian. We shall prove shortly that G is (up to isomorphism)
the unique non-abelian group of order pg. If p = 2, G must be isomorphic to D2,.

(7) Let p be an odd prime. We construct two nonisomorphic non-abelian groups of order
p3 (we shall later prove that any non-abelian group of order p? is isomorphic to one
of these two).

Let H = Z, x Z, and let K = Z,,. By Proposition 4.17, Aut(H) = GL2(Fp)
and |GL2(Fp)| = (p? — 1)(p? — p). Since p | |Aut(H)|, by Cauchy’s Theorem H
has an automorphism of order p. Thus there is a nontrivial homomorphism, ¢, from
K into Aut(H) and so the associated group H x K is a non-abelian group of order p>.
More explicitly, if H = (a) x (b), and x is a generator for K then x acts on a and b
by
x-a=ab and x-b=b

which defines the action of x on all of H. With respect to the Fp-basis a, b of the
2-dimensional vector space H the action of x (which can be considered in additive
notation as a nonsingular linear transformation) has matrix

10
(1 l)eGLg(IFp).

The resulting semidirect product has the presentation
(x,a,b|xP =aP? =bP =1, ab = ba, xax"! = ab, xbx~ 1 =b)

(in fact, this group is generated by {x, a}, and is called the Heisenberg group over
Z/ pZ, cf. Exercise 25).

Nextlet H = Z,> and K = Z,,. Again by Proposition 4.17, Aut(H) = Z,,_y),
so H admits an automorphism of order p. Thus there is a nontrivial homomorphism,
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¢, from K into Aut(H) and so the group H x K is non-abelian and of order p3. More
explicitly, if H = (y ), and x is a generator for K then x acts on y by

x-y = yltP,
The resulting semidirect product has the presentation
(x,y|xP = Yo' =1, xyx~! = y1*P).
These two groups are not isomorphic (the former contains no element of order
p?, cf. Exercise 25, and the latter clearly does, namely y).
(B) Let H= Q08 x (Z2 x Z3) =(i,j) x({a) x (b)) and let K = (y) = Z3. The map
defined by
i j j k=ij av b b ab
is easily seen to give an automorphism of H of order 3. Let ¢ be the homomorphism
from K to Aut(H) defined by mapping y to this automorphism, and let G be the
associated semidirect product, so that y € G acts by
yi=j y-j=k y-a=b y-b = ab.
The group G = H x K is a non-abelian group of order 96 with the property that the

element i2a € G’ but i2a cannot be expressed as a single commutator [x, yJ, for any
x,y € G (checking the latter assertion is an elementary calculation).

Asin the case of direct products we now prove a recognition theorem for semidirect
products. This theorem will enable us to “break down” or “factor” all groups of certain
orders and, as a result, classify groups of those orders. The strategy is discussed in
greater detail following this theorem.

Theorem 12. Suppose G is a group with subgroups H and K such that

(1) H <G, and

2 HNK =1.
Let ¢ : K — Aut(H) be the homomorphism defined by mapping k € K to the
automorphism of left conjugation by k on H. Then HK = H x K. In particular, if
G = HK with H and K satisfying (1) and (2), then G is the semidirect product of H
and K.

Proof: Note that since H < G, HK is a subgroup of G. By Proposition 8 every
element of HK can be written uniquely in the form hk, for some h € H and k € K.
Thus the map hk — (h, k) is a set bijection from HK onto H x K. The fact that this
map is a homomorphism is the computation at the beginning of this section which led
us to the formulation of the definition of the semidirect product.

Definition. Let H be a subgroup of the group G. A subgroup K of G is called a
complement for Hin Gif G = HK and HNK = 1.

With this terminology, the criterion for recognizing a semidirect productis simply
that there must exist a complement for some proper normal subgroup of G. Not every
group is the semidirect product of two of its proper subgroups (for example, if the group
is simple), but as we have seen, the notion of a semidirect product greatly increases our
list of known groups.
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Some Classifications

We now apply Theorem 12 to classify groups of order n for certain values of n. The

basic idea in each of the following arguments is to

(a) show every group of order n has proper subgroups H and K satisfying the hypoth-
esis of Theorem 12 with G = HK

(b) find all possible isomorphism types for H and K

(c) for each pair H, K found in (b) find all possible homomorphisms ¢ : K — Aut(H)

(d) for each triple H, K, ¢ found in (c) form the semidirect product H x K (so any
group G of order n is isomorphic to one of these explicitly constructed groups) and
among all these semidirect products determine which pairs are isomorphic. This
results in a list of the distinct isomorphism types of groups of order n.

In order to start this process we must first find subgroups H and K (of an arbitrary
group G of order n) satisfying the above conditions. In the case of “small” values
of n we can often do this by Sylow’s Theorem. To show normality of H we use the
conjugacy part of Sylow’s Theorem or other normality criteria established in Chapter 4
(e.g., Corollary 4.5). Some of this work has already been done in the examples in
Section 4.5. In many of the examples that follow, |H| and | K| are relatively prime, so
H N K =1 holds by Lagrange’s Theorem.

Since H and K are proper subgroups of G one should think of the determination
of H and K as being achieved inductively. In the examples we discuss, H and K will
have sufficiently small order that we shall know all possible isomorphism types from
previous results. For example, in most instances H and K will be of prime or prime
squared order.

There will be relatively few possible homomorphisms ¢ : K — Aut(H) in our
examples, particularly after we take into account certain symmetries (such as replacing
one generator of K by another when K is cyclic).

Finally, the semidirect products which emerge from this process will, in our exam-
ples, be small in number and we shall find that, for the most part, they are (pairwise) not
isomorphic. In general, this can be a more delicate problem, as Exercise 4 indicates.

We emphasize that this approach to “factoring” every group of some given order
n as a semidirect product does not work for arbitrary n. For example, Qg is not a
semidirect product since no proper subgroup has a complement (although we saw that
it is a quotient of a semidirect product). Empirically, this process generally works well
when the group order n is not divisible by a large power of any prime. At the other
extreme, only a small percentage of the groups of order p* for large o (p a prime) are
nontrivial semidirect products.

Example: (Groups of Order pg, p and g primes with p < gq)

Let G be any groupoforder pg, let P € Syl,(G) andlet Q € Syl;(G). InExample 1ofthe
applications of Sylow’s Theorems we proved that G = Q x P, for some ¢ : P — Aut(Q).
Since P and Q are of prime order, they are cyclic. The group Aut(Q) is cyclic of order
g — 1. If p does not divide g — 1, the only homomorphism from P to Aut(Q) is the trivial
homomorphism, hence the only semidirect product in this case is the direct product, i.e.,
G is cyclic.

Consider now the case when p | g — landlet P = (y). Since Aut(Q) is cyclic it
contains a unique subgroup of order p, say (¥ ), and any homomorphism ¢ : P — Aut(Q)
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mustmap y to a power of y. There are therefore p homomorphisms ¢; : P — Aut(Q) given
by ¢i(y) = ¥',0 <i < p— 1. Since ¢y is the trivial homomorphism, Qx,, P = Q x P
as before. Each ¢; for i # 0 gives rise to a non-abelian group, G;, of order pgq. It is
straightforward to check that these groups are all isomorphic because for each ¢;, i > 0,
there is some generator y; of P such that ¢;(y;) = y. Thus, up to a choice for the
(arbitrary) generator of P, these semidirect products are all the same (see Exercise 6. See
also Exercise 28 of Section 4.3).

Example: (Groups of Order 30)

By theexamples following Sylow’s Theorem every group G of order 30 contains a subgroup
H of order 15. By the preceding example H is cyclic and H is normal in G (index 2). By
Sylow’s Theorem there is a subgroup K of G of order 2. Thus G = HKand HN K =1
so G = H x K, forsome ¢ : K — Aut(H). By Proposition 4.16,

Aut(Zs) = (Z/15Z)* = Z4 x Z,.

The latter isomorphism can be computed directly, or one can use Exercise 11 of the pre-
ceding section: writing H as (a) x (b) = Zs x Z3, we have (since these two subgroups
are characteristic in H)

Aut(H) = Aut(Zs) x Aut(Z3).

In particular, Aut(H) contains precisely three elements of order 2, whose actions on the
group H = (a) x (b) are the following:

a — a a — al a — al

b + bl b +— b b — bl
Thus there are three nontrivial homomorphisms from K into Aut(H) given by sending the
generator of K into one of these three elements of order 2 (as usual, the trivial homomor-
phism gives the direct product: H x K = Z3).

Let K = (k). If the homomorphism ¢ : K — Aut(H) is defined by mapping k to
the first automorphism above (so that k-a = a and k-b = b~ gives the action of k on H)
then G; = H %y, K is easily seen to be isomorphic to Zs x Dg (note that in this semidirect
product k centralizes the element a of H of order 5, so the factorization as a direct product
is{a) x (b,k)).

If ¢, is defined by mapping k to the second automorphism above, then G2 = H X, K
is easily seen to be isomorphic to Z3 x Djg (note thatin this semidirect product k centralizes
the element b of H of order 3, so the factorization as a direct product is {(b) x {a, k}).

If @3 is defined by mapping & to the third automorphism above then G3 = H x, K is
easily seen to be isomorphic to D3g.

Note that these groups are all nonisomorphic since their centers have orders 30 (in the
abelian case), 5 (for G1), 3 (for G3), and 1 (for G3).

We emphasize that although (in hindsight) this procedure does not give rise to any
groups we could not already have constructed using only direct products, the argument
proves that this is the complete list of isomorphism types of groups of order 30.

Example: (Groups of Order 12)
Let G be a group of order 12, let V € Syl2(G) and let T € Syl3(G). By the discussion of
groups of order 12 in Section 4.5 we know that either V or T is normal in G (for purposes
of illustration we shall not invoke the full force of our results from Chapter 4, namely that
either T < G or G = Ay). By Lagrange’s Theorem V N T = 1. Thus G is a semidirect
product. Note that V = Zsor Z; x Z; and T = Z3.
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Case I VLG

We must determine all possible homomorphisms from T into Aut(V). If V = Z4,
then Aut(V) = Z; and there are no nontrivial homomorphisms from T into Aut(V'). Thus
the only group of order 12 with a normal cyclic Sylow 2-subgroup is Zj5.

Assume therefore that V = Z; x Z;. In this case Aut(V) = S3 and there is a unique
subgroup of Aut(V) of order 3, say (y). Thus if T = (y), there are three possible
homomorphisms from T into Aut(V):

@i : T — Aut(V) definedby ¢;(y) =y, i=0,1,2.

As usual, ¢ is the trivial homomorphism, which gives rise to the direct product
Z) x Z3 x Z3. Homomorphisms ¢; and ¢; give rise to isomorphic semidirect products
because they differ only in the choice of a generator for T (i.e., ¢1(y) = ¥ and ¢2(3') = y,
where y' = y? and y’ is another choice of generator for T — see also Exercise 6). The
unique non-abelian group in this case is A4.

Case2: T LG

We must determine all possible homomorphisms from V into Aut(T). Note that
Aut(T) = (L) = Z;, where A inverts T. If V = {(x) = Z,, there are precisely two
homomorphisms from V into Aut(T): the trivial homomorphism and the homomorphism
which sends x to A. As usual, the trivial homomorphism gives rise to the direct product:
Z3 X Z4 = Zj13. The nontrivial homomorphism gives the semidirect product which was
discussed in Example 2 following Proposition 11 of this section.

Finally, assume V = (a) x (b) = Z; x Z;. There are precisely three nontrivial
homomorphisms from V into Aut(7") determined by specifying their kernels as one of the
three subgroups of order 2 in V. For example, ¢; (@) = A and ¢ (b) = A has kernel (ab),
that is, in this semidirect product both a and b act by inverting T and ab centralizes T. If
¢2 and @3 havekemels ( a ) and ( b ), respectively, then one easily checks that the resulting
three semidirect products are all isomorphic to S3 x Z;, where the Z, direct factor is the
kemnel of ¢;. For example,

Txg V =(a,T) x (ab).

In summary, there are precisely 5 groups of order 12, three of which are non-abelian.

Example: (Groups of Order p?, p an odd prime)

Let G be a group of order p3, p an odd prime, and assume G is not cyclic. By Exercise 9
of the previous section the map x + x” is a homomorphism from G into Z(G) and the
kernel of this homomorphism has order p? or p>. In the former case G must contain an
element of order p? and in the latter case every nonidentity element of G has order p.

Case 1: G has an element of order p?

Let x be an element of order p? and let H = (x). Note that since H has index
p, H is normal in G by Corollary 4.5. If E is the kernel of the p™ power map, then in
this case E = Z, x Z, and ENH = (xP). Let y be any element of E — H and let
K = (y). By construction, H N K = 1 and so G is isomorphic to Z 2 X Zp, for some
¢ : K — Aut(H). If ¢ is the trivial homomorphism, G = Z 2 X Zp, SO we need only
consider the nontrivial homomorphisms. By Proposition 4.17 Aut(H) = Z,(,_1) is cyclic
and so contains a unique subgroup of order p, explicitly given by (y ) where

y(x) = x11P.

As usual, up to choice of a generator for the cyclic group K, there is only one nontrivial
homomorphism, ¢, from K into Aut(H), given by ¢(y) = y; hence up to isomorphism
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there is a unique non-abelian group H x K inthis case. This groupis describedin Example 7
above.

Case 2: every nonidentity element of G has order p

In this case let H be any subgroup of G of order p? (see Exercise 29, Section 4.3).
Necessarily H = Z,, x Zp,. Let K = (y) for any element y of G — H. Since H hasindex
p, H < G and since K has order p but is not contained in H, HN K = 1. Then G is
isomorphicto (Z, x Z,) % Zp,, forsome ¢ : K — Aut(H). If istrivial, G = Z,x Z, x Z,,
(the elementary abelian group), so we may assume ¢ is nontrivial. By Proposition 4.17,

Aut(H) = GLy(Fp)
so |Aut(H)| = (p2 — 1)(p? — p). Note that a Sylow p-subgroup of Aut(H) has order
p so all subgroups of order p in Aut( H) are conjugate in Aut(H) by Sylow’s Theorem.

Explicitly, (as discussed in Example 7 above) every subgroup of order p in Aut(H) is
conjugate to (y ), where if H = (a) x (b}, the automorphism y is defined by

y(@)=ab and y(b)=0>.
With respect to the [Fp-basis a, b of the 2-dimensional vector space H the automorphism
has matrix
10 € GLy(FF)p)
11 aalea

Thus (again quoting Exercise 6) there is a unique isomorphism type of semidirect product
in this case.

Finally, since the two non-abelian groups have different orders for the kernels of the
p'? power maps, they are not isomorphic. A presentation for this group is also given in
Example 7 above.

EXERCISES

Let H and K be groups, let ¢ be a homomorphism from K into Aut( H) and, as usual, identify
H and K as subgroups of G = H x, K.

1.
2.

Prove that Cx (H) = ker ¢ (recall that Cx (H) = Cg(H) N K).
Prove that Cy (K) = Ny (K).

3. In Example 1 following the proof of Proposition 11 prove that every element of G — H

4.

S.

6.

has order 2. Prove that G is abelian if and only if #2 = 1 forall h € H.

Let p = 2 and check that the construction of the two non-abelian groups of order p3 is

valid in this case. Prove that both resulting groups are isomorphic to Dg.

Let G = Hol(Z; x Z3).

(a) Prove that G = H X K where H = Z; x Z; and K = §3. Deduce that |G| = 24.

(b) Prove that G is isomorphic to S4. [Obtain a homomorphism from G into S4 by letting
G act on the left cosets of K. Use Exercise 1 to show this representation is faithful.]

Assumethat K is acyclic group, H isan arbitrary groupand ¢; and ¢, are homomorphisms
from K into Aut(H) such that ¢ (K) and ¢, (K) are conjugate subgroups of Aut(H). If X is
infinite assume ¢ and ¢, areinjective. Prove by constructing an explicitisomorphism that
H xy, K = H »y, K (in particular, if the subgroups ¢; (K) and ¢ (K) are equalin Aut(H),
then the resulting semidirect products are isomorphic). [Suppose o ¢; (K Yool = »2(K)
so that for some a € Z we have o ¢) (k)o ~! = @, (k)? forall k € K. Show that the map
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¥ : Hxy, K — Hxy, K defined by ¥ ((h, k)) = (o (h), k?) is a homomorphism. Show

¥ is bijective by constructing a 2-sided inverse.]

7. This exercise describes thirteen isomorphism types of groups of order 56. (It is not too
difficult to show that every group of order 56 is isomorphic to one of these.)

(a) Prove that there are three abelian groups of order 56.

(b) Prove that every group of order 56 has either a normal Sylow 2-subgroup or a normal
Sylow 7-subgroup.

(c) Construct the following non-abelian groups of order 56 which have a normal Sylow
7-subgroup and whose Sylow 2-subgroup S is as specified:

one group when S = Z5 x Z3 x Z»

two nonisomorphic groups when S = Z4 x Z;

one group when S = Zg

two nonisomorphic groups when S = Qg

three nonisomorphic groups when S = Dg.
[For a particular S, two groups are not isomorphic if the kernels of the maps from S
into Aut(Z7) are not isomorphic.]

(d) Let G be a group of order 56 with a nonnormal Sylow 7-subgroup. Prove that if S is
the Sylow 2-subgroup of G then S = Z; x Z; x Z;. [Let an element of order 7 act
by conjugation on the seven nonidentity elements of S and deduce that they all have
the same order.]

(e) Prove that there is a unique group of order 56 with a nonnormal Sylow 7-subgroup.
[For existence use the fact that |G L3(F2)| = 168; for uniqueness use Exercise 6.]

8. Construct a non-abelian group of order 75. Classify all groups of order 75 (there are three
of them). [Use Exercise 6 to show that the non-abelian group is unique.] (The classification
of groups of order pg?, where p and g are primes with p < g and p not dividing g — 1,
is quite similar.)

1 4
to construct a non-abelian group of order 1805 and give a presentation of this group.
Classify groups of order 1805 (there are three isomorphism types). [Use Exercise 6 to
prove uniqueness of the non-abelian group.] (A general method for finding elements
of prime order in GL,(F,) is described in the exercises in Section 12.2; this particular
matrix of order 5 in GL,(F19) appears in Exercise 16 of that section as an illustration of
the method.)

10. This exercise classifies the groups of order 147 (there are six isomorphism types).
(a) Prove that there are two abelian groups of order 147.
(b) Prove that every group of order 147 has a normal Sylow 7-subgroup.
(c) Prove that there is a unique non-abelian group whose Sylow 7-subgroup is cyclic.

@) Lety = (2 0) andt; = (1 (2)) be elements of GL;(F7). Prove P = (t1.1p) is

9. Show that the matrix (0 -1 ) is an element of order 5 in GL;(Fi9). Use this matrix

01 0

a Sylow 3-subgroup of GL;(F7) and that P = Z3 x Z3. Deduce that every subgroup
of GL;(F7) of order 3 is conjugate in GL;(F7) to a subgroup of P.

(e) By Example 3 in Section 1 the group P has four subgroups of order 3 and these
are: Py = (t1), P2 = (1), Py = (ti©), and P4 = (t1¢2). Fori = 1,2,3.4 let
G; = (Z7 x Z7) %y, Z3, where g; is an isomorphism of Z3 with the subgroup P; of
Aut(Z7 x Z7). For each i describe G; in terms of generators and relations. Deduce
that G; = G,.

(f) Prove that G; is not isomorphic to either G3 or G4. [Show that the center of G has
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11.
12.
13.

14.

15.

16.

17.

18.

19.

order 7 whereas the centers of G3 and G4 are trivial.]

(g) Prove that G3 is not isomorphic to G4. [Show that every subgroup of order 7 in G3
is normal in G3 but that G4 has subgroups of order 7 that are not normal.]

(h) Classify the groups of order 147 by showing that the six nonisomorphic groups de-
scribed above (two from part (a), one from part (c) and G, G3, and Gg) are all the
groups of order 147. [Use Exercise 6 and part (d).] (The classification of groups of
order pg?, where p and g are primes with p < g and p | q — 1, is quite similar.)

Classify groups of order 28 (there are four isomorphism types).
Classify the groups of order 20 (there are five isomorphism types).

Classify groups of order 4 p, where p is a prime greaterthan 3. [There are fourisomorphism

types when p = 3(mod 4) and five isomorphism types when p = 1(mod 4).]

This exercise classifies the groups of order 60 (there are thirteen isomorphism types).

Let G be a group of order 60, let P be a Sylow 5-subgroup of G and let Q be a Sylow

3-subgroup of G.

(a) Prove that if P is not normalin G then G = As. [See Section4.5.]

