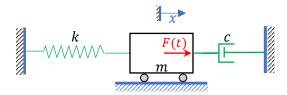


الجمهورية الجزائري ...ة الديمقر اطي ...ة الشعبية وزارة التعليم العسالي والبحث العلمية الشعبية وهران للعلوم والتكنولوجيا محمد بوضياف

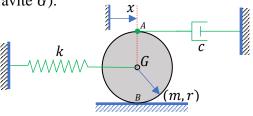
Enseignant Djílalí BOUTCHICHA


University of Science and Technology of Oran - Mohamed BOUDIAF
Faculty of Mechanical Engineering
Department of Mechanical Engineering

TD4. 2ème loi de Newton – Formalisme de Lagrange

Exercice 1

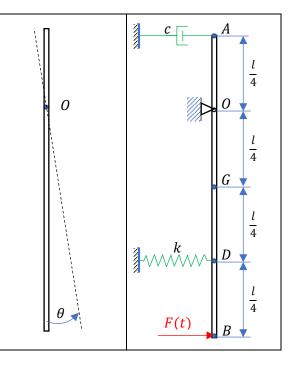
Déterminer l'équation de mouvement du système masse ressort amortisseur suivant :


- a) en appliquant la 2^{ème} loi Newton;
- b) en utilisant le Formalisme de Lagrange.

Exercice 2

Un disque de masse m, de rayon r et de moment d'inertie $I_G = \frac{1}{2}mr^2$.

a) Trouver l'équation de mouvement du système en supposant que le disque roule sans glissement ($x = r\theta$ est le déplacement du centre de gravité G).


Exercice 3

Une tige AB de masse m, de longueur l oscille autour d'un pivot O se trouvant à l/4 de son extrémité supérieure A qui est retenue par un amortisseur de coefficient d'amortissement c. Un ressort de constante de raideur k est fixé au point D se trouvant à l/4 de son extrémité inférieure B. L'extrémité B est soumise à une force harmonique $F(t) = F_0 \cos \Omega t$.

Trouver l'équation de mouvement du système en fonction de l'angle θ (θ est faible).

Marche à suivre

- Calculer le moment d'inertie par rapport à l'axe de rotation passant par O.
- Déterminer les déplacements x_A et x_D en fonction de l'angle de rotation θ .
- Représenter et évaluer les forces appliquées sur la tige (poids, force d'amortissement, force de rappels...).
- Evaluer les moments de ces forces par rapport au centre de rotation O.
- Isoler la tige et appliquer la loi de la dynamique.
- Ecrire l'équation de mouvement en fonction de θ et de ses dérivés.

