Exercice 1: Dans chacun des cas suivants, la relation \Re définie sur E est-elle réflexive, symétrique, anti-symétrique ou transitive?

1.
$$E = \mathbb{N}$$
 et $x\Re y \Leftrightarrow \frac{x+2y}{3} \in \mathbb{N}$

- 2. $E = \mathbb{R}$ et $x\Re y \Leftrightarrow |x| = |y|$
- 3. $E = \mathbb{Z}^2$ et $(x, y)\Re(x', y') \Leftrightarrow x + y' \leq y + x'$

Exercice 2:

Soit $E = \{1, 2, 3, 5, 8, 14, 17\}.$

- 1. Montrer que l'on peut définir une relation d'équivalence sur E en posant $x\Re y$ si et seulement si $\frac{x+y}{2} \in \mathbb{N}$
- 2. Trouver les classes d'équivalence.

Exercice 3:

Dans Z on considère la relation R définie par :

 $\forall (x,y) \in \mathbb{Z}^2$, $x\Re y \Leftrightarrow x-y$ est un multiple de 6

- 1. Montrer que \Re est une relation d'équivalence sur \mathbb{Z} .
- 2. Déterminer l'ensemble quotient.
- 3. Montrer que : $\frac{1}{30} = \frac{1}{0}$ et $\frac{1}{12} \cap \frac{1}{57} = \emptyset$.

Exercice 4:

- 1. Dans \mathbb{R}^2 on définit la relation \Re par : $(a,b)\Re(c,d) \Leftrightarrow a^2+b^2=c^2+d^2$ \Re est elle une relation d'équivalence? Si oui quelles sont les classes d'équivalence?
- 2. Dans \mathbb{Z} on définit la relation \Re par : $x\Re y \Leftrightarrow x^2 y^2 = x y$ \Re est elle une relation d'équivalence? Si oui quelles sont les classes d'équivalence?

Exercice 5:

On définit sur \mathbb{R} la relation T par : $xTy \Leftrightarrow x \leq y$

Montrer que T est une relation d'ordre. L'ordre est-il total?

Exercice 6:

Dans \mathbb{N}^* on définit une relation binaire notée | par :

x|y si et seulement si x divise y.

- 1. Montrer que | est une relation d'ordre.
- 2. Trouver un élément x_0 tel que pour tout x dans \mathbb{N}^* , x_0 divise x.
- 3. L'ordre est-il total?

Exercice 7:

Soit ≤ la relation sur N définie par :

$$x \le y \Leftrightarrow \exists p, q \ge 1, y = px^q \text{ avec } p, q \text{ entiers}$$

- 1. Montrer que ≤ est une relation d'ordre.
- 2. L'ordre est-il total?