(b) Prove thatif P < G but Q isnotnormal in G then G = A4 x Zs. [Show in this case
that P < Z(G), G/P = A4, a Sylow 2-subgroup T of G isnormaland T Q = A4.]

(c) Prove that if both P and Q are normal in G then G = Zi5 X T where T = Z4 or
Zy x Z,. Show in this case that there are six isomorphism types when T is cyclic
(one abelian) and there are five isomorphism types when T is the Klein 4-group (one
abelian). [Use the same ideas as in the classifications of groups of orders 30 and 20.]

Let p be an odd prime. Prove that every element of order 2 in GL2(F),) is conjugate to a
diagonal matrix with 1’s on the diagonal. Classify the groups of order 2p?. [If A is a
2 x 2 matrix with A2 = I and vy, v; is a basis for the underlying vector space, look at A
acting on the vectors w; = v; + vz and wp = v; — v2.]

Show that there are exactly 4 distinct homomorphisms from Z; into Aut(Zg). Prove that
the resulting semidirect products are the groups: Zg x Z, Djg, the quasidihedral group
QD6 and the modular group M (cf. the exercises in Section 2.5).

Show thatfor any n > 3 thereare exactly 4 distincthomomorphisms from Z; into Aut(Z3-).
Prove that the resulting semidirect products give 4 nonisomorphic groups of order 2"+1.
[Recall Exercises 21 to 23 in Section 2.3.] (These four groups together with the cyclic
group and the generalized quaternion group, Qn+1, are all the groups of order 2"*+! which
possess a cyclic subgroup of index 2.)

Show that if H is any group then there is a group G that contains H as a normal sub-
group with the property that for every automorphism o of H there is an element g € G
such that conjugation by g when restricted to H is the given automorphism o, i.e., every
automorphism of H is obtained as an inner automorphism of G restricted to H.

Let H be a group of order n, let K = Aut(H) and form G = Hol(H) = H x K (where ¢

is the identity homomorphism). Let G act by left multiplication on the left cosets of K in

G and let 7 be the associated permutation representation w : G — S,,.

(a) Provetheelementsof H are cosetrepresentatives for theleft cosets of K in G and with
this choice of coset representatives 7 restricted to H is the regular representation of H.

(b) Prove 7(G) is the normalizer in S, of #(H). Deduce that under the regular repre-
sentation of any finite group H of order n, the normalizer in S, of the image of H is
isomorphic to Hol(H). [Show |G| = |Ns, (w(H))| using Exercises 1 and 2 above.]

(c) Deduce that the normalizer of the group generated by an n-cycle in S, is isomorphic
to Hol(Z,) and has order n¢(n).
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20. Let p be an odd prime. Prove that if P is a non-cyclic p-group then P contains a normal
subgroup U with U = Z, x Z,. Deduce that for odd primes p a p-group that contains
a unique subgroup of order p is cyclic. (For p = 2 it is a theorem that the generalized
quaternion groups Qo» are the only non-cyclic 2-groups which contain a unique subgroup
of order 2). [Proceed by induction on |P|. Let Z be a subgroup of order p in Z(P) and
let P = P/Z. If P is cyclic then P is abelian by Exercise 36 in Section 3.1 — show the
result is true for abelian groups. When P is not cyclic use induction to produce a normal
subgroup H of P with H = Z, x Z,. Let H be the complete preimage of H in P, so
|H| = p3. Let Ho = {x € H | xP = 1} so that Hg is a characteristic subgroup of H of
order p? or p3 by Exercise 9 in Section 4. Show that a suitable subgroup of Hy gives the
desired normal subgroup U'.]

21. Let pbeanodd prime and let P be a p-group. Prove that if every subgroup of P is normal
then P is abelian. (Note that (g is a non-abelian 2-group with this property, so the result
is false for p = 2.) [Use the preceding exercises and Exercise 15 of Section 4.]

22. Let F be a field let n be a positive integer and let G be the group of upper triangular

matrices in GL, (F) (cf. Exercise 16, Section 2.1)

(a) Prove that G is the semidirect product U x D where U is the set of upper triangular
matrices with 1’s down the diagonal (cf. Exercise 17, Section 2.1) and D is the set of
diagonal matrices in GL,(F).

(b) Let n=2. Recall that U = F and D = F* x F* (cf. Exercise 11 in Section 3.1).
Describe the homomorphism from D into Aut(U) explicitly in terms of these isomor-
phisms (i.e., show how each element of F* x F* acts as an automorphism on F).

23. Let K and L be groups, let n be a positive integer, let p : K — S,, be a homomorphism
and let H be the direct product of n copies of L. In Exercise 8 of Section 1 an injective
homomorphism ¥ from S, into Aut(H) was constructed by letting the elements of S,
permute the n factors of H. The composition ¢ o p is a homomorphism from G into
Aut(H). The wreath product of L by K is the semidirect product H x K with respect to
this homomorphism and is denoted by L : K (this wreath product depends on the choice
of permutation representation p of K — if none is given explicitly, p is assumed to be the
left regular representation of K).

(a) Assume K and L are finite groups and p is the left regular representation of K. Find
|L? K| in terms of |K| and |L|.

(b) Let p be a prime, let K = L = Z, and let p be the left regular representation of K.
Prove that Z,,: Z, is a non-abelian group of order pP*! andis isomorphic to a Sylow
p-subgroup of S,2. [The p copies of Z, whose direct product makes up H may be
represented by p disjoint p-cycles; these are cyclically permuted by X .]

24. Let n be an integer > 1. Prove the following classification: every group of order n is
abelian ifandonlyif n = p‘]”' pgz ...pY, where pq, ..., p, are distinct primes, o; = 1 or
2foralli € {1,...,r}and p; does not divide p}x" — 1foralli and j. [See Exercise 56 in
Section 4.5.]

25. Let H(IFp) be the Heisenberg group over the finite field F, = Z/pZ (cf. Exercise 20 in
Section 4). Prove that H (F,) = Dg, and that H(Fp) has exponent p and is isomorphic to
the first non-abelian group in Example 7.
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CHAPTER 6

Further Topics in Group Theory

6.1 p-GROUPS, NILPOTENT GROUPS, AND SOLVABLE GROUPS

Let p be a prime and let G be a finite group of order p®n, where p does not divide
n. Recall that a (finite) p-group is any group whose order is a power of p. Sylow’s
Theorem shows that p-groups abound as subgroups of G and in order to exploit this
phenomenon to unravel the structure of finite groups it will be necessary to establish
some basic properties of p-groups. In the next section we shall apply these results in
many specific instances.

Before giving the results on p-groups we first recall a definition that has appeared
in some earlier exercises.

Definition. A maximal subgroup of a group G is a proper subgroup M of G such that
there are no subgroups H of G with M < H < G.

By order considerations every proper subgroup of a finite group is contained in
some maximal subgroup. In contrast, infinite groups may or may not have maximal
subgroups. For example, pZ is a maximal subgroup of Z whereas Q (under +) has no
maximal subgroups (cf. Exercise 16 at the end of this section).

We now collect all the properties of p-groups we shall need into an omnibus theo-
rem:

Theorem 1. Let p be a prime and let P be a group of order p®, a > 1. Then

(1) The center of P is nontrivial: Z(P) # 1.

(2) If H is a nontrivial normal subgroup of P then H intersects the center non-
trivially: H N Z(P) # 1. In particular, every normal subgroup of order p is
contained in the center.

(3) If H is a normal subgroup of P then H contains a subgroup of order p? that is
normal in P for each divisor p? of | H|. In particular, P has a normal subgroup
of order pb foreveryb € (0, 1, ..., a}.

4) If H < P then H < Np(H) (i.e., every proper subgroup of P is a proper
subgroup of its normalizer in P).

(5) Every maximal subgroup of P is of index p and is normal in P.

Proof: These results rely ultimately on the class equation and it may be useful for
the reader to review Section 4.3.
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Part 1 is Theorem 8 of Chapter 4 and is also the special case of part2 when H = P.
We therefore begin by proving (2); we shall not quote Theorem 8 of Chapter 4 although
the argument that follows is only a slight generalization of the one in Chapter 4. Let
H be a nontrivial normal subgroup of P. Recall that for each conjugacy class C of P,
either C € H or CN H = @ because H is normal (this easy fact was shown in a remark
preceding Theorem 4.12). Pick representatives of the conjugacy classes of P:

a,a,...,ar

withay,...,ax € H and ag41, - .., a, ¢ H. Let C; be the conjugacy class of g; in P,
foralli. Thus

CGCH, 1<i<k and CGNH=0, k+1l<i=<r

By renumbering ay, . . ., ax if necessary we may assume a, . . ., a; represent classes of
size 1 (i-e., are in the center of P)andag,1, . .., a represent classes of size > 1. Since
H is the disjoint union of these we have

k
|P|
|H| = |HN Z(P)| + Z X
Rl [Cp(ai)l

Now p divides |H| and p divides each term in the sum Zf=s+l |P : Cp(a;)| so p
divides their difference: |H N Z(P)|. This proves H N Z(P) # 1. If |H| = p, since
H N Z(P) # 1 we musthave H < Z(P). This completes the proof of (2).

Next we prove (3) by inductionona. Ifa < 1or H = 1, theresultis trivial. Assume
therefore thata > 1 and H # 1. By part 2, H N Z(P) # 1 so by Cauchy’s Theorem
H N Z(P) contains a (normal) subgroup Z of order p. Use bar notation to denote
passage to the quotient group P/Z. This quotient has order p*~! and H < P. By
induction, for every nonnegative integer b such that p? divides |H| there is a subgroup
K of H of order p? that is normal in P. If K is the complete preimage of K in P then
|K| = p”*1. The set of all subgroups of H obtained by this process together with the
identity subgroup provides a subgroup of H that is normal in P for each divisor of |H|.
The second assertion of part 3 is the special case H = P. This establishes part 3.

We prove (4) also by induction on | P|. If P is abelian then all subgroups of P
are normal in P and the result is trivial. We may therefore assume |P| > p (in fact,
|P| > p? by Corollary 4.9). Let H be a proper subgroup of P. Since all elements
of Z(P) commute with all elements of P, Z(P) normalizes every subgroup of P. By
part 1 we have that Z(P) # 1. If Z(P) is not contained in H, then H is properly
contained in ( H, Z(P) ) and the latter subgroup is contained in Np(H) so (4) holds.
We may therefore assume Z(P) < H. Use bar notation to denote passage to the
quotient P/ Z(P). Since P has smaller order than P by (1), by induction H is properly
contained in N5(H). It follows directly from the Lattice Isomorphism Theorem that
Np(H) is the complete preimage in P of N5(H), hence we obtain proper containment
of H in its normalizer in this case as well. This completes the induction.

To prove (5) let M be a maximal subgroup of P. By definition, M < P so by part
4, M < Np(M). By definition of maximality we must therefore have Np(M) = P,
i.e, M < P. The Lattice Isomorphism Theorem shows that P/M is a p-group with
no proper nontrivial subgroups because M is a maximal subgroup. By part 3, however,
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P / M has subgroups of every order dividing | P/M|. The only possibilityis |P/M| = p.
This proves (5) and completes the proof of the theorem.

Definition.
(1) For any (finite or infinite) group G define the following subgroups inductively:

Zy(G) =1, Z(G) = Z(G)
and Z;,1(G) is the subgroup of G containing Z;(G) such that
Zi1(G)/Z;(G) = Z(G/ Zi(G))

(i.e., Z;11(G) is the complete preimage in G of the center of G/Z;(G) under
the natural projection). The chain of subgroups

ZW(G) = ZiIG) = (G = -

is called the upper central series of G. (The use of the term “upper” indicates
that Z;(G) < Z;,1(G).)

(2) A group G is called nilpotent if Z.(G) = G for some ¢ € Z. The smallest such
c is called the nilpotence class of G.

One of the exercises at the end of this section shows that Z;(G) is a characteristic
(hence normal) subgroup of G for all i. We use this fact freely from now on.

Remarks:

(1) If G is abelian then G is nilpotent (of class 1, provided |G| > 1), since in this
case G = Z(G) = Z,(G). One should think of nilpotent groups as lying between
abelian and solvable groups in the hierarchy of structure (recall that solvable groups
were introduced in Section 3.4; we shall discuss solvable groups further at the end
of this section):

cyclic groups C abelian groups C nilpotent groups C solvable groups C all groups

(all of the above containments are proper, as we shall verify shortly).
(2) For any finite group there must, by order considerations, be an integer n such that

Zn(G) = Zn+1(G) = Zn+2(G) =

For example, Z,(S3) = 1 for all n € Z*. Once two terms in the upper central
series are the same, the chain stabilizes at that point (i.e., all terms thereafter are
equal to these two). For example, if G = Z; x S3,

Z(G) = Z1(G) = Z2(G) = Z,(G) has order 2 for all n.

By definition, Z,(G) is a proper subgroup of G for all n for non-nilpotent groups.
(3) For infinite groups G it may happen that all Z;(G) are proper subgroups of G (so
G is not nilpotent) but

G= Loj Z;(G).

i=0
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Groups for which this hold are called hypernilpotent — they enjoy some (but
not all) of the properties of nilpotent groups. While we shall be dealing mainly
with finite nilpotent groups, results that do not involve the notion of order, Sylow
subgroups etc. also hold for infinite groups. Even for infinite groups one of the
main techniques for dealing with nilpotent groups is induction on the nilpotence
class.

Proposition 2. Let p be a prime and let P be a group of order p“. Then P is nilpotent
of nilpotence class at mosta — 1.

Proof: For eachi >0, P /Z;(P) is a p-group, so
if |P/Z;(P)| > 1then Z(P/Z;(P)) # 1

by Theorem 1(1). Thus if Z;(P) # G then |Z;;1(P)| > p|Z;(P)| and so | Z; 41 (P)| =
p'tl. In particular, |Z,(P)| > p?, so P = Z,(P). Thus P is nilpotent of class < a.
The only way P could be of nilpotence class exactly equal to a would be if | Z; (P)| = p’
for all i. In this case, however, Z,_»(P) would have index p? in P, so P/Z,_,(P)
would be abelian (by Corollary 4.9). But then P/Z,_,(P) would equal its center and
s0 Z,_1(P) would equal P, a contradiction. This proves thatthe classof P is < a — 1.

Example

Both Dg and Qg are nilpotent of class 2. More generally, D, is nilpotent of class n — 1.
This can be proved inductively by showing that |Z(D2»)| = 2 and D2» /Z(D3r) = Dyn-1
for n > 3 (the details are left as an exercise). If n is not a power of 2, D, is not nilpotent
(cf. Exercise 10).

We now give some equivalent (and often more workable) characterizations of nilpo-
tence for finite groups:

Theorem 3. Let G be a finite group, let p;, ps, . .., ps be the distinct primes dividing
its order and let P; € Syl (G), 1 <i <s. Then the following are equivalent:
(1) G is nilpotent
(2) if H < G then H < Ng(H), i.e., every proper subgroup of G is a proper
subgroup of its normalizer in G
(@) Pi<dGforl <i <s,i.e., every Sylow subgroup is normal in G
@4 G=EP xPyx---x P,

Proof: The proof that (1) implies (2) is the same argument as for p-groups — the
only fact we needed was if G is nilpotent then so is G/ Z(G) — so the details are omitted
(cf. the exercises).

To show that (2) implies (3) let P = P, for some i and let N = Ng(P). Since
P < N, Corollary 4.20 gives that P is characteristicin N. Since P char N < Ng(N)
we get that P < Ng (V). This means Ng(N) < N and hence Ng(N) = N. By (2) we
must therefore have N = G, which gives (3).

Next we prove (3) implies (4). Forany ¢z, 1 <t < s we show inductively that

PPy---PL=P X P, x---XP,.
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Note first that each P; is normal in G so P; - - - P, is a subgroup of G. Let H be the
product P, --- P,_; and let K = P,, so by induction H = P} x - -+ X P,_;. In particular,
|H| = |Py| - |Py| - - - |P,_1|. Since |K| = |P,|, the orders of H and K are relatively
prime. Lagrange’s Theorem implies H N K = 1. By definition, P, - - - P, = HK,
hence Theorem 5.9 gives

HK=Z=HXK=MP x---XP_))XP,=EZEP x---xP,

which completes the induction. Now take ¢ = s to obtain (4).
Finally, to prove (4) implies (1) use Exercise 1 of Section 5.1 to obtain

Z(Pyx---xX P)=Z(P) x ---x Z(Ps).
By Exercise 14 in Section 5.1,
G/Z(G) = (P1/Z(P)) X - - - X (Ps/Z(F)).

Thus the hypotheses of (4) also hold for G/Z(G). By Theorem 1, if P; # 1 then
Z(P) # 1,s0if G # 1, |G/Z(G)| < |G|. By induction, G/Z(G) is nilpotent, so by
Exercise 6, G is nilpotent. This completes the proof.

Note that the first part of the Fundamental Theorem of Finite Abelian Groups
(Theorem 5 in Section 5.2) follows immediately from the above theorem (we shall give
another proof later as a consequence of the Chinese Remainder Theorem):

Corollary 4. A finite abelian group is the direct product of its Sylow subgroups.

Next we prove a proposition which will be used later to show that the multiplicative
group of a finite field is cyclic (without using the Fundamental Theorem of Finite Abelian
Groups).

Proposition 5. If G is a finite group such that for all positive integers n dividing its
order, G contains at most n elements x satisfying x” = 1, then G is cyclic.

Proof: Let |G| = p}' --- p% and let P, be a Sylow p;-subgroup of G for
i=1,2,...,s. Since p* | |G| and the p;* elements of P; are solutions of xPi = 1,
by hypothesis P; must contain all solutions to this equation in G. It follows that P; is
the unique (hence normal) Sylow p;-subgroup of G. By Theorem 3, G is the direct
product of its Sylow subgroups. By Theorem 1, each P; possesses a normal subgroup

M; of index p;. Since |M;| = pf"'_l and G has at most pf‘*“l solutions to xPi" = 1,

by Lagrange’s Theorem (Corollary 9, Section 3.2) M contains all elements x of G
a;—1 . . . a;

satisfying xPi° = 1. Thus any element of P; not contained in M; satisfies xPi = 1

but xl’?i_l # 1,i.e., x is an element of order p,‘."'. This proves P; is cyclic for all i, so G
is the direct product of cyclic groups of relatively prime order, hence is cyclic.

The nextproposition is called Frattini’s Argument. We shall apply it to give another
characterization of finite nilpotent groups. It will also be a valuable tool in the next
section.
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Proposition 6. (Frattini’s Argument)Let G be a finite group, let H be a normal subgroup
of G and let P be a Sylow p-subgroup of H. Then G = HNg(P) and |G : H| divides
| NG (P).

Proof: By Corollary 3.15, H N (P) is a subgroup of G and H Ng(P) = Ng(P)H
since H is a normal subgroup of G. Let g € G. Since P4 < H® = H, both P and P#
are Sylow p-subgroups of H. By Sylow’s Theorem applied in H, there exists x € H
such that P& = P*. Thusgx~! € Ng(P)andsog € Ng(P)x. Since g was an arbitrary
element of G, this proves G = Ng(P)H.

Apply the Second Isomorphism Theorem to G = Ng(P)H to conclude that

|G : H| =|Ng(P) : Ng(P)NH]|
so |G : H| divides | Ng(P)|, completing the proof.

Proposition 7. A finite group is nilpotent if and only if every maximal subgroup is
normal.

Proof: Let G be a finite nilpotent group and let M be a maximal subgroup of G.
As in the proof of Theorem 1, since M < Ng (M) (by Theorem 3(2)) maximality of M
forces Ng(M) = G,ie., M < G.

Conversely, assume every maximal subgroup of the finite group G is normal. Let
P be a Sylow p-subgroup of G. We prove P < G and conclude that G is nilpotent by
Theorem 3(3). If P is not normal in G let M be a maximal subgroup of G containing
Ng(P). By hypothesis, M < G hence by Frattini’s Argument G = M N¢(P). Since
Ng(P) < M we have MNg(P) = M, acontradiction. This establishes the converse.

Commutators and the Lower Central Series

For the sake of completeness we include the definition of the lower central series of a
group and state its relation to the upper central series. Since we shall not be using these
results in the future, the proofs are left as (straightforward) exercises.

Recall that the commutator of two elements x, y in a group G is defined as

[x, y] = x 'y txy,

and the commutator of two subgroups H and K of G is
[H,K]=([h,k)}|he€e H, ke K).
Basic properties of commutators and the commutator subgroup were established in

Section 5.4.

Definition. For any (finite or infinite) group G define the following subgroups induc-
tively: . .
G'=G, G'=I[G,Gl and G =[G,G].

The chain of groups
G'>G'>G*>---
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is called the lower central series of G. (The term “lower” indicates that G > G'*1))

As with the upper central series we include in the exercises at the end of this section
the verification that G' is a characteristic subgroup of G for all i. The next theorem
shows the relation between the upper and lower central series of a group.

Theorem 8. A group G is nilpotent if and only if G" = 1 for some n > 0. More
precisely, G is nilpotent of class ¢ if and only if ¢ is the smallest nonnegative integer
such that G° = 1. If G is nilpotent of class ¢ then

Z(G) <G 1 <Z,1(G) forallie{0,1,...,c—1}.

Proof: This is proved by a straightforward induction on the length of either the
upper or lower central series.

The terms of the upper and lower central series do not necessarily coincide in
general although in some groups this does occur.

Remarks:

(1) If G is abelian, we have already seen that G’ = G! = 1 so the lower central series
terminates in the identity after one term.

(2) As with the upper central series, for any finite group there must, by order consid-
erations, be an integer n such that

G" = Gn+l — Gn+2 - ...

For non-nilpotent groups, G” is a nontrivial subgroup of G. For example, in
Section 5.4 we showed that S} = S = Aj. Since S; is notnilpotent, we must have
§2 = Aj. In fact

(123) = [(12), (132)] € [S3, S11 = 3.

Once two terms 1n the lower central series are the same, the chain stabilizes at that
point i.e., all terms thereafter are equal to these two. Thus S§ = A; foralli > 2.
Note that 3 is an example where the lower central series has two distinct terms
whereas all terms in the upper central series are equal to the identity (in particular,
for non-nilpotent groups these series need not have the same length).

Solvable Groups and the Derived Series

Recall that in Section 3.4 a solvable group was defined as one possessing a series:
1=Hy<H, 4---<H;=G

such that each factor H;,1/H; is abelian. We now give another characterization of
solvability in terms of a descending series of characteristic subgroups.

194 Further Topics in Group Theory



Definition. For any group G define the following sequence of subgroups inductively:
GO =G, G" =[G,G] and GV =[GY, G foralli>1.

This series of subgroups is called the derived or commutator series of G.

The terms of this series are also often writtenas: G = G’, G® = G”, etc. Again
it is left as an exercise to show that each G® is characteristic in G for all i.

Itis important to note that although G = G°® and GV = G!, itis not in general
true that G® = G'. The difference is that the definition of the i+1% term in the lower
central series is the commutator of the i term with the whole group G whereas the
i+1% term in the derived series is the commutator of the i" term with itself. Hence

G <G foralli

and the containment can be proper. For example, in G = §3 we have already seen that
G! = G’ = A; and G? = [S3, A3] = A, whereas G® = [A3, A3] = 1 (A3 being
abelian).

Theorem 9. A group G is solvable if and only if G™ = 1 for some n > 0.

Proof: Assume first that G is solvable and so possesses a series
l=H dH <---<9H,=G

such thateach factor H;,/H; i§ abelian. We prove by induction that G < H,_;. This
is true for i = 0, so assume G’ < H,_;. Then

GV =[G, GO] < [H,_;, H,_i].

Since H,_;/H,_;_ is abelian, by Proposition 5.7(4), [Hs—i, H;—;j] < H;_i—1. Thus
G < H,_;_,, which completes the induction. Since Hy = 1 we have G = 1.

Conversely, if G ™ = 1 for some n > 0, Proposition 5.7(4) shows that if we take
H; to be G~ then H; is a normal subgroup of H;,; with abelian quotient, so the
derived series itself satisfies the defining condition for solvability of G. This completes
the proof.

If G is solvable, the smallest nonnegative n for which G"™ = 1 is called the
solvable length of G. The derived series is a series of shortest length whose successive
quotients are abelian and it has the additional property that it consists of subgroups that
are characteristic in the whole group (as opposed to each just being normal in the next
in the initial definition of solvability). Its “intrinsic” definition also makes it easier to
work with in many instances, as the following proposition (which reproves some results
and exercises from Section 3.4) illustrates.

Proposition 10. Let G and K be groups, let H be a subgroup of G andletgp : G > K
be a surjective homomorphism.
M) HO < G for alli > 0. In particular, if G is solvable, then so is H, i.e.,
subgroups of solvable groups are solvable (and the solvable length of H is less
than or equal to the solvable length of G).
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2) ¢(G®) = K. In particular, homomorphic images and quotient groups of
solvable groups are solvable (of solvable length less than or equal to that of the
domain group).

(3) If N is normal in G and both N and G/N are solvable then so is G.

Proof: Part 1 follows from the observation that since H < G, by definition of
commutator subgroups, [H, H] < [G, G], i.e., H? < G, Then, by induction,

H® <G® foralli e Z".

In particular, if G™ = 1 for some n, then also H™ = 1. This establishes (1).
To prove (2) note that by definition of commutators,

o([x, y]) = [px), o(M)]

so by induction ¢(G?”) < K®. Since ¢ is surjective, every commutator in K is the
image of a commutator in G, hence again by induction we obtain equality for all i.
Again, if G™ = 1 for some n then K™ = 1. This proves (2).

Finally, if G/N and N are solvable, of lengths n and m respectively then by (2)
applied to the natural projection ¢ : G - G/N we obtain

$(G”) = (G/N)™ = 1N

ie., G® < N. Thus G = (G™)"™ < N = 1. Theorem 9 shows that G is
solvable, which completes the proof.

Some additional conditions under which finite groups are solvable are the following:

Theorem 11. Let G be a finite group.

(1) (Burnside) If |G| = p“q® for some primes p and g, then G is solvable.

(2) (Philip Hall) If for every prime p dividing |G| we factor the order of G as
|G| = p®m where (p, m) = 1, and G has a subgroup of order m, then G is
solvable (i.e., if for all primes p, G has a subgroup whose index equals the order
of a Sylow p-subgroup, then G is solvable — such subgroups are called Sylow
p-complements).

(3) (Feit-Thompson) If |G| is odd then G is solvable.

(4) (Thompson) If for every pair of elements x, y € G, ( x, y ) is a solvable group,
then G is solvable.

We shall prove Burnside’s Theorem in Chapter 19 and deduce Philip Hall’s gener-
alization of it. As mentioned in Section 3.5, the proof of the Feit—-Thompson Theorem
takes 255 pages. Thompson’s Theorem was first proved as a consequence of a 475 page
paper (that in turn relies ultimately on the Feit—Thompson Theorem).

A Proof of the Fundamental Theorem of Finite Abelian Groups

We sketch a group-theoretic proof of the result that every finite abelian group is a
direct product of cyclic groups (i.e., Parts 1 and 2 of Theorem 5, Section 5.2) — the
Classification of Finitely Generated Abelian Groups (Theorem 3, Section 5.2) will be
derived as a consequence of a more general theorem in Chapter 12.
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By Corollary 4 it suffices to prove thatfor p a prime, any abelian p-group is a direct
product of cyclic groups (the divisibility condition in Theorem 5.5 is trivially achieved
by reordering factors). Let A be an abelian p-group. We proceed by induction on | A|.

If E is an elementary abelian p-group (i.e., x? = 1 for all x € F), we first prove
the following result:

for any x € E, thereexists M < E with E = M x (x).

If x =1, let M = E. Otherwise let M be a subgroup of E of maximal order subject to
the condition that x not be an element of M. If M is not of index p in E, letE =E /M.
Then E is elementary abelian and there exists y € E — (X ). Since y has order p, we
also have ¥ ¢ (y). The complete preimage of (y) in E is a subgroup of E that does
not contain x and whose order is larger than the order of M, contrary to the choice of
M. This proves |E : M| = p, hence

E=M(x) and MN(x)=1.

By the recognition theorem for direct products, Theorem 5.9, E = M x ( x ), as asserted.
Now let ¢ : A — A be defined by ¢(x) = xP (see Exercise 7, Section 5.2). Then
¢ is a homomorphism since A is abelian. Denote the kernel of ¢ by K and denote the
image of ¢ by H. By definition K = {x € A | x? = 1} and H is the subgroup of A
consisting of p™ powers. Note that both K and A/H are elementary abelian. By the
First Isomorphism Theorem
|A : H| =|K]|.

By induction,

H={(h)x---x(h)

=Zp XX Zper ;=1 i=12,...,r

By definition of ¢, there exist elements g; € A such that gf =h;, 1 <i <r. Let
Ao= (g, -, & ). Itis an exercise to see that

@ Ao=(g1) x---x(&),
(b) Ao/H =(g1H) x - -- x (g-H ) is elementary abelian of order p”, and

() HNK = (hfa"_| ) X e X (hfu'_I ) is elementary abelian of order p”.

If K is contained in H, then [K| = |K N H| = p” = |Ap : H|. In this case by
comparing orders we see that Ap = A and the theorem is proved. Assume therefore
that K is not a subgroup of H and use the bar notation to denote passage to the quotient
group A/H. Letx € K — H, so |x|] = |x| = p. By the initial remark of the proof
applied to the elementary abelian p-group E = A, there is a subgroup M of A such
that

A=M x ().

If M is the complete preimage in A of M, then since x has order p and x ¢ M, we have
(x) N M = 1. By the recognition theorem for direct products,

A=Mx (x).
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By induction, M is a direct product of cyclic groups, hence so is A. This completes the
proof.

The uniqueness of the decomposition of a finite abelian group into a direct product
of cyclic groups (Part 3 of Theorem 5.5) can also be proved by induction using the p®-
power map (i.e., using Exercise 7, Section 5.2). This is essentially the procedure we
follow in Section 12.1 for the uniqueness part of the proof of the Fundamental Theorem
of Finitely Generated Abelian Groups.

EXERCISES

1. Prove that Z; (G) is a characteristic subgroup of G for all i.
2. Prove Parts 2 'and 4 of Theorem 1 for G a finite nilpotent group, not necessarily a p-group.

3. If G is finite prove that G is nilpotent if and only if it has a normal subgroup of each order
dividing | G|, and is cyclic if and only if it has a unique subgroup of each order dividing |G|.

4. Prove that a maximal subgroup of a finite nilpotent group has prime index.
5. Prove Parts 2 and 4 of Theorem 1 for G an infinite nilpotent group.
6. Show that if G/Z(G) is nilpotent then G is nilpotent.

7. Prove that subgroups and quotient groups of nilpotent groups are nilpotent (your proof
should work for infinite groups). Give an explicit example of a group G which possesses
a normal subgroup H such thatboth H and G/H are nilpotent but G is not nilpotent.

8. Prove that if p is a prime and P is a non-abelian group of order p3 then |Z(P)| = p and

P/Z(P) = Z, x Zp.
9. Provethat a finite group G is nilpotent if and only if whenevera, b € G with (|a|, |b]) = 1
then ab = ba. [Use Part 4 of Theorem 3.]

10. Prove that D,, is nilpotent if and only if # is a power of 2. [Use Exercise 9.]

11. Give another proof of Proposition 5 under the additional assumption that G is abelian by
invoking the Fundamental Theorem of Finite Abelian Groups.

12. Find the upper and lower central series for A4 and S4.

13. Find the upper and lower central series for A, and S,, n > 5.

14. Prove that G' is a characteristic subgroup of G forall i.

15. Prove that Z;(Dyr) = Dj, 1=

16. Prove that Q has no maximal subgroups. [Recall Exercise 21, Section 3.2.]

17. Prove that G®) is a characteristic subgroup of G for all i.

18. Show thatif G’/ G” and G”/G"" are both cyclic then G” = 1. [You may assume G"” = 1.
Then G/G” acts by conjugation onthe cyclic group G”.]

19. Show that there is no group whose commutator subgroup is isomorphic to S4. [Use the
preceding exercise.]

20. Let p be a prime, let P be a p-subgroup of the finite group G, let N be a normal subgroup
of G whose order is relatively prime to p and let G = G/N. Prove the following:
(a) Ng(P) = Ng(P) [Use Frattini’s Argument.]
(b) C5(P) = CG(P). [Use part (a).]

For any group G the Frattini subgroup of G (denoted by ¢ (G)) is defined to be the intersection

of all the maximal subgroups of G (if G has no maximal subgroups, set #(G) = G). The next
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few exercises deal with this important subgroup.

21. Prove that @(G) is a characteristic subgroup of G.

22.

23.
24,

25.

26.

27.

28.

Prove thatif N < G then @(N) < @(G). Give an explicit example where this containment
does not hold if N is not normal in G.

Compute @ (S3), P(As), P(S1), P(As) and P(Ss).

Say an element x of G is a nongenerator if for every proper subgroup H of G, {(x, H)
is also a proper subgroup of G. Prove that @ (G) is the set of nongenerators of G (here
|G| > 1).

Let G be a finite group. Prove that @ (G) is nilpotent. [Use Frattini’s Argument to prove
that every Sylow subgroup of @(G) is normal in G.]

Let p be a prime, let P be a finite p-group and let P = P/®(P).

(a) Prove that P is an elementary abelian p-group. [Show that P’ < @(P) and that
xP e ¢(P)forall x € P.]

(b) Prove thatif N is any normal subgroup of P such that P/N is elementary abelian
then @(P) < N. State this (universal) property in terms of homomorphisms and
commutative diagrams.

(c) Let P be elementary abelian of order p” (by (a)). Deduce from Exercise 24 that if
X1, X2, ..., %, are any basis for the r-dimensional vector space P over Fp and if x;
is any element of the coset X;, then P = (xj,x2,...,x, ). Show conversely that
if y1, y2, ..., ys is any set of generators for P, then s > r (you may assume that
every minimal generating set for an r-dimensional vector space has r elements, i.e.,
every basis has r elements). Deduce Burnside’s Basis Theorem: a set yy, ..., ys is
a minimal generating set for P if and only if y1, ...,y is a basis of P = P/®(P).
Deduce that any minimal generating set for P has r elements.

(d) Prove that if P/®(P) is cyclic then P is cyclic. Deduce that if P/P’ is cyclic then
sois P.

(e) Let o be any automorphism of P of prime order g with ¢ # p. Show that if o fixes
the coset x@(P) then o fixes some element of this coset (note that since @ (P) is
characteristic in P every automorphism of P induces an automorphism of P /@ (P)).
[Use the observation that o acts a permutation of order 1 or g on the p? elements in
the coset x@ (P).]

(f) Use parts (e) and (c) to deduce that every nontrivial automorphism of P of order
prime to p induces a nontrivial automorphism on P/®(P). Deduce that any group
of automorphisms of P which has order prime to p is isomorphic to a subgroup of
Aut(P) = GL,(F,).

Generalize part (d) of the preceding exercise as follows: let pbeaprime, let P bea p-group
r

and let P = P/®(P) be elementary abelian of order p”. Prove that P has exactly P

maximal subgroups. [Since every maximal subgroup of P contains @ (P), the maximal
subgroups of P are, by the Lattice Isomorphism Theorem, in bijective correspondence
with the maximal subgroups of the elementary abelian group P. It therefore suffices to
show that the number of maximal subgroups of an elementary abelian p-group of order
P’ is as stated above. One way of doing this is to use the result that an abelian group is
isomorphic to its dual group (cf. Exercise 14 in Section 5.2) so the number of subgroups
of index p equals the number of subgroups of order p.|

Prove that if p is a prime and P = Z, x Z then |®(P)| = pand P/P(P) = Z, x Z,.
Deduce that P has p + | maximal subgroups.
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29.

30.

31

32.

33.

Prove that if p is a prime and P is a non-abelian group of order p3 then ®(P) = Z(P)
and P/P(P) = Z, x Zp. Deduce that P has p + 1 maximal subgroups.

Let p be anodd prime, let P; = Z,, x Z;2 and let P, be the non-abelian group of order P’
which has an element of order p?. Prove that P; and P, have the same lattice of subgroups.

For any group G a minimal normal subgroup is a normal subgroup M of G such that the
only normal subgroups of G which are contained in M are 1 and M. Prove that every
minimal normal subgroup of a finite solvable group is an elementary abelian p-group
for some prime p. [If M is a minimal normal subgroup of G, consider its characteristic
subgroups: M’ and (x? | x € M).]

Prove that every maximal subgroup of a finite solvable group has prime power index. [Let
H be a maximal subgroup of G and let M be a minimal normal subgroup of G — cf.
the preceding exercise. Apply induction to G/M and consider separately the two cases:
M<HandM £ H.]

Let 7 be any set of primes. A subgroup H of a finite group is called a Hall 7 -subgroup of G
ifthe only primes dividing | H | are in the set 7w and | H | isrelatively prime to |G : H|. (Note
that if w = {p}, Hall w-subgroups are the same as Sylow p-subgroups. Hall subgroups
were introduced in Exercise 10 of Section 3.3). Prove the following generalization of
Sylow’s Theorem for solvable groups: if G is a finite solvable group then forevery set
of primes, G has a Hall 7-subgroup and any two Hall 7-subgroups (for the same set )
are conjugate in G.  [Fix r and proceed by induction on |G|, proving both existence
and conjugacy at once. Let M be a minimal normal subgroup of G, so M is a p-group for
some prime p. If p € m, apply induction to G/ M. If p ¢ m, reduce to the case |G| = p“n.
where p* = |M| and n is the order of a Hall -subgroup of G. In this case let N/M be
a minimal normal subgroup of G /M, so N/M is a g-group for some prime g # p. Let
0 € Syly(N). If Q < G argue as before with Q in place of M. If Q is not normal in G,
use Frattini’s Argument to show Ng(Q) is a Hall w-subgroupof G and establish conjugacy
in this case t00.]

The following result shows how to produce normal p-subgroups of some groups on which
the elements of order prime to p act faithfully by conjugation. Exercise 26(f) then applies to
restrict these actions and give some information about the structure of the group.

34.

3s.

36.

Let p be a prime dividing the order of the finite solvable group G. Assume G has no
nontrivial normal subgroups of order prime to p. Let P be the largest normal p-subgroup
of G (cf. Exercise 37, Section 4.5). Note that Exercise 31 above shows that P # 1. Prove
that Cg(P) < P,i.e, Cg(P) = Z(P). [Let N = C;(P) and use the preceding exercise
to show N = Z(P) x H forsome Hall r-subgroup H of N — here 7 is the set of all prime
divisors of |N| except for p. Show H < G to obtain the desired conclusion: H = 1.]

Prove that if G is a finite group in which every proper subgroup is nilpotent, then G
is solvable. [Show that a minimal counterexample is simple. Let M and N be distinct
maximal subgroups chosen with |[M N N| as large as possible and apply Part 2 of Theorem
3 to show that M N N = 1. Now apply the methods of Exercise 53 in Section 4.5.]

Let p be a prime, let V be a nonzero finite dimensional vector space over the field of p
elements and let ¢ be an element of GL(V) of order a power of p (i.e., V is a nontrivial
elementary abelian p-group and ¢ is an automorphism of V of p-power order). Prove that
there is some nonzero element v € V such that ¢(v) = v, i.e., ¢ has a nonzero fixed point
onV.

37. Let V be a finite dimensional vector space over the field of 2 elements and let ¢ be an

element of GL(V) of order2. (i.e., V is anontrivial elementary abelian 2-group and ¢ is an
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automorphism of V of order 2). Prove that the map v > v+ ¢(v) is ahomomorphism from
V toitself. Show that every element in the image of this map is fixed by ¢. Deduce that the
subspace of elements of V which are fixed by ¢ has dimension > %(dimension V). (Note
that if G is the semidirect product of V with (¢ ), where V < G and ¢ acts by conjugation
on V by sending each v € V to ¢(v), then the fixed points of ¢ on V are Cy () and the
above map is simply the commutator map: v +— [v, ¢]. In this terminology the problem
is to show that |Cv (9)|? > |V|.)

38. Use the preceding exercise to prove that if P is a 2-group which has a cyclic center and
M is a subgroup of index 2 in P, then the center of M has rank < 2. [The group G/M of
order 2 acts by conjugation on the F, vector space: {z € Z(M) | z2 = 1} and the fixed
points of this action are in the center of P.]

6.2 APPLICATIONS IN GROUPS OF MEDIUM ORDER

The purpose of this section is to work through a number of examples which illustrate
many of the techniques we have developed. These examples use Sylow’s Theorems ex-
tensively and demonstrate how they are applied in the study of finite groups. Motivated
by the Holder Program we address primarily the problem of showing that for certain
n every group of order n has a proper, nontrivial normal subgroup (i.e., there are no
simple groups of order n). In most cases we shall stop once this has been accomplished.
However readers should be aware that in the process of achieving this result we shall
already have determined a great deal of information about arbitrary groups of given
order n for the n that we consider. This information could be built upon to classify
groups of these orders (but in general this requires techniques beyond the simple use of
semidirect products to construct groups).

Since for p a prime we have already proved that there are no simple p-groups
(other than the cyclic group of order p, Z,) and since the structure of p-groups can be
very complicated (recall the table in Section 5.3), we shall not study the structure of
p-groups explicitly. Rather, the theory of p-groups developed in the preceding section
will be applied to subgroups of groups of non-prime-power order.

Finally, for certain n (e.g., 60, 168, 360, 504,...) there do exist simple groups of
order n so, of course, we cannot force every group of these orders to be nonsimple.
As in Section 4.5 we can, in certain cases, prove there is a unique simple group of
order n and unravel some of its internal structure (Sylow numbers, etc.). We shall study
simple groups of order 168 as an additional test case. Thus the Sylow Theorems will
be applied in a number of different contexts to show how groups of a given order may
be manipulated.

We shall end this section with some comments on the existence problem for groups,
particularly for finite simple groups.

For n < 10000 there are 60 odd, non-prime-power numbers for which the congru-
ence conditions of Sylow’s Theorems do not force at least one of the Sylow subgroups
to be normal i.e., n,, can be > 1 for all primes p | n (recall that n, denotes the number
of Sylow p-subgroups). For example, no numbers of the form pg, where p and g are
distinct primes occur in our list by results of Section 4.5. In contrast, for even numbers
< 500 there are already 46 candidates for orders of simple groups (the congruence
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conditions allow many more possibilities). Many of our numerical examples arise from
these lists of numbers and we often use odd numbers because the Sylow congruence
conditions allow fewer values for n,,. The purpose of these examples is to illustrate the
use of the results we have proved. Many of these examples can be dealt with by more
advanced techniques (for example, the Feit—-Thompson Theorem proves that there are
no simple groups of odd composite order).

As we saw in the case n = 30 in Section 4.5, even though Sylow’s Theorem
permitted ns = 6 and n3 = 10, further examination showed that any group of order 30
must have both ns = 1 and n3 = 1. Thus the congruence part of Sylow’s Theorem is a
sufficient but by no means necessary condition for normality of a Sylow subgroup. For
many # (e.g., n = 120) we can prove that there are no simple groups of order n, so there
is a nontrivial normal subgroup but this subgroup may not be a Sylow subgroup. For
example, S5 and SL,(Fs) both have order 120. The group Ss has a unique nontrivial
proper normal subgroup of order 60 (As) and SL;(Fs) has a unique nontrivial proper
normal subgroup of order 2 (Z(SL,([Fs)) = Z,), neither of which is a Sylow subgroup.
Our techniques for producing normal subgroups must be flexible enough to cover such
diverse possibilities. In this section we shall examine Sylow subgroups for different
primes dividing #, intersections of Sylow subgroups, normalizers of p-subgroups and
many other less obvious subgroups. The elementary methods we outline are by no
means exhaustive, even for groups of “medium” order.

Some Techniques

Before listing some techniques for producing normal subgroups in groups of a given
(“medium”) order we note that in all the problems where one deals with groups of
order n, for some specific n, it is first necessary to factor n into prime powers and then
to compute the permissible values of n,, for all primes p dividing n. We emphasize
the need to be comfortable computing mod p when carrying out the last step. The
techniques we describe may be listed as follows:

(1) Counting elements.

(2) Exploiting subgroups of small index.

(3) Permutation representations.

(4) Playing p-subgroups off against each other for different primes p.

(5) Studying normalizers of intersections of Sylow p-subgroups.

Counting Elements

Let G be a group of order n, let p be a prime dividing n and let P € Syl,(G). If
|P| = p, then every nonidentity element of P has order p and every element of G of
order p lies in some conjugate of P. By Lagrange’s Theorem distinct conjugates of P
intersect in the identity, hence in this case the number of elements of G of order p is
ny,(p—1).

! If Sylow p-subgroups for different primes p have prime order and we assume none
of these is normal, we can sometimes show that the number of elements of prime order
is > |G|. This contradiction would show that at least one of the n,’s must be 1 (ie.,
some Sylow subgroup is normal in G).

This is the argument we used (in Section 4.5) to prove that there are no simple
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groups of order 30. For another example, suppose |G| = 105 = 3-5-7. If G were
simple, we must have n3 = 7, ns = 21 and n; = 15. Thus

the number of elements of order 3 is 7 - 2 = 14
the number of elements of order 5 is 21 - 4 = 84
the number of elements of order 7 is 15 - 6 = 90

the number of elements of prime order is 188 > |G].

Sometimes counting elements of prime order does not lead to too many elements.
However, there may be so few elements remaining that there must be a normal subgroup
involving these elements. This was (in essence) the technique used in Section 4.5 to
show that in a group of order 12 either n, = 1 or n3 = 1. This technique works
particularly well when G has a Sylow p-subgroup P of order p such that Ng(P) = P.
For example, let |G| = 56. If G were simple, the only possibility for the number of
Sylow 7-subgroups is 8, so

the number of elements of order 7 is 8 - 6 = 48.

Thus there are 56 — 48 = 8 elements remaining in G. Since a Sylow 2-subgroup
contains 8 elements (none of which have order 7), there can be at most one Sylow
2-subgroup, hence G has a normal Sylow 2-subgroup.

Exploiting Subgroups of Small Index

Recall that the results of Section 4.2 show that if G has a subgroup H of index k,
then there is a homomorphism from G into the symmetric group S; whose kernel is
contained in H. If k > 1, this kernel is a proper normal subgroup of G and if we are
trying to prove that G is not simple, we may, by way of contradiction, assume that this
kernel is the identity. Then, by the First Isomorphism Theorem, G is isomorphic to a
subgroup of §;. In particular, the order of G divides k!. This argument shows that if k
is the smallest integer with |G| dividing k! for a finite simple group G then G contains
no proper subgroups of index less than k. This smallest permissible index k should be
calculated at the outset of the study of groups of a given order n. In the examples we
consider this is usually quite easy: n will often factor as
pi'py...pP with py<py<---<ps

and q; is usually equal to 1 or 2 in our examples. In this case the minimal index of a
proper subgroup will have to be at least p; (respectively 2p,) and this is often its exact
value.

For example, there is no simple group of order 3393, because if n = 3393 =
32 .13 - 29, then the minimal index of a proper subgroup is 29 (n does not divide 28!
because 29 does not divide 28!). However any simple group of order 3393 must have
n3 = 13, so for P € Syl3(G), Ng(P) has index 13, a contradiction.

Permutation Representations

This method is a refinement of the preceding one. As above, if G is a simple group of
order n with a proper subgroup of index k, then G is isomorphic to a subgroup of S;.
Wemay identify G with this subgroup and so assume G < ;. Rather than relying only
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on Lagrange’s Theorem for our contradiction (this was what we did for the preceding
technique) we can sometimes show by calculating within S that S; contains no simple
subgroup of order n. Two restrictions which may enable one to show such a result are

(D) if G contains an element or subgroup of a particular order, so must Sy, and
(2) if P € Syl,(G) and if P is also a Sylow p-subgroup of S, then |Ng(P)| must
divide | N, (P)|.

Condition (2) arises frequently when p is a prime, k = por p+ 1 and G has a
subgroup of index k. In this case p? does not divide k!, so Sylow p-subgroups of G are
a]so Sylow p-subgroups of S;. Since now Sylow p-subgroups of S, are precisely the
groups generated by a p-cycle, and distinct Sylow p-subgroups intersect in the identity,

the no. of p-cycles
the no. of p-cycles in a Sylow p-subgroup

the no. of Sylow p-subgroups of S; =

_k-(k=1---(k—p+1)
p(p—1)
This number gives the index in S of the normalizer of a Sylow p-subgroup of S;. Thus
fork=porp+1

INs, (P)| = p(p—1) (k=pork=p+1)

(cf. also the corresponding discussion for centralizers of elements in symmetric groups
in Section 4.3 and the last exercises in Section 4.3). This proves, under the above
hypotheses, that | Ng(P)| must divide p(p — 1).

For example, if G were a simple group of order 396 = 2% - 32 . 11, we must have
ny = 12,s0if P € Syl;1(G), |G : Ng(P)| = 12 and |[Ng(P)| = 33. Since G has
a subgroup of index 12, G is isomorphic to a subgroup of Sj;. But then (considering
G as actually contained in Sj3) P € Syl;1(S12) and |Ng,,(P)| = 110. Since Ng(P) <
Ns,, (P), this would imply 33 | 110, clearly impossible, so we cannot have a simple
group of order 396.

We can sometimes squeeze a little bit more out of this method by working in A,
rather than S;. This slight improvement helps only occasionally and only for groups of
even order. It is based on the following observations (the first of which we have made
earlier in the text).

Proposition 12.
(1) If G has no subgroup of index 2 and G < S, then G < A,.
(2) If P € Syl,(Sy) for some odd prime p, then P € Syl,(A¢) and N4, (P)| =
5INs,(P)].

Proof: The first assertion follows from the Second Isomorphism Theorem: if G is
not contained in Ag, then A; < G Ay so we must have GA; = S;. But now

2=|8 : Al =IGAL : Al =G : GN A
so G has a subgroup, G N Ay, of index 2.
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To prove (2) note thatif P € Syl,(S;), for some odd prime p, by (1) (or order con-
siderations) P < Ay, hence P € Syl,(Ay) as well. By Frattini’s Argument (Proposition
6)

Sk = N5, (P)Ax

so, in particular, N, (P) is not contained in Ax. This forces Ns, (P) N Ax (= Na, (P))
to be a subgroup of index 2 in N, (P).

For example, there is no simple group of order 264. Suppose G were a simple
group of order 264 = 23 .3 . 11. We must have n;; = 12. As usual, G would be
isomorphic to a subgroup of Si,. Since G is simple (hence contains no subgroup of
index 2), G < Ay,. Let P € Syh1(G). Since nj; = 12 = |G : Ng(P)|, we have
INg(P)| = 22. As above,

INa,,(P)| = 3INs,(P)| = 111(11 — 1) = 55;

however, 22 does not divide 55, a contradiction to Ng(P) < N 4, (P).

Finally, we emphasize that we have only barely touched upon the combinatorial
information available from certain permutation representations. Whenever possible in
the remaining examples we shall illustrate other applications of this technique.

Playing p-Subgroups Off Against Each Other for Different Primes p

Suppose p and ¢ are distinct primes such that every group of order pq is cyclic. This
is equivalent to p 1 ¢ — 1, where p < ¢. If G has a Sylow g-subgroup Q of order
g and p | |Nc(Q)|, applying Cauchy’s Theorem in Ng(Q) gives a group P of order
p normalizing Q (note that P need not be a Sylow p-subgroup of G). Thus PQ is a
group and if P Q is abelian, we obtain

PQ < NG(P) andso ¢ |ING(P)I.

(A symmetric argument applies if Sylow p-subgroups of G have order p and g divides
the order of a Sylow p-normalizer). This numerical information alone may be sufficient
toforce Ng(P) = G (i.e., P < G), or atleast toforce N (P) to have index smaller than
the minimal index permitted by permutation representations, giving a contradiction by
a preceding technique.

For example, there are no simple groups of order 1785. If there were, let G be
a simple group of order 1785 = 3.5 .7 -17. The only possible value for n,; is
35, so if Q is a Sylow 17-subgroup, |G : Ng(Q)| = 35. Thus |[Ng(Q)| = 3 - 17.
Let P be a Sylow 3-subgroup of Ng(Q). The group P Q is abelian since 3 does not
divide 17 — 1, so Q < Ng(P) and 17 | |[NGg(P)|- In this case P € Syl3(G). The
permissible values of n3 are 7, 85 and 595; however, since 17 | |Ng(P)|, we cannot
have 17 | |G : Ng(P)| = n3. Thus n3 = 7. But G has no proper subgroup of index
< 17 (the minimal index of a proper subgroup is 17 for this order), a contradiction.
Alternatively, if n3 = 7, then |[Ng(P)| = 3-5 - 17, and by Sylow’s Theorem applied in
Ng(P) we have Q < Ng(P). This contradicts the fact that |[Ng(Q)| = 3 - 17.

We can refine this method by not requiring P and Q to be of prime order. Namely,
if p and g are distinct primes dividing |G| such that Q € Syl,(G) and p | INc(O)I,
let P € Syl,(Ng(Q)). We can then apply Sylow’s Theorems in Ng(Q) to see whether
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P < Ng(Q), and if so, force N (P) to be of small index. If P is a Sylow p-subgroup of
the whole group G, we can use the congruence part of Sylow’s Theorem to put further
restrictions on |Ng(P)| (as we did in the preceding example). If P is not a Sylow
p-subgroup of G, then by the second part of Sylow’s Theorem P < P* € Syl,(G). In
this case since P < P*, Theorem 1(4) shows that P < Np+(P). Thus Ng(P) (which
contains Np»(P)) has order divisible by a larger power of p than divides | P| (as well
as being divisible by | Q|).

For example, there are no simple groups of order 3675. If there were, let G be
a simple group of order 3675 = 3 - 5% - 72. The only possibility for n7 is 15, so for
Q € Syl:(G), |G : Ng(Q)| =15 and |[Ng(Q)| = 245 = 5-7%. Let N = Ng(Q) and
let P € Syls(N). By the congruence conditions of Sylow’s Theorem applied in N we
get P < N. Since |P| =5, P is not itself a Sylow 5-subgroup of G so P is contained
in some Sylow S-subgroup P* of G. Since P is of index 5 in the 5-group P*, P < P*
by Theorem 1, that is P* < N¢(P). This proves

(N.P*) < Ng(P) so 7°-5°|ING(P)I.

Thus |G : Ng(P)| | 3, which is impossible since P is not normal and G has no
subgroup of index 3.

Studying Normalizers of Intersections of Sylow p-Subgroups

One of the reasons the counting arguments in the first method above do not immediately
generalize to Sylow subgroups which are not of prime order is because if P € Syl,(G)
for some prime p and |P| = p“, a > 2, then it need not be the case that distinct
conjugates of P intersect in the identity subgroup. If distinct conjugates of P do
intersect in the identity, we can again count to find that the number of elements of
p-power order is n,(|P| — 1).

Suppose, however, there exists R € Syl,(G) with R # P and PN R # 1. Let
Po= P NR. Then Py < P and Py < R, hence by Theorem 1

P() < NP(P()) and P() < NR(P()).

One can try to use this to prove that the nommalizerin G of P, is sufficiently large (i.e.,
of sufficiently small index) to obtain a contradiction by previous methods (note that this
normalizer is a proper subgroup since Py # 1).

One special case where this works particularly well is when |Py| = p*~! i.e., the
two Sylow p-subgroups R and P have large intersection. In this case set N = N (Fo).
Then by the above reasoning (i.e., since Py is a maximal subgroup of the p-groups P
and R), Pp < P and Py < R, thatis,

N has 2 distinct Sylow p-subgroups: P and R.

In particular, |N| = p“k, where (by Sylow’s Theorem) k > p + 1.

Recapitulating, if Sylow p-subgroups pairwise intersect in the identity, then count-
ing elements of p-power order is possible; otherwise there is some intersection of Sylow
p-subgroups whose normalizer is “large.” Since foran arbitrary group order one cannot
necessarily tell which of these two phenomena occurs, it may be necessary to split the
nonsimplicity argument into two (mutually exclusive) cases and derive a contradiction
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in each. This process is especially amenable when the order of a Sylow p-subgroup is
p? (forexample, this line of reasoning was used to count elements of 2-power order in
the proof that a simple group of order 60 is isomorphic to As — Proposition 23, Section
4.5).

Before proceeding with an example we state a lemma which gives a sufficient
condition to force a nontrivial Sylow intersection.

Lemma 13. In a finite group G if n, # 1(mod p?), then there are distinct Sylow
p-subgroups P and R of G such that P N R is of index p in both P and R (hence is
normal in each).

Proof: The argument is an easy refinement of the proof of the congruence part of
Sylow’s Theorem (cf. the exercises at the end of Section 4.5). Let P act by conjugation
on the set Syl,(G). Let Oy, ..., O be the orbits under this action with Oy = {P}. If
p? divides |P : P N R| for all Sylow p-subgroups R of G different from P, then each
O; has size divisible by p2, i =2,3,...,s. In this case, since n, is the sum of the
lengths of the orbits we would have n, = 1 + kp?, contrary to assumption. Thus for
some R € Syl,(G), |P : PNR| = p.

For example, there are no simple groups of order 1053. If there were, let G be a
simple group of order 1053 = 34.13 and let P € Syl3(G). We must have n3 = 13.
But 13 # 1(mod 3?) so there exist P, R € Syl3(G) such that |[P N R| = 33. Let
N = Ng(P N R), so by the above arguments P, R < N. Thus 34 | IN|and |[N| > 34
The only possibility is N = G, i.e., PN R < G, a contradiction.

Simple Groups of Order 168

We now show how many of our techniques can be used to unravel the structure of
and then classify certain simple groups by classifying the simple groups of order 168.
Because there are no nontrivial normal subgroups in simple groups, this process departs
from the methods in Section 5.5, but the overall approach typifies methods used in the
study of finite simple groups.

We begin by assuming there is a simple group G of order 168 = 23 .3 .7. We
first work out many of its properties: the number and structure of its Sylow subgroups,
the conjugacy classes, etc. All of these calculations are based only on the order and
simplicity of G. We use these results to first prove the uniqueness of G; and ultimately
we prove the existence of the simple group of order 168.

Because |G| does not divide 6! we have

(1) G has no proper subgroup of index less than 7,

since otherwise the action of G on the cosets of the subgroup would give a (necessarily
injective since G is simple) homomorphism from G into some S, withn < 6.

The simplicity of G and Sylow’s Theorem also immediately imply that
(2) n3 =8, so the normalizer of a Sylow 7-subgroup has order 21. In particular, no

element of order 2 normalizes a Sylow 7-subgroup and G has no elements of order 14.
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If G had an element of order 21 then the normalizer of a Sylow 3-subgroup of G would
have order divisible by 7. Thus n3 would be relatively prime to 7. Since then ns3 I 8 we
would have n3 = 4 contrary to (1). This proves:

(3) G has no elements of order 21.

By Sylow’s Theorem n3 = 7 or 28; we next rule out the former possibility. Assume
n3 = 7,let P € Syl3(G) and let T be a Sylow 2-subgroup of the group N (P) of order
24. Each Sylow 3-subgroup normalizes some Sylow 7-subgroup of G so P normalizes
a Sylow 7-subgroup R of G. For every t € T we also havethat P = ¢ Pt~ normalizes
tRt~!. The subgroup T acts by conjugation on the set of eight Sylow 7-subgroups of G
and since no element of order 2 in G normalizes a Sylow 7-subgroup by (2), it follows
that T acts transitively, i.e., every Sylow 7-subgroup of G is one of the tRt~!. Hence
P normalizes every Sylow 7-subgroup of G, i.e., P is contained in the intersection
of the normalizers of all Sylow 7-subgroups. But this intersection is a proper normal
subgroup of G, so it must be trivial. This contradiction proves:

(4) n3 = 28 and the normalizer of a Sylow 3-subgroup has order 6.

Since n, = 7 or 21, we have n, # 1 mod 8, so by Exercise 21 there is a pair of distinct
Sylow 2-subgroups that have nontrivial intersection; over all such pairs let 77 and 7,
be chosen with U = T; N T, of maximal order. We next prove

(5) U isaKlein4-group and Ng(U) = Sy

Let N = Ng(U). Since [U| = 2 or 4 and N permutes the nonidentity elements of
U by conjugation, a subgroup of order 7 in N would commute with some element of
order 2 in U, contradicting (2). It follows that the order of N is not divisible by 7. By
Exercise 13, N has more than one Sylow 2-subgroup, hence |[N| = 27 - 3, where a = 2
or 3. Let P € Syl3(N). Since P is a Sylow 3-subgroup of G, by (4) the group Ny (P)
has order 3 or 6 (with P as its unique subgroup of order 3). Thus by Sylow’s Theorem
N must have four Sylow 3-subgroups, and these are permuted transitively by N under
conjugation. Since any group of order 12 must have either a normal Sylow 2-subgroup
or a normal Sylow 3-subgroup (cf. Section 4.5), |[N| = 24. Let K be the kernel of N
acting by conjugation on its four Sylow 3-subgroups, so K is the intersection of the
normalizers of the Sylow 3-subgroups of N. If K = 1 then N = §; as asserted; so
consider when K # 1. Since K < Ny(P), the group K has order dividing 6, and
since P does not normalize another Sylow 3-subgroup, P is not contained in K. It
follows that | K| = 2. Butnow N/K is a group of order 12 which is seen to have more
than one Sylow 2-subgroup and four Sylow 3-subgroups, contrary to the property of
groups of order 12 cited earlier. This proves N = S,. Since S; has a unique nontrivial
normal 2-subgroup, Vi, (5) holds. Since N = §,, it follows that N contains a Sylow
2-subgroup of G and also that Ny (P) = S5 (so also Ng(P) = S3 by (4)). Hence we
obtain

(6) Sylow 2-subgroups of G are isomorphic to Dg, and

(7)  the normalizer in G of a Sylow 3-subgroup is isomorphic to Sz and so G has no
elements of order 6.
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By (2) and (7), no element of order 2 commutes with an element of odd prime order.
If T € Syl,(G), then T = Dg by (6), so Z(T) = (z) where z is an element of order
2. Then T < C¢(z) and |Cs(z)| has no odd prime factors by what was just said,
s0 C;(z) = T. Since any element normalizing T would normalize its center, hence
commute with z, it follows that Sylow 2-subgroups of G are self-normalizing. This
gives

8) ny,=21andCs(z) =T, whereT € Syl,(G) and Z(T) = (z).

Since |C¢(2)| = 8§, the element z in (8) has 21 conjugates. By (6), G has one conjugacy
class of elements of order 4, which by (6) and (8) contains 42 elements. By (2) there are
48 elements of order 7, and by (4) there are 56 elements of order 3. These account for
all 167 nonidentity elements of G, and so every element of order 2 must be conjugate
to z, i.e.,

(9) G has a unique conjugacy class of elements of order 2.

Continuing withthe same notation, let 7 € Syl,(G) with U < T and let W be the other
Klein 4-group in 7. It follows from Sylow’s Theorem that U and W are not conjugate
in G since they are not conjugate in Ng(T) = T (cf. Exercise 50 in Section 4.5). We
argue next that

(10) Ng(W) = S,

To see this let W = (z, w) where, as before, (z) = Z(T). Since w is conjugate in
G to z, C¢(w) = Ty is another Sylow 2-subgroup of G containing W but different
from T. Thus W = T N Tp. Since U was an arbitrary maximal intersection of Sylow
2-subgroups of G, the argument giving (5) implies (10).

We now record results which we have proved or which are easy consequences of
(1) to (10).

Proposition 14. If G is a simple group of order 168, then the following hold:

1) n, =21,n3=7andn; = 8

(2) Sylow 2-subgroups of G are dihedral, Sylow 3- and 7-subgroups are cyclic

(3) G is isomorphic to a subgroup of A7 and G has no subgroup of index < 6

(4) the conjugacy classes of G are the following: the identity; two classes of el-
ements of order 7 each of which contains 24 elements (represented by any
element of order 7 and its inverse); one class of elements of order 3 containing
56 elements; one class of elements of order 4 containing 42 elements; one class
of elements of order 2 containing 21 elements
(in particular, every element of G has order a power of a prime)

(8) if T € Syl,(G) and U, W are the two Klein 4-groups in 7, then U and W are
not conjugate in G and Ng(U) = Ng(W) = S,

(6) G has precisely three conjugacy classes of maximal subgroups, two of which
are isomorphic to S4 and one of which is isomorphic to the non-abelian group
of order 21.

All of the calculations above were predicated on the assumption that there exists a
simple group of order 168. Thefactthat none of these arguments leads to a contradiction
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does not prove the existence of such a group, but rather just gives strong evidence that
there may be a simple group of this order. We next illustrate how the internal subgroup
structure of G gives rise to a geometry on which G acts, and so leads to a proof that a
simple group of order 168 is unique, if it exists (which we shall also show).

Continuing the above notation let Uy, ..., U7 be the conjugates of U and let
Wi, ..., Wy be the conjugates of W. Call the U; points and the W; lines. Define
an “incidence relation” by specifying that

the point U; is on the line W; if and only if U; normalizes W;.

Note that U; normalizes W; if and only if U; W; = Dg, which in turn occurs if and
only if W; normalizes U;. In each point or line stabilizer—which is isomorphic to S;—
there is a unique normal 4-group, V, and precisely three other (nonnormal) 4-groups
Ay, Ay, A3z. The groups V A; are the three Sylow 2-subgroups of the S5. We therefore
have:

(11)  each line contains exactly 3 points and each point lies on exactly 3 lines.

Since any two nonnormal 4-groups in an S, generate the S, hence uniquely determine
the other two Klein groups in that S4, we obtain

(12) any 2 points on a line uniquely determine the line (and the third point on it).
Since there are 7 points and 7 lines, elementary counting now shows that

(13)  each pair of points lies on a unique line, and each pair of lines intersects in a
unique point.

(This configuration of points and lines thus satisfies axioms for what is termed a projec-
tive plane.) It is now straightforward to show that the incidence geometry is uniquely
determined and may be represented by the graph in Figure 1, where points are ver-
tices and lines are the six sides and medians of the triangle together with the inscribed
circle—see Exercise 27. This incidence geometry is called the projective plane of order
2 or the Fano Plane, and will be denoted by F. (Generally, a projective plane of “order”
N has N%2 + N + 1 points, and the same number of lines.) Note that at this point the
projective plane F does exist—we have explicitly exhibited points and lines satisfying
(11) to (13)—even though the group G is not yet known to exist.

Figure 1

An automorphism of this plane is any permutation of points and lines that preserves
the incidence relation. For example, any of the six symmetries of the triangle in Figure 1
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give automorphisms of 7, but we shall see that 7 has many more automorphisms than
these.

Each g € G acts by conjugation on the set of points and lines, and this action
preserves the incidence relation. Only the identity element in G fixes all points and so
via this action the group G would be isomorphic to a subgroup of the group of Aut(F),
the group of all automorphisms of F.

Any automorphism of F that fixes two points on a line as well as a third point not
on that line is easily seen to fix all points. Thus any automorphism of F is uniquely
determined by its action on any three noncollinear points. Since one easily computes
that there are 168 such triples, F has at most 168 automorphisms. This proves

if the simple group G exists it is unique and G = Aut(F).

Two steps in the classification process yet remain: to prove that 7 does have 168
automorphisms and to prove Aut(F) is indeed a simple group. Although one can do
these graph-theoretically, we adopt an approach following ideas from the theory of
“algebraic groups.” Let V be a 3-dimensional vector space over the field of 2 elements,
IF,, so V is the elementary abelian 2-group Z; x Z, x Z, of order 8. By Proposition 17
in Section 4.4, Aut(V) = GL(V) = GL5(F,) has order 168. Call the seven 1-
dimensional subspaces (i.e., the nontrivial cyclic subgroups) of V points, call the seven
2-dimensional subspaces (i.e., the subgroups of order 4) lines, and say the point p is
incident to the line L if p C L. Then the points and lines are easily seen to satisfy the
same axioms (11) to (13) above, hence to represent the Fano Plane. Since GL(V) acts
faithfully on these points and lines preserving incidence, Aut(F) has order at least 168.
In light of the established upper bound for |Aut(F)| this proves

Aut(F) = GL(V) = GL3(F,) and Aut(F) has order 168.

Finally we prove that GL(V) is a simple group. By way of contradiction assume
H is a proper nontrivial normal subgroup of GL (V). Let €2 be the 7 points and let N be
the stabilizer in GL(V) of some point in £2. Since GL (V) acts transitively on €2, N has
index 7. Since the intersection of all conjugates of N fixes all points, this intersection is
the identity. Thus H £ N,and so GL(V) = HN. Since |[H : HNN|=|HN : N|
we have 7 | |H|. Since GL(V) is isomorphic to a subgroup of S; and since Sylow
7-subgroups of S7 have normalizers of order 42, G L(V) does not have a normal Sylow
7-subgroup, so by Sylow’s Theorem n7(GL(V)) = 8. A normal Sylow 7-subgroup of
H would be characteristic in H, hence normal in GL(V), so also H does not have a
unique Sylow 7-subgroup. Since n7(H) = 1 mod 7 and n7;(H) < n7(GL(V)) = 8 we
must have n7(H) = 8 This implies |H| is divisible by 8, so 56 | |H|, and since H
is proper we must have |H| = 56. By usual counting arguments (cf. Exercise 7(b) of
Section 5.5) H has anormal, hence characteristic, Sylow 2-subgroup, which is therefore
normal in GL(V). But then GL(V) would have a unique Sylow 2-subgroup. Since
the set of upper triangular matrices and the set of lower triangular matrices are two
subgroups of G L3(IF,) each of order 8, we have a contradiction. In summary we have
now proven the following theorem.
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Theorem 15. Up to isomorphism there is a unique simple group of order 168, G L3(IF3),
which is also the automorphism group of the projective plane F.

Note that we might just as well have called the W; points and the U; lines. This
“duality” between points and lines together with the uniqueness of a simple group of
order 168 may be used to prove the existence of an outer automorphism of G that
interchanges points and lines i.e., conjugates U to W.

Many families of finite simple groups can be classified by analogous methods.
In more general settings geometric structures known as buildings play the role of the
projective plane (which is a special case of a building of type .A;). In this context the
subgroups Ng(U) and Ng (W) are parabolic subgroups of G, and U, W are their unipo-
tent radicals respectively. In particular, all the simple linear groups (cf. Section 3.4)
are characterized by the structure and intersections of their parabolic subgroups, or
equivalently, by their action on an associated building.

Remarks on the Existence Problem for Groups

As in other areas of mathematics (such as the theory of differential equations) one
may hypothesize the existence of a mathematical system (e.g., solution to an equation)
and derive a great deal of information about this proposed system. In general, if after
considerable effort no contradiction is reached based on the initial hypothesis one begins
to suspect that there actually is a system which does satisfy the conditions hypothesized.
However, no amount of consistent data will prove existence. Suppose we carried out
an analysis of a hypothetical simple group G of order 3* - 7 - 13 - 409 analogous to our
analysis of a simple group of order 168 (which we showed to exist). After a certain
amount of effort we could show that there are unique possible Sylow numbers:

ns=7-409 n;=32-13-409 n;3=3%-7-409 ngy =23%-7-13.

We could further show that such a G would have no elements of order pg, p and
q distinct primes, no elements of order 9, and that distinct Sylow subgroups would
intersect in the identity. We could then count the elements in Sylow p-subgroups for
all primes p and we would find that these would total to exactly |G|. At this point
we would have the complete subgroup structure and class equation for G. We might
then guess that there is a simple group of this order, but the Feit—-Thompson Theorem
asserts that there are no simple groups of odd composite order. (Note, however, that
the configuration for a possible simple group of order 3% - 7 - 13 - 409 is among the
cases that must be dealt with in the proof of the Feit-Thompson Theorem, so quoting
this result in this instance is actually circular. We prove no simple group of this order
exists in Section 19.3; see also Exercise 29.) The point is that even though we have as
much data in this case as we had in the order 168 situation (i.e., Proposition 14), we
cannot prove existence without some new techniques.

When we are dealing with nonsimple groups we haveat least one method of building
larger groups from smaller ones: semidirect products. Even though this methodis fairly
restrictive it conveys the notion that nonsimple groups may be built up from smaller
groups in some constructive fashion. This process breaks down completely for simple
groups; and so this demarcation of techniques reinforces our appreciation for the Holder
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Program: determining the simple groups, and finding how these groups are put together
to form larger groups.

The study of simple groups, as illustrated in the preceding discussion of groups of
order 168, uses many of the same tools as the study of nonsimple groups (to unravel their
subgroup structures, etc.) but also requires other techniques for their construction. As
we mentioned at the end of that discussion, these often involve algebraic or geometric
methods which construct simple groups as automorphisms of mathematical structures
that have intrinsic interest, and thereby link group theory to other areas of mathematics
and science in fascinating ways. Thus while we have come a long way in the analysis
of finite groups, there are a number of different areas in this branch of mathematics on
which we have just touched.

The analysis of infinite groups generally involves quite different methods, and in
the next section we introduce some of these.

EXERCISES

Counting elements:

1. Provethatforfixed P € Syl,(G)if PNR = 1forall R € Syl,(G)—{P},then PiNP; =1
whenever P; and P; are distinct Sylow p-subgroups of G. Deduce in this case that the
number of nonidentity elements of p-power order in G is (| P| — 1)|G : Ng(P)|.

2. In the group S3 x S3 exhibit a pair of Sylow 2-subgroups that intersect in the identity and
exhibit another pair that intersect in a group of order 2.

3. Prove that if |G| = 380 then G is not simple. [Just count elements of odd prime order.]

4. Prove that there are no simple groups of order 80, 351, 3875 or 5313.

5. Let G be a solvable group of order pm, where p is a prime not dividing m, and let
P € Sylp(G). If Ng(P) = P, prove that G has a normal subgroup of order m. Where
was the solvability of G needed in the proof? (This result is true for nonsolvable groups
as well — it is a special case of Burnside’s N/C-Theorem.)

Exploiting subgroups of small index:
6. Prove that there are no simple groups of order 2205, 4125, 5103, 6545 or 6435.

Permutation representations:

7. Prove that there are no simple groups of order 1755 or 5265. [Use Sylow 3-subgroups to
show G < Sj3 and look at the normalizer of a Sylow 13-subgroup.]

8. Prove that there are no simple groups of order 792 or 918.
9. Prove that there are no simple groups of order 336.

Playing p-subgroups off against each other:

10. Prove that there are no simple groups of order 4095, 4389, 5313 or 6669.

11. Prove that there are no simple groups of order 4851 or 5145.

12. Prove that there are no simple groups of order 9555. [Let Q € Syl13(G) andlet P €
Syl7(Ng (Q)). Argue that Q < Ng(P) — why is this a contradiction?]

Normalizers of Sylow intersections:

13. Let G be a group with more than one Sylow p-subgroup. Over all pairs of distinct Sylow
p-subgroups let P and Q be chosen so that |P N Q| is maximal. Show that Ng(P N Q)
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has more than one Sylow p-subgroup and that any two distinct Sylow p-subgroups of
NG (PN Q) intersect in the subgroup P N Q. (Thus |[Ng(P N Q)| is divisible by p- |P N QO]
and by some prime other than p. Note that Sylow p-subgroups of Ng (P N Q) need not
be Sylow in G.)

14. Prove that there are no simple groups of order 144, 525, 2025 or 3159.

General exercises:

15. Classify groups of order 105.
16. Prove that there are no non-abelian simple groups of odd order < 10000.
17. (a) Prove that there is no simple group of order 420.

(b) Prove that there are no simple groups of even order < 500 except for orders 2, 60,
168 and 360.

18. Prove that if G is a group of order 36 then G has either a normal Sylow 2-subgroup or a
normal Sylow 3-subgroup.

19. Show that a group of order 12 with no subgroup of order 6 is isomorphic to A4.
20. Show that a group of order 24 with no element of order 6 is isomorphic to Sj.

21. Generalize Lemma 13 by proving that if n, # 1(mod P*) then there are distinct Sylow
p-subgroups P and R of G such that P N R is of index < p*~! in both P and R.

22. Suppose over all pairs of distinct Sylow p-subgroups of G, P and R are chosen with
| P N R| maximal. Prove that Ng (P N R) is not a p-group.

23. Let A and B be normal subsets of a Sylow p-subgroup P of G. Prove that if A and B are
conjugate in G then they are conjugate in NG (P).

24. Let G be a group of order pgr where p, g and r are primes with p < g < r. Prove thata
Sylow r-subgroup of G is normal.

25. Let G be a simple group of order p2qr where p, g and r are primes. Prove that |G| = 60.

26. Prove or construct a counterexample to the assertion: if G is a group of order 168 with
more than one Sylow 7-subgroup then G is simple.

27. Show that if F is any set of points and lines satisfying properties (11) to (13) in the
subsection on simple groups of order 168 then the graph of incidences for F is uniquely
determined and is the same as Figure 1 (up to relabeling points and lines). [Take a line
and any point not on this line. Depict the line as the base of an equilateral triangle and
the point as the vertex of this triangle not on the base. Use the axioms to show that the
incidences of the remaining points and lines are then uniquely determined as in Figure 1.]

28. Let G be a simple group of order 3* - 7 - 13 - 409. Compute all permissible values of n,,
foreach p € {3, 7, 13, 409} and reduce to the case where there is a unique possible value
foreachn.

29. Given the information on the Sylow numbers for a hypothetical simple group of order
33.7-13-409, prove that there is no such group. [Work with the permutation representation
of degree 819.]

30. Suppose G is asimple group of order 720. Find as many properties of G as you can (Sylow
numbers, isomorphism type of Sylow subgroups, conjugacy classes, etc.). Is there such a
group?
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6.3 A WORD ON FREE GROUPS

In this section we introduce the basic theory of so-called free groups. This will enable
us to make precise the notions of generators and relations which were used in earlier
chapters. The results of this section rely only on the basic theory of homomorphisms.

The basicideaof a free group F(S) generated by a set S is that there are no relations
satisfied by any of the elements in S (S is “free” of relations). For example, if S is the
set {a, b} then the elements of the free group on the two generators a and b are of the
form a, aa, ab, abab, bab, etc., called words in a and b, together with the inverses of
these elements, and all these elements are considered distinct. If we group like terms
together, then we obtain elements of the familiar form a, b3, aba~'b? etc. Such
elements are multiplied by concatenating their words (for example, the product of aba
and b~1a3b would simply be abab—'a3b). It is natural at the outset (even before we
know S is contained in some group) to simply define F (S) to be the set of all words in S,
where two such expressions are multiplied in F(S) by concatenating them. Although
in essence this is what we do, it is necessary to be more formal in order to prove that
this concatenation operation is well defined and associative. After all, even the familiar
notation a” for the product a - a - - - a (n terms) is permissible only because we know that
this product is independent of the way it is bracketed (cf. the generalized associative law
in Section 1.1). The formal construction of F(S) is carried out below for an arbitrary
set S.

One important property reflecting the fact that there are no relations that must be
satisfied by the generators in S is that any map from the set S to a group G can be
uniquely extended to a homomorphism from the group F(S) to G (basically since we
have specified where the generators must go and the images of all the other elements
are uniquely determined by the homomorphism property — the fact that there are
no relations to worry about means that we can specify the images of the generators
arbitrarily). This is frequently referred to as the universal property of the free group
and in fact characterizes the group F(S).

The notion of “freeness” occurs in many algebraic systems and it may already be
familiar (using a different terminology) from elementary vector space theory. When
the algebraic systems are vector spaces, F(S) is simply the vector space which has S
as a basis. Every vector in this space is a unique linear combination of the elements of
S (the analogue of a “word”). Any set map from the basis S to another vector space
V extends uniquely to a linear transformation (i.e., vector space homomorphism) from
F(S)toV.

Before beginning the construction of F(S) we mention that one often sees the
universal property described in the language of commutative diagrams. In this form it
reads (for groups) as follows: given any set map ¢ from the set S to a group G thereis a
unique homomorphism @ : F(S) — G such that @ |5 = ¢ i.e., such that the following
diagram commutes:

inclusion

S —>F(9)

xl‘”

G
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As mentioned above, the only difficulty with the construction of F(S) is the ver-
ification that the concatenation operation on the words in F(S) is well defined and
associative. To prove the associative property for multiplication of words we return to
the most basic level where all the exponents in the words of S are +1.

We first introduce inverses for elements of S and an identity.

Let S~! be any set disjoint from S such that there is a bijection from S to S~!.
For each s € S denote its corresponding element in S~! by s~! and similarly for each
t € S7! let the corresponding element of S be denoted by ¢! (so (s~!)~! = 5). Take
a singleton set not contained in S U S~ and call it {1}. Let 17! = 1 and for any
xeSuUSTtu{l}letx! = x.

Next we describe the elements of the free group on the set S. A word on S is by
definition a sequence

(s1, 2, 53, ...) wheres; e SUSTTU {1} and s; = 1 for all i sufficiently large

(that is, for each sequence there is an N such that s; = 1 forall i > N). Thus we can
think of a word as a finite product of elements of S and their inverses (where repetitions
are allowed). Next, in order to assure uniqueness of expressions we consider only words
which have no obvious “cancellations” between adjacent terms (such as baa~'b = bb).
The word (sy, 52, 53, ... ) is said to be reduced if

(1) siy1 #s; ' foralli withs; # 1, and
(2) if s, = 1 forsome k,thens; = 1 foralli > k.

The reduced word (1, 1, 1, ...) is called the empty word and is denoted by 1. We

now simplify the notation by writing the reduced word (s, 5%, ..., s, 1, 1,1,...),
si € S, = %1, as s7's52 ... s&. Note that by definition, reduced words rf' rg’z courSm

and s7'sy’ ... so are equal if and only if n = mand §; = €;, 1 <i < n. Let F(S) be
the set of reduced words on S and embed S into F (S) by

s (s,1,1,1,...).

Under this set injection we identify S with its image and henceforth consider S as a
subset of F(S). Note thatif S =@, F(S) = {1}.

We are now in a position to introduce the binary operation on F(S). The principal
technical difficulty is to ensure that the product of two reduced words is again a reduced
word. Although the definition appears to be complicated it is simply the formal rule
for “successive cancellation” of juxtaposed terms which are inverses of each other
(e.g., ab'a times a~'ba should reduce to aa). Let ri'rd ...ré and s{'s? ... s be
reduced words and assume first that m < n. Let k be the smallest integer in the range
1 < k < m+ 1suchthat s* #r,” k‘ﬁ‘ Then the product of these reduced words is
defined to be:

8 Sm—k+1 s€n :
rt...r, _k_Hsk...n, ifk<m
€,| — €m. .
(rl r2 "')(sl 552 ...80) = AR A ifk=m+1<n
1, ifk =m+1and m =n.

The product is defined similarly when m > n, so in either case it results in a reduced
word.
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Theorem 16. F(S) is a group under the binary operation defined above.

Proof: One easily checks that 1 is an identity and that the inverse of the reduced

word s's5” . . . s& is the reduced word s, s, ™' . .. s, “!. The difficult part of the proof

n—1
is the verification of the associative law. This can be done by induction on the “length”
of the words involved and considering various cases or one can proceed as follows: For

each s € SU S~ U {1} define o, : F(S) — F(S) by

€ . -

o s-s7sst oL Lse, if s £ s
162 €n) —

os(sy)'sy’ ... 8" = o o . — -1

8,085 sy, ifs)t =570

Since o0;-1 o o, is the identity map of F(S) — F(S), o, is a permutation of F(S). Let
A(F) be the subgroup of the symmetric group on the set F(S) which is generated by
{os | s € S}. Itis easy to see that the map

-€n

€1 €2 €
88 ...8,

> ogloo70...00]
is a (set) bijection between F (S) and A(S) which respects their binary operations. Since
A(S) is a group, hence associative, so is F(S).

The universal property of free groups now follows easily.

Theorem 17. Let G be agroup, S asetandg : S — G asetmap. Then there is a unique
group homomorphism @ : F(S) — G such that the following diagram commutes:

inclusion

§ —— F(9)

xl‘”

G

Proof: Such a map @ must satisfy @(si's5”...55) = @(51)@(52) ... @(s)
if it is to be a homomorphism (which proves uniqueness), and it is straightforward to
check that this map is in fact a homomorphism (which proves existence).

Corollary 18. F(S) is unique up to a unique isomorphism which is the identity map
on the set S.

Proof: This follows from the universal property. Suppose F(S) and F’(S) are
two free groups generated by S. Since S is contained in both F(S) and F'(S), we have
naturalinjections S < F’(S)and S < F(S). By the universal property in the theorem,
it follows that we have unique associated group homomorphisms @ : F(S) — F'(S)
and @' : F'(S) — F(S) which are both the identity on S. The composite @' is a
homomorphism from F(S) to F(S) which is the identity on S, so by the uniqueness
statement in the theorem, it must be the identity map. Similarly @ @’ is the identity, so
@ is an isomorphism (with inverse @’), which proves the corollary.
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Definition. The group F(S) is called the free group on the set S. A group F is a free
group if there is some set S such that F = F(S) — in this case we call § a set of free
generators (or a free basis) of F. The cardinality of S is called the rank of the free

group.

One can now simplify expressions in a free group by using exponential notation, so
we write b2 instead of the formal reduced word aaab~1b~1. Expressions like aba,
however, cannot be simplified in the free group on {a, b}. We mention one important
theorem in this area.

Theorem 19. (Schreier) Subgroups of a free group are free.

This is not trivial to prove and we do not include a proof. There is a nice proof of
this result using covering spaces (cf. Trees by J.-P. Serre, Springer-Verlag, 1980).

Presentations

Let G be any group. Then G is a homomorphic image of a free group: take S = G
and ¢ as the identity map from G to G; then Theorem 16 produces a (surjective)
homomorphism from F(G) onto G. More generally, if S is any subset of G such
that G = ( S ), then again there is a unique surjective homomorphism from F(S) onto
G which is the identity on S. (Note that we can now independently formulate the
notion that a subset generates a group by noting that G = (S) if and only if the map
7 : F(S) = G which extends the identity map of S to G is surjective.)

Definition. Let S be a subset of a group G such that G = (S).

(1) ApresentationforG is apair (S, R), where R is a set of words in F(S) such that
the normal closure of ( R) in F(S) (the smallest normal subgroup containing
{ R)) equals the kernel of the homomorphism 7 : F(S) — G (where 7 extends
the identity mapfrom S to S). The elements of S are called generators and those
of R are called relations of G.

(2) We say G is finitely generated if there is a presentation (S, R) such that S is a
finite set and we say G is finitely presented if there is a presentation (S, R) with
both S and R finite sets.

Note that if (S, R) is a presentation, the kernel of the map F(S) — G is not ( R)
itself but rather the (much larger) group generated by R and all conjugates of elements
in R. Note that even for a fixed set S a group will have many different presentations (we
can always throw redundant relations into R, for example). If G is finitely presented
with S = {s1, $2,...,s,}and R = {w;, w,, ..., wy}, we write (as we have in preceding
chapters):

G=(snSo,....,8n|W1=wry=---=up =1)

and if w is the word wyw; ! we shall write w; = w; instead of w = 1.
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Examples

(1) Every finite group is finitely presented. To see this let G = {gi, ..., g} be a finite
group. Let S = G andlet 7 : F(S) — G be the homomorphism extending the identity
map of S. Let Rg be the set of words g,-gjgk'l, wherei, j=1,...,nandg;g; = g in
G. Clearly Ry <kerm. If N is the Llormal closure of Rg in F(S) and G=F ©S)/N,
then G is a homomorphic image of G (i.e., 7 factors through N). Moreover, the set of
elements {g; | i = 1,...,n} is closed under multiplication. Since this set generates
G, it must equal G. Thus |G| = |G| and so N = ker and (S, Ro) is a presentation
of G.

This illustrates a sufficient condition for (S, R) to be a presentation for a given finite
group G:
(i) S mustbe a generating set for G, and
(i) any group generated by S satisfying the relations in R must have order < |G]|.
(2) Abelian groups can be presented easily. For instance

Z = F({a) = (a),
ZxZ=(ab|lab]=1),
ZyXZm=(a,b|ad"=b"=][a,b]l=1).
(Recall [a, b] = a~ b 1ab).

(3) Some familiar non-abelian groups introduced in earlier chapters have simple presen-
tations:

Dy =(rs|r=s*=1, s lrs=r1)
Os=(i,jli*=1, )2 =i jlij=i"").

To check, for example, the presentation for Dy, note that the relations in the presenta-
tion (r,s | " =s? =1, s~!rs = r~1) imply that this group has a normal subgroup
(generated by r) of order < n whose quotient is generated by s (which has order < 2).
Thus any group with these generators and relations has order at most 2n. Since we
already know of the existence of the group D,, of order 2n satisfying these conditions,
the abstract presentation must equal D2j.

(4) As mentioned in Section 1.2, in general it is extremely difficult even to determine if a
given set of generators and relations is or is not the identity group (let alone determine
whether it is some other nontrivial finite group). For example, in the following two

presentations the first group is an infinite group and the second is the identity group
(cf. Trees, Chapter 1):

-1 2 -1 2 -1 2 -1 2
(X1, X2, X3, X4 | X2X1X5 = X7, X3X2X3 =Xy, X4X3X, =X3, X1X4X; =Xy)
-1 2 -1 2 -1 2
(x1,x2, x3, | X210, = x7, X3X2X3 = X5, X1X3X) = X3 ).

(5) It is easy to see that S, is generated by the transpositions (12), (23),...,(n—1n),
and that these satisfy the relations

G i+DE+1i+2))* =1 and [(i+1),(j j+1)] =1, whenever |i — j| > 2

(here |i — j| denotes the absolute value of the integer i — j). One can prove by induction
on n that these form a presentation of S,:

Sn=(t, .. taa |2 =1, (titi1)> =1, and [1;, 1] = 1
whenever |i — j| >2, 1 <i,j<n-1).
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As mentioned in Section 1.6 we can use presentations of a group to find homomor-
phisms between groups or to find automorphisms of a group. We did this in classifying
groups of order 6, for example, when we proved that any non-abelian group of order 6
was generated by anelement of order 3 and an elementof order 2 inverting it; thus thereis
ahomomorphism from S3 onto any non-abelian group of order 6 (hence anisomorphism,
by computing orders). More generally, suppose G is presented by, say, generators a, b
with relations ry, ..., ri. If @, b’ are any elements of a group H satisfying these rela-
tions, there is a homomorphism from G into H. Namely, if 7 : F({a, b}) — G is the
presentation homomorphism, we can define 7’ : F({a, b}) - H by n’(a) = @’ and
7'(b) = b'. Thenkerm <kern’ so i’ factors throughker 7 and we obtain

G = F({a,b})/ kerm —> H.

In, particular, if (a’,b’') = H = G, this homomorphism is an automorphism of G.
Conversely, any automorphism must send a set of generators to another setof generators
satisfying the same relations. For example, Dg = (a,b | a*> = b* = 1, aba = b !)
and any pair @', b’ of elements, where a’ is a noncentral element of order 2 and &’ is of
order 4, satisfies the same relations. Since there are four noncentral elements of order
2 and two elements of order 4, Dg has 8 automorphisms.

Similarly, any pair of elements of order 4 in Qg which are not equal or inverses of
each other necessarily generate Qg and satisfy the relations given in Example 3 above.
It is easy to check that there are 24 such pairs, so

|Aut(Qs)| = 24.

Free objects can be constructed in (many, but not all) other categories. For instance,
a monoid is a set together with a binary operation satisfying all of the group axioms
except the axiom specifying the existence of inverses. Free objects in the category of
monoids play a fundamental role in theoretical computer science where they model the
behavior of machines (Turing machines, etc.). We shall encounter free algebras (i.e.,
polynomial algebras) and free modules in later chapters.

EXERCISES

1. Let F; and F; be free groups of finite rank. Prove that Fj = F, if and only if they have the
same rank. What facts do you need in order to extend your proof to infinite ranks (where
the result is also true)?

. Prove that if |S| > 1 then F(S) is non-abelian.

. Prove that the commutator subgroup of the free group on 2 generators is not finitely gener-
ated (in particular, subgroups of finitely generated groups need not be finitely generated).

wW N

. Prove that every nonidentity element of a free group is of infinite order.
. Establish a finite presentation for A4 using 2 generators.
. Establish a finite presentation for S using 2 generators.

N NS

. Prove that the following is a presentation for the quaternion group of order 8:

Qs =(a,b|a® =1 a ba=b"").
8. Use presentations to find the orders of the automorphism groups of the groups Z; x Z4
and Z4 x Z4.
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9. Prove that Aut(Qg) = S4.
10. This exercise exhibits an automorphism of Sg that is not inner (hence, together with Ex-
ercise 19 in Section 4.4 it shows that |Aut(Se) : Inn(Se)| = 2). Let#; = (1 2)(3 4)(5 6),
t; =(14)(25)(36),13 =(13)24)(56),t, =(12)36)(45),and t; = (14)(2 3)(5 6).
Show that t{ v rg satisfy the following relations:
t)? = 1forall i,
(:;t;)2 = 1foralli and j with |i — j| > 2, and

(il )% =1foralli € {1,2,3,4).

Deduce that S¢ = (11, ..., t5) and that the map
A1, @Yt GhHd, @G-t (6t

extends to an automorphism of Sg (which is clearly not inner since it does not send trans-
positions to transpositions). [Use the presentation for Se described in Example 5.]

11. Let S be a set. The group with presentation (S, R), where R = {[s, #] | s,¢t € S} is called
the free abelian group on S — denote it by A(S). Prove that A(S) has the following
universal property: if G is any abelian groupand ¢ : S — G is any set map, then there is
a unique group homomorphism @ : A(S) — G such that @|s = ¢. Deducethatif A is a
free abelian group on a set of cardinality n then

AZZXZx---xZ (nfactors).

12. Let S be a set and let ¢ be a positive integer. Formulate the notion of a free nilpotent group
on S of nilpotence class ¢ and prove it has the appropriate universal property with respect
to nilpotent groups of class < c.

13. Provethattherecannot be anilpotent group N generated by two elements with the property
that every nilpotent group which is generated by two elements is a homomorphic image
of N (i.e., the specification of the class c in the preceding problem was necessary).

Sec. 6.3 A Word on Free Groups 221



Part Il

RING THEORY

The theory of groups is concerned with general properties of certain objects having
an algebraic structure defined by a single binary operation. The study of rings is
concerned with objects possessing two binary operations (called addition and multipli-
cation) related by the distributive laws. We first study analogues for the basic points
of development in the structure theory of groups. In particular, we introduce subrings,
quotient rings, ideals (which are the analogues of normal subgroups) and ring homo-
morphisms. We then focus on questions about general rings which arise naturally from
the presence of two binary operations. Questions concerning multiplicative inverses
lead to the notion of fields and eventually to the construction of some specific fields
such as finite fields. The study of the arithmetic (divisibility, greatest common divisors,
etc.) of rings such as the familiar ring of integers, Z, leads to the notion of primes and
unique factorizations in Chapter 8. The results of Chapters 7 and 8 are then applied to
rings of polynomials in Chapter 9.

The basic theory of rings developed in Part II is the cornerstone for the remaining
four parts of the book. The theory of ring actions (modules) comprises Part III of the
book. There we shall see how the swructure of rings is reflected in the structure of the
objects on which they act and this will enable us to prove some powerful classification
theorems. The structure theory of rings, in particular of polynomial rings, forms the
basis in Part I'V for the theory of fields and polynomial equations over fields. There the
rich interplay among ring theory, field theory and group theory leads to many beautiful
results on the structure of fields and the theory of roots of polynomials. Part V continues
the study of rings and applications of ring theory to such topics as geometry and the
theory of extensions. In Part VI the study of certain specific kinds of rings (group rings)
and the objects (modules) on which they act again gives deep classification theorems
whose consequences are then exploited to provide new results and insights into finite
groups.
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CHAPTER 7

Introduction to Rings

7.1 BASIC DEFINITIONS AND EXAMPLES

Definition.
(1) A ring R is a set together with two binary operations + and x (called addition
and multiplication) satisfying the following axioms:
(i) (R, +) is an abelian group,
(ii) x is associative: (a x b)) x c=a x (bxc) foralla, b, ce€ R,
(iii) the distributive laws holdin R : for alla, b,c € R

(@a+b)xc=(axc)+(bxc) and ax(b+c)=(axb)+(axc).

(2) The ring R is commutative if multiplication is commutative.
(3) The ring R is said to have an identity (or contain a 1) if there is an element
1 € R with
lxa=axl=a for all a € R.

We shall usually write simply ab rather than a x b for a,b € R. The additive
identity of R will always be denoted by 0 and the additive inverse of the ring element
a will be denoted by —a.

The condition that R be a group under addition is a fairly natural one, but it may
seem artificial to require that this group be abelian. One motivation for this is that if the
ring R has a 1, the commutativity under addition is forced by the distributive laws. To
see this, compute the product (1 + 1) (a +b) in two different ways, using the distributive
laws (but not assuming that addition is commutative). One obtains

A+D@+b)=1a@+b)+1@a+b)=la+1b+la+1b=a+b+a+b
and
A+D@+b)=N+Da+(Q+b=la+la+1b+1b=a+a+b+b.

Since R is a group under addition, this implies b4+a = a + b, i.e., that R under addition
is necessarily commutative.

Fields are one of the most important examples of rings. Note that their definition
below is just another formulation of the one given in Section 1.4.
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Definition. A ring R with identity 1, where 1 # 0, is called a division ring (or skew
field) if every nonzero element a € R has a multiplicative inverse, i.e., there exists
b € R such that ab = ba = 1. A commutative division ring is called a field.

More examples of rings follow.

Examples

@

)

€)]

@

The simplest examples of rings are the trivial rings obtained by taking R to be any
commutative group (denoting the group operation by +) and defining the multiplication
xon Rbya xb=0forall a, b € R. Itis easy to see that this multiplication defines
a commutative ring. In particular, if R = {0} is the trivial group, the resulting ring R
is called the zero ring, denoted R = 0. Except for the zero ring, a trivial ring does
not contain an identity (R = 0 is the only ring where 1 = 0; we shall often exclude
this ring by imposing the condition 1 # 0). Although trivial rings have two binary
operations, multiplication adds no new structure to the additive group and the theory of
rings gives no information which could not already be obtained from (abelian) group
theory.

The ring of integers, Z, under the usual operations of addition and multiplication is a
commutative ring with identity (the integer 1). The ring axioms (as with the additive
group axioms) follow from the basic axioms for the system of natural numbers. Note
that under mudtiplication Z—{0} is not a group (in fact, there are very few multiplicative
inverses to elements in this ring). We shall come back to the question of these inverses
shortly.

Similarly, the rational numbers, Q, the real numbers, R, and the complex numbers, C,
are commutative rings with identity (in fact they are fields). The ring axioms for each
of these follow ultimately from the ring axioms for Z. We shall verify this when we
construct QQ from Z (Section 7.5) and C from R (Example 1, Section 13.1); both of
these constructions will be special cases of more general processes. The construction
of R from Q (and subsequent verification of the ring axioms) is carried out in basic
analysis texts.

The quotient group Z/nZ is a commutative ring with identity (the element 1) under the
operations of addition and multiplication of residue classes (frequently referred to as
“modular arithmetic”). We saw that the additive abelian group axioms followed from
the general principles of the theory of quotient groups (indeed this was the prototypical
quotient group). We shall shortly prove that the remaining ring axioms (in particular,
the fact that multiplication of residue classes is well defined) follow analogously from
the general theory of quotient rings.

In all of the examples so far the rings have been commutative. Historically, one of the first
noncommutative rings was discovered in 1843 by Sir William Rowan Hamilton (1805—
1865). This ring, which is a division ring, was extremely influential in the subsequent
development of mathematics and it continues to play an important role in certain areas of
mathematics and physics.

©)
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(The (real) Hamilton Quaternions) Let H be the collection of elements of the form
a + bi + cj + dk where a, b, c,d € R are real numbers (loosely, “polynomials in
1,1, j, k with real coefficients”) where addition is defined “componentwise” by

(a+bi+cj+dk) + (@ +b'i+c j+d'k) = (a+a’) + (b+b)i + (c+c)j + (d+d )k

and multiplication is defined by expanding (a + bi +¢j +dk)(@’ + Vi + c'j + d'k)
using the distributive law (being careful about the order of terms) and simplifying
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using the relations
(where the real number coefficients commute with i, j and k). For example,

A+i+25)(4+k) = 1G4k +i(+k) +2j (+k) = j + k +ij + ik + 2j% + 2jk
=j+k+k+(—j)+2(-1)+2G) = -2 +2i + 2k.

The fact that H is a ring may be proved by a straightforward, albeit lengthy, check
of the axioms (associativity of multiplication is particularly tedious). The Hamilton
Quaternions are anoncommutative ring with identity (1 = 1+0i 40 4+0k). Similarly,
one can define the ring of rational Hamilton Quaternions by taking a, b, ¢, d to be
rational numbers above. Both the real and rational Hamilton Quaternions are division
rings, where inverses of nonzero elements are given by

. . 1 a—bi—cj—dk

(@a+bi+cj+dk)y " = PR S

(6) One important class of rings is obtained by considering rings of functions. Let X
be any nonempty set and let A be any ring. The collection, R, of all (set) functions
f : X > Aisaringunder the usual definition of pointwise addition and multiplication
of functions: (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). Eachring axiom
for R followsdirectly from the corresponding axiom for A. The ring R is commutative
if and only if A is commutative and R has a 1 if and only if A has a 1 (in which case
the 1 of R is necessarily the constant function 1 on X).

If X and A have more structure, we may form other rings of functions which
respect those structures. For instance, if A is the ring of real numbers R and X is
the closed interval [0, 1] in R we may form the ring of all continuous functions from
[0, 1] to R (here we need basic limit theorems to guarantee that sums and products of
continuous functions are continuous) — this is a commutative ring with 1.

(7) An example of a ring which does not have an identity is the ring 2Z of even integers
under usual addition and multiplication of integers (the sum and product of even
integers is an even integer).

Another example which arises naturally in analysis is constructed as follows. A
function f : R — R is said to have compact support if there are real numbers a, b
(depending on f) such that f(x) = O for all x ¢ [a, b] (i.e., f is zero outside some
bounded interval). The set of all functions f : R — R with compact support is a
commutative ring without identity (since an identity could not have compact support).
Similarly, the set of all continuous functions f : R — R with compact support is a
commutative ring without identity.

In the next section we give three important ways of constructing “larger” rings
from a given ring (analogous to Example 6 above) and thus greatly expand our list
of examples. Before doing so we mention some basic properties of arbitrary rings.
The ring Z is a good example to keep in mind, although this ring has a good deal
more algebraic structure than a general ring (for example, it is commutative and has
an identity). Nonetheless, its basic arithmetic holds for general rings as the following
result shows.
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Proposition 1. Let R be a ring. Then
(1) Oa =a0=0foralla € R.
(2) (—a)b = a(—b) = —(ab) for all a, b € R (recall —a is the additive inverse of
a).
) (—a)(—b) = ab foralla,b € R.
(4) if R has an identity 1, then the identity is unique and —a = (—1)a.

Proof: These all follow from the distributive laws and cancellation in the additive
group R. For example, (1) follows from Oa = (0 + 0)a = Oa + Oa. The equality
(—a)b = —(ab) in (2) follows from ab + (—a)b = (a + (—a))b = Ob = 0. The rest
follow similarly and are left to the reader.

This proposition shows that because of the distributive laws the additive and mul-
tiplicative structures of a ring behave well with respect to one another, just as in the
familiar example of the integers.

Unlike the integers, however, general rings may possess many elements that have
multiplicative inverses or may have nonzero elements a and b whose product is zero.
These two properties of elements, which relate to the multiplicative structure of a ring,
are given special names.

Definition. Let R be aring.
(1) A nonzero element a of R is called a zero divisor if there is a nonzero element
b in R such that either ab = 0 or ba = 0.
(2) Assume R has anidentity 1 # 0. An element u of R is called a unit in R if there
is some v in R such that uv = vu = 1. The set of units in R is denoted R*.

It is easy to see that the units in a ring R form a group under multiplication so R™
will be referred to as the group of units of R. In this terminology a field is a commutative
ring F with identity 1 # 0 in which every nonzero element is a unit, i.e., F* = F — {0}.

Observe that a zero divisor can never be a unit. Suppose for example that a is a
unit in R and that ab = 0 for some nonzero b in R. Then va = 1 for some v € R, so
b = 1b = (va)b = v(ab) = v0 = 0, a contradiction. Similarly, if ba = O for some
nonzero b then a cannot be a unit.

This shows in particular that fields contain no zero divisors.

Examples

(1) The ring Z of integers has no zero divisors and its only units are £1, i.e., Z* = {£1}.
Note that every nonzero integer has an inverse in the larger ring Q, so the property of
being a unit depends on the ring in which an element is viewed.

(2) Let n be an integer > 2. In the ring Z/nZ the elements u for which u and n are
relatively prime are units (we shall prove this in the next chapter). Thus our use of the
notation (Z/nZ)* is consistent with the definition of the group of units in an arbitrary
ring.

If, on the other hand, a is a nonzero integer and a is not relatively prime to n then
we show that a is a zero divisor in Z/nZ. To see this let d be the g.c.d. of a and n and

letbh = g By assumptiond > 1500 < b < n, i.e,, b # 0. But by construction n
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divides ab, that is, ab = 0 in Z/nZ. This shows that every nonzero element of Z/nZ
is either a unit or a zero divisor. Furthermore, every nonzero element is a unit if and
only if every integer a in the range 0 < a < n is relatively prime to n. This happens
if and only if n is a prime, i.e., Z/nZ is a field if and only if n is a prime.

If R is the ring of all functions from the closed interval [0,1] to R then the units of R
are the functions that are not zero at any point (for such f its inverse is the function

1 . . . .. .
?). If f is not a unit and not zero then f is a zero divisor because if we define

w= {0 e
EY =1, iffm=0

then g is not the zero function but f(x)g(x) = O for all x.

If R is the ring of all continuous functions from the closed interval [0,1] to R then
the units of R are still the functions that are not zero at any point, but now there are
functions that are neither units nor zero divisors. For instance, f(x) = x — % has only
one zero (at x = %) so f is not a unit. On the other hand, if gf = O then g must
be zero for all x # %, and the only continuous function with this property is the zero
function. Hence f is neither a unit nor a zero divisor. Similarly, no function with
only a finite (or countable) number of zeros on [0, 1] is a zero divisor. This ring also
contains many zerodivisors. For instance let

0, 0<x<1i
fo={" . |
X—i, 75)751

and let g(x) = f(1 —x). Then f and g are nonzero continuous functions whose
product is the zero function.
Let D be a rational number that is not a perfect square in Q and define

QWD)={a+bv/D|a,beQ}

as a subset of C. This set is clearly closed under subtraction, and the identity (a +
bV D)(c + dvD) = (ac + bdD) + (ad + bc)V'D shows that it is also closed under
multiplication. Hence Q(WD)isa subring of C (even a subring of R if D > 0), so in
particular is a commutative ring with identity. It is easy to show that the assumption
that D is not a square implies that every element of Q(+/D ) may be written uniquely
in the form a + b+/D. This assumption also implies that if a and b are not both 0 then
a? — Db? is nonzero, and since (a + bv/D )(a — bv/D) = a* — Db? it follows that if
a—bvD
a? — Db?
in Q(+/D). This shows that every nonzero element in this commutative ring is a unit,
i.e., Q(v/D) is a field (called a quadratic field, cf. Section 13.2).

The rational number D may be written D = f2 D’ for some rational number f and
aunique integer D’ where D’ is not divisible by the square of any integer greater than
1,i.e., D' is either —1 or +1 times the product of distinct primes in Z (for example,
8/5 = (2/5)2 - 10). Call D' the squarefree part of D. Then /D = f+/D’, and so
QD) = Q(+/D"). Thus there is no loss in assuming that D is a squarefree integer
(i.e., f = 1) in the definition of the quadratic field Q(+/D).

a+by/D # 0 (ie., one of a or b is nonzero) then isthe inverse of a +b+/D
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Rings having some of the same characteristics as the integers Z are given a name:

Definition. A commutative ring with identity 1 # 0 is called an integral domain if it
has no zero divisors.

The absence of zero divisors in integral domains give these rings a cancellation
property:

Proposition 2. Assume a, b and ¢ are elements of any ring with a not a zero divisor. If
ab = ac, theneithera = 0 or b = c (i.e., if a # 0 we can cancel the a’s). In particular,
if a, b, ¢ are any elements in an integral domain and ab = ac, then either a = 0 or
b=c.

Proof: If ab = ac then a(b — ¢) = 0 so either a = 0 or b — ¢ = 0. The second
statement follows from the first and the definition of an integral domain.

Corollary 3. Any finite integral domain is a field.

Proof: Let R be a finite integral domain and let a be a nonzero element of R. By
the cancellation law the map x > ax is aninjective function. Since R is finite this map
is also surjective. In particular, there is some b € R such that ab = 1, i.e., a is a unit
in R. Since a was an arbitrary nonzero element, R is a field.

A remarkable result of Wedderburn is that a finite division ring is necessarily com-
mutative, i.e., is a field. A proof of this theorem is outlined in the exercises at the end
of Section 13.6.

In Section S we study the relation between zero divisors and units in greater detail.
We shall see that every nonzero element of a commutative ring that is not a zero divisor
has a multiplicative inverse in some larger ring. This gives another perspective on the
cancellation law in Proposition 2.

Having defined the notion of a ring, there is a natural notion of a subring.

Definition. A subring of the ring R is a subgroup of R that is closed under multipli-
cation.

In other words, a subset S of aring R is a subring if the operations of addition and
multiplication in R when restricted to S give S the structure of a ring. To show that a
subset of a ring R is a subring it suffices to check that it is nonempty and closed under
subtraction and under multiplication.

Examples
A number of the examples above were also subrings.
(1) Zis asubring of Q and Q is a subring of R. The property “is a subring of” is clearly
transitive.
(2) 2Z is a subring of Z, as is nZ for any integer n. The ring Z/nZ is not a subring (or a
subgroup) of Z for any n > 2.

228 Chap.7 Introduction to Rings



(3) Thering of all continuous functions from R to R is a subring of the ring of all functions
from R to R. The ring of all differentiable functions from R to R is a subring of both
of these.

4) S =7Z+ Zi+ Zj + Zk, the integral Quaternions, form a subring of either the real or
the rational Quaternions — it is easy to check that multiplying two such quaternions
together gives another quaternion with integer coefficients. This ring (which is not a
division ring) can be used to give proofs for a number of results in number theory.

(5) If R is a subring of a field F that contains the identity of F then R is an integral
domain. The converse of this is also true, namely any integral domain is contained in
afield (cf. Section 5).

Example: (Quadratic Integer Rings)
Let D be a squarefree integer. It is immediate from the addition and multiplication that the
subset Z[+/D] = {a + bv'D | a, b € Z) forms a subring of the quadratic field Q(+/D)
defined earlier. If D = 1 mod4 then the slightly larger subset

/D 14D
1+2~D]={a+b + A/

Z[ la,beZ)

is also a subring: closure under addition is immediate and (a + b 1+5/5 Yc+d 1*3/5 ) =

(ac + bd %) + (ad + bc + bd) 1+§/B together with the congruence on D shows closure
under multiplication.

Define
OZOQ(«/E) =Z[w]={a+bw|a,belZ)
where
D, if D=2,3mod4
o= 1+ ‘\/b_ .
, if D =1mod4,

called the ring of integers in the quadratic field Q(+/D ). The terminology comes from the
factthat the elements of the subring O of the field Q(+/D ) have many properties analogous
to those of the subring of integers Z in the field of rational numbers QQ (and are the integral
closure of Z.in Q(+/D) as explained in Section 15.3).

In the special case when D = —1 we obtain the ring Z[i] of Gaussian integers, which
are the complex numbers a + bi € C with a and b both integers. These numbers were
originally introduced by Gauss around 1800 in order to state the biquadratic reciprocity law
which deals with the beautiful relations that exist among fourth powers modulo primes.
We shall shortly see another useful application of the algebraic structure of this ring to
number theoretic questions.

Define the field norm N : Q(\/E ) > Qby

N@+bvVD)=(a+bJ/D)a—bJD)=a* - Db €Q,

which, as previously mentioned, is nonzero if a 4+ b+/D # 0. This norm gives a measure
of “size” in the field Q(‘V/B ). For instance when D = —1 the norm of a + bi is a + b2,
which is the square of the length of this complex number considered as a vector in the
complex plane. We shall use the field norm in this and subsequent examples to establish
many properties of the rings O.
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It is easy to check that N is multiplicative, i.e., that N(af) = N(a)N(B) for all
a, B € Q(+/D). On the subring O it is also easy to see that the field norm is given by
a’> — DP?, if D =2, 3mod4

N(a + bw) = (a + bw)(a + bw) = 1-—
( )= Y@+ o) [a2+ab+TDb2, if D= 1mod4

where
—/D, if D= 2,3mod4
o= _
1 ZJB, if D = 1 mod4.

It follows that N () is in fact an integer for every o € O.

We may use this norm to characterize the units in Q. If @ € O has field norm
N(a) = +1, the previous formula shows that (a + bw)~! = +(a + bw), which is again
an element of O and so « is a unit in 0. Suppose conversely that ¢ is a unit in O, say
af = 1for some B € O. Then the multiplicative property of the field norm implies that
N(@)N(B) = N(aB) = N(1) = 1. Since both N(«) and N(B) are integers, each must be
+1. Hence,

the element « is a unit in O if and only if N (a) = £1.

In particular the determination of the integer solutions to the equation x2 — Dy? = +1
(called Pell’s equation in elementary number theory) is essentially equivalent to the deter-
mination of the units in the ring O.

When D = —1, the units in the Gaussian integers Z[i] are the elements a + bi with
a2+ b2 =21,a b€ Z, sothe group of units consists of {+1, +i}. When D = —3, the
units in Z[(1 + v/—3)/2] are determined by the integers a, b with a’+ab+b* =41, i,
with (2a + b)? + 3b% = +4, from which it is easy to see that the group of units is a group
of order 6 given by {£1, +p, +p2} where p = (=1 + +/—3)/2. For any other D < O it is
similarly straightforward to see that the only units are {+1}.

By contrast, when D > 0 itcan be shown that the group of units (O is always infinite.
For example, it is easy to check that 1 + +/2 is a unit in the ring O = Z[+/2] (with field

norm —1) and that {£(1 ++/2)" | n € Z}, is an infinite set of distinct units (in fact the full
group of units in this case, but this is harder to prove).

EXERCISES

Let R be aring with 1.
1. Show that (-1)2 =1in R.
2. Prove thatif u is a unitin R then sois —u.
3. Let R be aring with identity and let S be a subring of R containing the identity. Prove that
if u is a unitin S then u is a unit in R. Show by example that the converse is false.
4. Prove thattheintersection of any nonempty collection of subrings of aring is also a subring.

5. Decide which of the following (a) — (f) are subrings of Q:
(a) the set of all rational numbers with odd denominators (when written in lowest terms)
(b) the set of all rational numbers with even denominators (when written in lowest terms)
(c) the set of nonnegative rational numbers
(d) the set of squares of rational numbers
(e) the set of all rational numbers with odd numerators (when written in lowest terms)
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10.

11.
12.
13.

14.

15.

16.
17.

18.
19.

(f) the set of all rational numbers with even numerators (when written in lowest terms).

. Decide which of the following are subrings of the ring of all functions from the closed

interval [0,1] to R:
(a) the set of all functions f(x) suchthat f(g) =0 forallg € QN [0, 1]
(b) the set of all polynomial functions
(c) the set of all functions which have only a finite number of zeros, together with the
zero function
(d) the set of all functions which have an infinite number of zeros
(e) the set of all functions f such that linll fx)=0
X—=>1"

(f) the set of all rational linear combinations of the functions sinnx and cos mx, where
mne{0,1,2...}).

. The center of aring R is {z € R | zr = rz forallr € R} (i.e., is the set of all elements

which commute with every element of R). Prove that the center of a ring is a subring that
contains the identity. Prove that the center of a division ring is a field.

. Describe the center of the real Hamilton Quaternions H. Prove that {a + bi | a, b € R} is

a subring of H which is a field but is not contained in the center of H.

. For a fixed element a € R define C(a) = {r € R | ra = ar}. Prove that C(a) is a subring

of R containing a. Prove that the center of R is the intersection of the subrings C (a) over
alla € R.

Prove thatif D is a division ring then C(a) is a division ring forall a € D (cf. the preceding
exercise).

Prove that if R is an integral domain and x? = 1 for some x € R thenx = +1.
Prove that any subring of a field which contains the identity is an integral domain.

An element x in R is called nilpotent if x™ = 0 for some m € Z*.

(a) Show that if n = a*b for some integers a and b then ab is a nilpotent element of
Z/nZ.

(b) If a € Z is an integer, show that the element a € Z/nZ is nilpotent if and only if
every prime divisor of n is also a divisor of a. In particular, determine the nilpotent
elements of Z/727Z explicitly.

(c) Let R be the ring of functions from a nonempty set X to a field F. Prove that R
contains no nonzero nilpotent elements.

Let x be a nilpotent element of the commutative ring R (cf. the preceding exercise).
(a) Prove that x is either zero or a zero divisor.

(b) Prove that rx is nilpotent for all r € R.

(c¢) Prove that 1 + x is a unitin R.

(d) Deduce that the sum of a nilpotent element and a unit is a unit.

A ring R is called a Boolean ring if a® = a for all a € R. Prove that every Boolean ring
is commutative.

Prove that the only Boolean ring that is an integral domain is Z/2Z.

Let R and S be rings. Prove that the direct product R x S is a ring under componentwise
addition and multiplication. Prove that R x S is commutative if and only if both R and
S are commutative. Prove that R x S has an identity if and only if both R and S have
identities.

Prove that {(r, r) | r € R} is asubring of R x R.

Let I be any nonempty index set and let R; be a ring for each i € I. Prove that the direct
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20.

21.

22.

23.

24.

25.

26.

27.

product [ [;; R is a ring under componentwise addition and multiplication.

Let R be the collection of sequences (ay, a2, as, ...) of integers ay, a2, as, . .. where all
but finitely many of the a; are O (called the direct sum of infinitely many copies of Z).
Prove that R is a ring under componentwise addition and multiplication which does not
have an identity.

Let X be any nonempty set and let P(X) be the set of all subsets of X (the power set of
X). Define addition and multiplication on P (X) by

A+B=(A—-B)U(B—A) and AxXxB=ANB

i.e., addition is symmetric difference and multiplication is intersection.

(a) Prove that P (X) is a ring under these operations (P(X) and its subrings are often
referred to as rings of sets).

(b) Prove that this ring is commutative, has an identity and is a Boolean ring.

Give an example of an infinite Boolean ring.

Let D beasquarefree integer, and let O be the ring of integers in the quadratic field Q(+/D ).
For any positive integer f prove that the set Of =Zlfw]l ={a+bfw|a,beZ}isa
subring of O containing the identity. Prove that [ : Of] = f (index as additive abelian
groups). Prove conversely that a subring of O containing the identity and having finite
index f in O (as additive abelian group) is equal to Oy. (The ring O is called the order
of conductor f in the field Q(+/D ). The ring of integers © is called the maximal order in
QD))

Show for D = 3, 5, 6, and 7 that the group of units O of the quadratic integer ring O is
infinite by exhibiting an explicit unit of infinite (multiplicative) order in each ring.

Let I be the ring of integral Hamilton Quaternions and define

N:I>Z by N(a+bi+cj+dk)=a*+b+c2+d?

(the map N is called a norm).

(a) Prove that N(o) = aa for all « € I, where if « = a + bi + cj + dk then
a=a—bi —cj—dk.

(b) Prove that N(ef) = N(e)N(B) foralle, B € 1.

(c) Prove that an element of 7 is a unit if and only if it has norm +1. Show that I is
isomorphic to the quaternion group of order 8. [The inverse in the ring of rational

o
(a)']

quaternions of a nonzero element « is N

Let K be a field. A discrete valuation on K is a function v : K> — Z satisfying
(i) v(ab) = v(a) + v(b) (i.e., v is a homomorphism from the multiplicative group of
nonzero elements of K to Z),
(ii) v is surjective, and
(iii) v(x + y) > min{v(x), v(y)} forallx,y € K* withx +y # 0.
The set R = {x € K> | v(x) > 0} U {0} is called the valuation ring of v.
(a) Prove that R is a subring of K which contains the identity. (In general, a ring R is
called a discrete valuation ring if there is some field K and some discrete valuation v
on K such that R is the valuation ring of v.)
(b) Prove that for each nonzero element x € K either x or x~" is in R.
(c) Prove thatanelement x is a unit of R if and only if v(x) = 0.

1

A specific example of a discrete valuation ring (cf. the preceding exercise) is obtained
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when p is a prime, K = Q and

v QX > Z by v,,(%) =a where % = p"%, p fcand p fd.
Prove that the corresponding valuation ring R is the ring of all rational numbers whose
denominators are relatively prime to p. Describe the units of this valuation ring.

28. Let R be aring with 1 # 0. A nonzero element a is called a left zero divisor in R if there is
a nonzero element x € R such that ax = 0. Symmetrically, b # 0 is a right zero divisor if
there is a nonzero y € R suchthat yb = 0 (so a zero divisor is an element which is either
a left or a right zero divisor). An element u € R has a left inverse in R if there is some
s € R such that su = 1. Symmetrically, v has a right inverse if vt = 1 for some ¢t € R.
(a) Prove that u is a unit if and only if it has both a right and a left inverse (i.e., ¥ must
have a two-sided inverse).

(b) Prove that if u has a right inverse then u is not a right zero divisor.

(c) Prove that if 1 has more than one right inverse then u is a left zero divisor.

(d) Prove thatif R is a finite ring then every element that has a right inverse is a unit (i.e.,
has a two-sided inverse).

29. Let A be any commutative ring with identity 1 # 0. Let R be the set of all group homo-
morphisms of the additive group A to itself with addition defined as pointwise addition of
functions and multiplication defined as function composition. Prove that these operations
make R into a ring with identity. Prove that the units of R are the group automorphisms
of A (cf. Exercise 20, Section 1.6).

30. Let A = Zx Z x Z x - -- be the direct product of copies of Z indexed by the positive integers
(so A is a ring under componentwise addition and multiplication) and let R be the ring of
all group homomorphisms from A to itself as described in the preceding exercise. Let ¢
be the element of R defined by ¢(a1, a2, a3, ...) = (a2, a3, ...). Let ¢ be the element of
R defined by ¥(a1, @2, a3,...) = (0,a1,a2,as3, ...).

(@) Prove that ¢y is the identity of R but ¢ is not the identity of R (i.e., y is a right
inverse for ¢ but not a left inverse).

(b) Exhibit infinitely many right inverses for ¢.

(¢) Find a nonzero element 7 in R such that g7r = 0 but g # 0.

(d) Prove that there is no nonzero element A € R such that Ap = 0 (i.e., ¢ is a left zero
divisor but not a right zero divisor).

7.2 EXAMPLES: POLYNOMIAL RINGS, MATRIX RINGS,
AND GROUP RINGS

We introduce here three important types of rings: polynomial rings, matrix rings, and
group rings. We shall see in the course of the text that these three classes of rings are
often related. For example, we shall see in Part VI that the group ring of a group G over
the complex numbers C is a direct product of matrix rings over C.

These rings also have many important applications, in addition to being interesting
in their own right. In Part III we shall use polynomial rings to prove some classification
theorems for matrices which, in particular, determine when a matrix is similar to a
diagonal matrix. In Part VI we shall use group rings to study group actions and to prove
some additional important classification theorems.
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Polynomial Rings

Fix a commutative ring R with identity. We define the ring of polynomials in a form
which may already be familiar, at least for polynomials with real coefficients. A defi-
nition in terms of Cartesian products is given in Appendix L. Let x be an indeterminate.
The formal sum

apx" + a1 x" V- ax +ap

with n > 0 and each a; € R is called a polynomial in x with coefficients g; in R.
If a, # 0, then the polynomial is said to be of degree n, a,x" is called the leading
term, and a, is called the leading coefficient (where the leading coefficient of the zero
polynomial is taken to be 0). The polynomial is monic if a, = 1. The set of all such
polynomials is called the ring of polynomials in the variable x with coefficients in R
and will be denoted R[x].

The operations of addition and multiplication which make R[x] into a ring are the
same operations familiar from elementary algebra: addition is “componentwise”

(@nX" + a1 x" - aix + ag) + (Bux™ + by x™ N+ - - -+ byx + bg)
= (n 4 b)X" + (@1 + )X + - + (@1 + b1)x + (a0 + bo)

(here a,, or b, may be zero in order for addition of polynomials of different degrees
to be defined). Multiplication is performed by first defining (ax’)(bx/) = abx'*/ for
polynomials with only one nonzero term and then extending to all polynomials by the
distributive laws (usually referred to as “expanding out and collecting like terms”):

(@+ax +ax>+...)x (bg+bix +bypx?+...)
= agbg + (aghy + a1bg)x + (aghs + a1b; + azbo)x2 +...

(in general, the coefficient of x* in the product will be Zf —0 @ibi—i ). These operations
make sense since R is a ring so the sums and products of the coefficients are defined.
An easy verification proves that R[x] is indeed a ring with these definitions of addition
and multiplication.

The ring R appears in R[x] as the constant polynomials. Note that by definition of
the multiplication, R[x] is a commutative ring with identity (the identity 1 from R).

The coefficientring R above was assumed to be a commutative ring since that is the
situation we shall be primarily interested in, but note that the definition of the addition
and multiplication in R[x] above would be valid even if R were not commutative or
did not have an identity. If the coefficient ring R is the integers Z (respectively, the
rationals QQ) the polynomial ring Z[x] (respectively, Q[x]) is the ring of polynomials
with integer (rational) coefficients familiar from elementary algebra.

Another example is the polynomial ring Z/3Z[x] of polynomials in x with coeffi-
cients in Z/3Z. This ring consists of nonnegative powers of x with coefficients 0, 1,
and 2 with calculations on the coefficients performed modulo 3. For example, if

P =x>+2x+1 and ) =x'+x+2
then
p(x) +q(x) = x> +x?
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and
PG =X+ 2x* + 23 + x2 +2x + 2.

The ring in which the coefficients are taken makes a substantial difference in the
behavior of polynomials. For example, the polynomial x2 4 1 is not a perfect square in
the polynomial ring Z[x], but is a perfect square in the polynomial ring Z/27Z[x], since
(x + 1)2 = x2 4+ 2x + 1 = x2 + 1 in this ring.

Proposition 4. Let R be an integral domain and let p(x), g(x) be nonzero elements of
R[x]. Then

(1) degree p(x)q(x) = degree p(x) + degree g(x),

(2) the units of R[x] are just the units of R,

(3 R[x]is anintegral domain.

Proof: If R has no zero divisors then neither does R[x]; if p(x) and g(x) are
polynomials with leading terms a,x" and b,,x™, respectively, then the leading term of
p(x)q(x) is ayb,x"*", and a,b,, # 0. This proves (3) and also verifies (1). If p(x) is
a unit, say p(x)g(x) = 1 in R[x], then degree p(x) + degree g(x) = 0, so both p(x)
and g(x) are elements of R, hence are units in R since their productis 1. This proves

.

If the ring R has zero divisors then so does R[x], because R C R[x]. Also, if f(x)
is a zero divisor in R[x] (i.e., f(x)g(x) = O for some nonzero g(x) € R[x]) then in
fact cf (x) = O for some nonzero ¢ € R (cf. Exercise 2).

If S is a subring of R then S[x] is a subring of R[x]. For instance, Z[x] is a subring
of Q[x]. Some other examples of subrings of R[x] are the set of all polynomials in x?
(i.e., in which only even powers of x appear) and the set of all polynomials with zero
constant term (the latter subring does not have an identity).

Polynomial rings, particularly those over fields, will be studied extensively in Chap-
ter 9.

Matrix Rings

Fix an arbitrary ring R and let n be a positive integer. Let M, (R) be the setof alln x n
matrices with entries from R. The element (a;;) of M,(R) is an n X n square array
of elements of R whose entry in row i and column j is a;; € R. The set of matrices
becomes a ring under the usual rules by which matrices of real numbers are added and
multiplied. Addition is componentwise: the i, j entry of the matrix (a;;) + (b;;) is
a;j + b;j. The i, j entry of the matrix product (a;;) x (b;j) is ZZ=1 aixby; (note that
these matrices need to be square in order that multiplication of any two elements be
defined). It is a straightforward calculation to check that these operations make M,,(R)
into aring. When R is a field we shall prove that M, (R) is a ring by less computational
means in Part III.

Note that if R is any nontrivial ring (even a commutative one) and n > 2 then
M, (R) is not commutative: if ab # 0 in R let A be the matrix with a in position 1,1
and zeros elsewhere and let B be the matrix with b in position 1,2 and zeros elsewhere;
then ab is the (nonzero) entry in position 1,2 of AB whereas BA is the zero matrix.
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These two matrices also show that M,,(R) has zero divisors for all nonzero rings R
whenevern > 2.

An element (a;;) of M,(R) is called a scalar matrix if for some a € R, a; = a
foralli e {1,...,n} and a;; = O for alli # j (i.e., all diagonal entries equal a and
all off-diagonal entries are 0). The set of scalar matrices is a subring of M, (R). This
subring is a copy of R (i.e., is “isomorphic” to R): if the matrix A has the element a
along the main diagonal and the matrix B has the element b along the main diagonal
then the matrix A 4+ B has a + b along the diagonal and AB has ab along the diagonal
(and all other entries 0). If R is commutative, the scalar matrices commute with all
elements of M,(R). If R has a 1, then the scalar matrix with 1’s down the diagonal
(the n x n identity matrix) is the 1 of M, (R). In this case the units in M, (R) are the
invertible n x n matrices and the group of units is denoted G L,,(R), the general linear
group of degree n over R.

If S isasubringof R then M, (S) is asubring of M,,(R). For instance M,,(Z) is a sub-
ring of M,,(Q) and M,,(2Z) is a subring of both of these. Another example of a subring
of M, (R) is the set of upper triangular matrices: {(a;;) | ap; = 0 whenever p > g}
(the set of matrices all of whose entries below the main diagonal are zero) — one easily
checks that the sum and product of upper triangular matrices is upper triangular.

Group Rings

Fix a commutative ring R with identity 1 # O andlet G = {gy, g2, ..., g:} be any finite
group with group operation written multiplicatively. Define the group ring, RG, of G
with coefficients in R to be the set of all formal sums

a1 g1 +axg+---+angn a €R, 1<i<n.

If g, is the identity of G we shall write a; g; simply as a;. Similarly, we shall write the
element 1g for g € G simply as g.
Addition is defined “componentwise”

(a181 +azg2+ -+ angn) + (b1g1 + baga + -+ - + brgn)
= (a1 +b))g + (a2 +by)gs +--- + (an + by)gn.

Multiplication is performed by first defining (ag;)(bg;) = (ab)gx, where the product
ab is taken in R and g;g; = g is the product in the group G. This product is then
extended to all formal sums by the distributive laws so that the coefficient of g, in the
product (@181 + - - +augn) X (b1g1+-- - +b,g,) is Zgl_gng a;b;. Itis straightforward
to check that these operations make RG into a ring (again, commutativity of R is not
needed). The associativity of multiplication follows from the associativity of the group
operation in G. The ring RG is commutative if and only if G is a commutative group.

Example

Let G = Dg be the dihedral group of order 8 with the usual generators r, s (r* = s2 = 1
andrs = sr~!)andlet R = Z. Theelementsa = r +r2 —2s and 8 = —3r2 + rs are
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typical members of ZDg. Their sum and product are then
a+ﬂ=r—-2r2—-23+rs
af=(r+ r2 —25)(=3r% +rs)
= r(—3r2 +rs)+ r2(—3r2 +rs) — 2s(—3r2 +rs)
=-3r3+r2s -3+ +6rks — 213
=-3-534+72+r%.

The ring R appearsin RG as the “constant” formal sumsi.e., the R-multiples of the
identity of G (note that the definition of the addition and multiplicationin RG restricted
to these elements is just the addition and multiplication in R). These elements of R
commute with all elements of RG. The identity of R is the identity of RG.

The group G also appears in RG (the element g; appears as 1g; — for example,
r,s € Dy are also elements of the group ring ZDg above) — multiplication in the ring
RG restricted to G is just the group operation. In particular, each element of G has a
multiplicative inverse in the ring RG (namely, its inverse in G). This says that G is a
subgroup of the group of units of RG.

If |G| > 1 then RG always has zero divisors. For example, let g be any element
of G of order m > 1. Then

QA-gd+g+---+g"H=1-g"=1-1=0

so 1 — g is a zero divisor (note that by definition of RG neither of the formal sums in
the above product is zero).

If S is a subring of R then SG is a subring of RG. For instance, ZG (called the
integral group ring of G) is asubring of QG (the rational group ring of G). Furthermore,
if H is a subgroup of G then RH is a subring of RG. The set of all elements of RG
whose coefficients sum to zero is a subring (without identity). If |G| > 1, the set of
elements with zero “constant term” (i.e., the coefficient of the identity of G is zero) is
not a subring (it is not closed under multiplication).

Note that the group ring RQg is not the same ring as the Hamilton Quaternions H
eventhough the latter contains a copy of the quaternion group Qg (under multiplication).
One difference is thatthe unique element of order 2 in Qg (usually denoted by —1) is not
the additive inverse of 1 in RQg. In other words, if we temporarily denote the identity
of the group Qs by g; and the unique element of order 2 by g, then g; + g7 is not zero
in RQg, whereas 1 + (—1) is zero in H. Furthermore, as noted above, the group ring
R Qg contains zero divisors hence is not a division ring.

Group rings over fields will be studied extensively in Chapter 18.

EXERCISES

Let R be a commutative ring with 1.
1. Let p(x) = 2x3 — 3x2 4+ 4x — 5 and let g(x) = 7x3 + 33x — 4. In each of parts (a), (b)
and (c) compute p(x) + g(x) and p(x)q(x) under the assumption that the coefficients of
the two given polynomials are taken from the specified ring (where the integer coefficients

are taken mod n in parts (b) and (c) ):
@R=Z, (b)R=Z/2Z, (c)R=2Z/3Z.
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. Let p(x) = @yx" + ap_1x" 1+ - .-+ a1x + ap be an element of the polynomial ring R[x].

Prove that p(x) is a zero divisor in R[x] if and only if there is a nonzero » € R such that
bp(x) = 0. [Let g(x) = by x™ +bp_1x™ "1 4. - -4 bg be a nonzero polynomial of minimal
degree such that g(x)p(x) = 0. Show that b,,a,, = 0 and so a,g(x) is a polynomial of
degree less than m that also gives 0 when multiplied by p(x). Conclude that a, g(x) = 0.
Apply a similar argument to show by induction on i thata,_;g(x) =0fori =0, 1, ...,n,
and show that this implies b,, p(x) = 0.]

Define the set R[[x]] of formal power series in the indeterminate x with coefficients from
R to be all formal infinite sums

o0

Zanx" =ap+aix +azx2+a3,x3 +---.

n=0
Define addition and multiplication of power series in the same way as for power series
with real or complex coefficients i.e., extend polynomial addition and multiplication to
power series as though they were “polynomials of infinite degree™

o0 o0 o0
Zanx" + Eb,.x" = Z(an + bp)x"
n=0 n=0 n=0
o0 o0 (o) n
za,,x" X anx" = Z (Zakb,,_k)x".
n=0 n=0 n=0 k=0

(The term “formal” is used here to indicate that convergence is not considered, so that
formal power series need not represent functions on R.)

(a) Prove that R[[x]] is a commutative ring with 1.

(b) Show that 1 — x is a unit in R[[x]] with inverse 1 + x + xZ + - - - .

(c) Prove that Z?:O a,x" is a unit in R[[x]] if and only if ap is a unit in R.

. Prove thatif R is an integral domain then the ring of formal power series R[[x]] is also an

integral domain.

. Let F be a field and define the ring F ((x)) of formal Laurent series with coefficients from

F by

F((x))Z{Za,,x"Ian € FandN € Z).

n>N

(Every element of F((x)) is a power series in x plus a polynomialin 1/x, i.e., each element
of F((x)) has only a finite number of terms with negative powers of x.)

(a) Prove that F((x)) is a field.

(b) Define the map

o0
v:F((x)* > Z by U(Z ax") =N
n>N
where ay is the first nonzero coefficient of the series (i.e., N is the “order of zero or

pole of the series at 0”). Prove that v is a discrete valuation on F ((x)) whose discrete
valuation ring is F[[x]], the ring of formal power series (cf. Exercise 26, Section 1).

. Let S be aring with identity 1 # 0. Let n € Z* and let A be an n x n matrix with entries

from S whose i, j entry is a;j. Let E;; be the element of M,,(S) whose i, j entry is 1 and
whose other entries are all 0.
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9.

10.

11.

12.

13.

(a) Provethat E;; A is the matrix whose i th row equals the j th row of A and all other rows
are zero.

(b) Prove that AE;; is the matrix whose j column equals the i® column of A and all
other columns are zero.

(c) Deduce that E,; AE, is the matrix whose p, s entry is a,4, and all other entries are

Zero.

. Prove that the center of the ring My, (R) is the set of scalar matrices (cf. Exercise 7, Section

1). [Use the preceding exercise.]

. Let Sbeanyringandletn > 2 be aninteger. Prove thatif A is any strictly upper triangular

matrix in M, (S) then A" = O (a strictly upper triangular matrix is one whose entries on
and below the main diagonal are all zero).

Leta = r 4+ r% — 2s and B = —3r2 + rs be the two elements of the integral group ring
ZDg described in this section. Compute the following elements of ZDg:

@ pa, ()o?, ()ef—Pa, (d)pap.

Consider the following elements of the integral group ring ZSs:
a=3(12)-523)+14123) and B=6(1)+223)-7(132)

(where (1) is the identity of S3). Compute the following elements:

@a+p, (22-38 (Jap, (dfe, (e)a.

Repeat the preceding exercise under the assumption that the coefficients of « and B are in
Z/3Z (.e., a, B € Z[/3ZS3).

Let G = {g1, ..., g} be a finite group. Prove that theelement N = g1 + g2+ ...+ g is
in the center of the group ring RG (cf. Exercise 7, Section 1).

Let IC = {k1, ..., k) be a conjugacy class in the finite group G.

(a) Prove that the element K = kj + ... + k,, is in the center of the group ring RG (cf.
Exercise 7, Section 1). [Check that g~1Kg = K forallg € G.]

(b) Let Ky, ..., K, be the conjugacy classes of G and for each K; let K; be the element
of RG that is the sum of the members of K;. Prove that an element @ € RG is in the
center of RGifand only ife = a1 K1+a2K2+---+a, K, forsomea;, az, ...,a, € R.

7.3 RING HOMOMORPHISMS AND QUOTIENT RINGS

A ring homomorphism is a map from one ring to another that respects the additive and
multiplicative structures:

Definition. Let R and S be rings.

Sec.

(1) A ring homomorphism is amap ¢ : R — S satisfying
(i) p(a+b) =¢(@@)+¢®) foralla,b € R (so ¢ is a group homomor-
phism on the additive groups) and
(i) ¢(ab) = p(@)p®) foralla,be R.

(2) The kernel of the ring homomorphism ¢, denoted ker ¢, is the set of elements
of R that map to 0 in S (i.e., the kernel of ¢ viewed as a homomorphism of
additive groups).

(3) A bijective ring homomorphism is called an isomorphism.
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If the context is clear we shall simply use the term “homomorphism” instead of
“ring homomorphism.” Similarly, if A and B are rings, A = B will always mean an
isomorphism of rings unless otherwise stated.

- Examples

@) Themapyp :Z — Z / 27 defined by sending an even integer to 0 and an odd integer
to 1 is a ring homomorphism. The map is additive since the sum of two even or odd
integers is even and the sum of an even integer and an odd integer is odd. The map is
multiplicative since the product of two odd integers is odd and the product of an even
integer with any integer is even. The kemel of ¢ (the fiber of ¢ above 0 € Z / 2Z)is
the set of even integers. The fiber of ¢ above 1 € Z / 27 is the set of odd integers.

(2) Forn € Z the maps ¢, : Z — Z defined by ¢, (x) = nx are not in general ring homo-
morphisms because ¢, (xy) = nxy whereas ¢, (x)¢,(y) = nxny = n2xy. Hence ¢,
is a ring homomorphism only when n? = n, i.e., n = 0, 1. Note however that ¢, is
always a group homomorphism on the additive groups. Thus care should be exercised
when dealing with rings to be sure to check that both ring operations are preserved.
Note that ¢y is the zero homomorphism and ¢ is the identity homomorphism.

(3) Let ¢ : Q[x] = Q be the map from the ring of polynomials in x with rational
coefficients to the rationals defined by ¢(p(x)) = p(0) (i.e., mapping the polynomial
to its constant term). Then ¢ is a ring homomorphism since the constant term of the
sum of two polynomials is the sum of their constant terms and the constant term of
the product of two polynomials is the product of their constant terms. The fiber above
a € Q consists of the set of polynomials with a as constant term. In particular, the
kernel of ¢ consists of the polynomials with constant term 0.

Proposition S. Let R and S be rings and let ¢ : R — S be a homomorphism.
(1) The image of ¢ is a subring of S.
(2) The kernel of ¢ is a subring of R. Furthermore, if ¢ € ker¢ then roa and
ar € ker g foreveryr € R,i.e., ker ¢ is closed under multiplication by elements
from R.

Proof: (1) If 51,52 € im ¢ then s; = ¢(r;) and s, = ¢(r;) for some r;,r, € R.
Then ¢(r; — r2) = 51 — s2 and @(r1r2) = s152. This shows s; — s;, 5152 € im ¢, so the
image of ¢ is closed under subtraction and under multiplication, hence is a subring of
S.

(2)If o, B € ker ¢ then () = ¢(B) = 0. Hence (o — B) = 0 and ¢(aB) = 0,
so ker ¢ is closed under subtraction and under multiplication, so is a subring of R.
Similarly, for any r € R we have ¢(ra) = ¢(r)p(@) = ¢(r) 0 = 0, and also
(ar) = (@)e(r) =0 ¢(r) =0, sora, ar € ker¢.

In the case of a homomorphism ¢ of groups we saw that the fibers of the homo-
morphism have the structure of a group naturally isomorphic to the image of ¢, which
led to the notion of a quotient group by a normal subgroup. An analogous result is true
for a homomorphism of rings.

Let ¢ : R — S be a ring homomorphism with kernel I. Since R and S are in
particular additive abelian groups, ¢ is in particular a homomorphism of abelian groups
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and the fibers of ¢ are the additive cosets r + I of the kernel I (more precisely, if r is
any element of R mapping to a € S, ¢(r) = a, then the fiber of ¢ over a is the coset
r + I of the kernel I). These fibers have the structure of a ring naturally isomorphic to
the image of ¢: if X is the fiber overa € S and Y is the fiberover b € S,then X + Y is
the fiber over a + b and XY is the fiber over ab. In terms of cosets of the kernel I this
addition and multiplication is

r+D+G6+D=+s)+1 “.1)
G+ D x(s+I)=(@rs)+1. (7.2)

As in the case for groups, the verification that these operations define a ring structure
on the collection of cosets of the kernel I ultimately rests on the corresponding ring
properties of S. This ring of cosets is called the quotient ring of R by I = ker ¢ and
is denoted R/I. Note that the additive structure of the ring R/I is just the additive
quotient group of the additive abelian group R by the (necessarily normal) subgroup
I. When I is the kernel of some homomorphism ¢ this additive abelian quotient group
also has a multiplicative structure, defined by (7.2), which makes R/I into aring.

As in the case for groups, we can also consider whether (1) and (2) can be used to
define a ring structure on the collection of c