

Z Formal Specification Language - An Overview
 Mr. Vishal Ruhela

Graduate Trainee Engineer, HCL Technologies, Noida, India

Abstract

 Formal methods provide a much needed

solid software engineering foundation for the

‘art’ of programming computers. Formal

specifications can be used to provide an

unambiguous and consistent supplement to

natural language descriptions and can be

rigorously validated and verified leading to the

early detection of specification errors. Z is a

model oriented formal specification language

based on Zermelo-Fränkel axiomatic set

theory and first order predicate logic. It is a

mathematical specification language, with the

help of which natural language requirements

can be converted into mathematical form. In

this paper an overview of formal method is

presented. Z formal specification language is

described using small example.

 Keywords: Informal and Formal

Specification Language, Model Oriented , Z.

1. Introduction

With the ever-increasing complexity of

computer systems, reliable and effective,

design and development of high quality

systems that satisfy their requirements is

extremely important. In the mission and safety

critical system failure can cause cost overrun,

loss of lives or even severe economic

consequences can arise. So, in such situations,

it is necessary that errors are uncovered before

software is put into operation. These

challenges call for acceptance of proper

engineering methods and tools and have

motivated the use of formal methods in

software engineering.

There are varieties of formal specification

languages available to fulfill this goal and one

way to achieve this goal is by using Z formal

specification language. Z is model oriented

formal method based on set theory and first

order predicate calculus [1].

 In this paper an outline of formal method is

described in Section 2.In Section 3 Difference

between formal and informal specification

language is presented. In Section 4 An

overview of Z formal specification language is

described. In Section 5 An example to describe

Z is presented. Conclusions are presented in

Section 6.

2. An Outline

In this section we describe formal method,

formal specification language and its different

types.

2.1. Formal Method

 Formal methods used in developing

computer systems are mathematical techniques

for portraying system properties. Such formal

methods provide structures within which

software system can be specified, developed

and verified in a systematic, rather than ad hoc,

manner [2]. Formal methods can be applied

throughout the development of a system to

precisely describe a system and involve the use

of refinement techniques and proof obligation

at each stage to ensure the correctness,

completeness and consistency of specification.

Formal methods used in developing computer

systems are mathematical based techniques for

portraying system properties.

Formal methods can be used at a number

of levels:

Formal Specification: In computer science,

a formal specification is a mathematical

description of software or hardware that may

be used to develop an implementation. It

describes what the system should do, not

(necessarily) how the system should do it.

Given such a specification, it is possible to use

formal verification techniques to demonstrate

that a candidate system design is correct with

respect to the specification. This process of

formal specification is similar to the process of

converting a word problem into algebraic

notation.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

1www.ijert.org

Formal development and verification:
Formal development process involves

iteratively refining a formal specification to

produce the finished system. Formal Methods

differ from other specification systems by their

heavy emphasis on provability and correctness.

By building a system using a formal

specification, the designer is actually

developing a set of theorems about his system.

By proving these theorems correct, the formal

methods ensures the correctness of the system.

The process of proving or disproving

properties of the software system against a

formal specification is known as formal

verification.

Implementation: Once the model has been

specified and verified, it is implemented by

converting the specification into code. As the

difference between software and hardware

design grows narrower, formal methods for

developing embedded systems have been

developed [2].

2.2. Formal Specification Language

The representation used in formal methods is

called a formal specification language. The

language is formal in the sense that it has a

formal semantics and as a result can be used to

express specifications in a clear and

unambiguous manner. A formal specification

language can be used to specify the task at

hand in a clear and concise manner. As formal

methods and formal specification language has

sound mathematical basis, it provides the

means of proving that specification is

realizable, complete, consistent and

unambiguous. Even the most complex systems

can be modeled using relatively simple

mathematical objects, such as sets, relations

and functions [2].

A formal specification language is usually

composed of three primary components or in

mathematical term we can say that it consists

of two sets, syntax and semantics and a set of

relation [2].

The specific notation with which specification

is represented is defined by syntactic domain

or syntax. Formal techniques can have

considerably different semantic domain.

Semantics helps to define a universe of objects

that will be used to describe the system. Set of

relations defines the rules that indicate which

objects properly satisfy the specification.

Formal specification languages use

mathematics as their basis. Most complex

systems can be modeled using simple

mathematical objects, such as sets, relations

and functions. A mathematical statement is

unambiguous and precise, which provides a

way to give convincing arguments to justify

ones solutions, and allows proving that an

implementation satisfies the mathematical

specification [2].

2.3. Types of Formal Specification

Languages

Different types of Formal Specification

Languages are:

2.3.1. Model Based Languages

There are a number of different ways to

write a precise specification. One approach is

model based languages. In it the specification

is expressed as a system state model. This state

model is constructed using well understood

mathematical entities such as sets, relations,

sequences and functions. Operations of a

system are specified by defining how they

affect the state of the system model.

Operations are also described by the predicates

given in terms of pre and post conditions [3].

The most widely used notations for developing

model based languages are Vienna

Development Method (VDM) [4], Zed (Z) [1]

and B [5].

2.3.2. Algebraic Specification Languages

Process algebras are amenable to algebraic

manipulation; however, there are also

languages which describe a system solely in

terms of its algebraic properties. These

algebraic specification languages describe the

behavior of a system in terms of axioms that

characterize its desired properties. Examples of

algebraic specification languages include OBJ

[7] and the Common Algebraic Specification

Language (CASL) [6]. In mathematical terms

algebra (or an algebraic system) consists of (1)

a set of symbols denoting values of some type,

referred to as the carrier set of the algebra; and

(2) a set of operations on the carrier set.

2.3.3. Process oriented Languages

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

2www.ijert.org

Concurrent systems are described using

process oriented formal specification language.

A specific implicit model for concurrency is

the basis for these languages. In these

languages processes are denoted and built up

by expressions and elementary expressions,

respectively, which describe particularly

simple processes. Ex. Communicating

Sequential Processes (CSP) [8].

2.3.4. Hybrid Languages
Many systems are built with a combination of

analog and digital components. In order to

specify and verify such systems it is necessary

to use a specification language that

encompasses both discrete and continuous

mathematics. There has been recent interest in

these hybrid languages, such as CHARON [9].

A simple example of a nonlinear hybrid

system is that of a temperature controller. The

temperature of a room is controlled through a

thermostat which continuously senses the

temperature and turns the heater on and off.

3. Difference between Informal and

Formal Specification language
Requirements specification languages may be

classified into two types: formal specification

languages and informal specification

languages. Informal specification language

uses natural language like English for

specifying requirements. But they tend to

include various deficiencies such as a system

specification can contain contradictions,

ambiguities, vagueness, and incomplete

statements.

Contradictions: Sets of statements that are at

variance with each other. For example, one

part of a system specification may state that

the system must monitor all the temperatures

in a chemical reactor while another part,

perhaps written by another member of staff,

may state that only temperatures occurring

within a certain range are to be monitored.

Normally, contradictions that occur on the

same page of a system specification can be

detected easily. However, contradictions are

often separated by a large number of pages.

Ambiguities: Statements that can be

interpreted in a number of ways. For example,

the following statement is ambiguous: The

operator identity consists of the operator name

and password; the password consists of six

digits. It should be displayed on the security

VDU and deposited in the login file when an

operator logs into the system. In this extract,

does the word it refers to the password or the

operator identity?

Vagueness often occurs because a system

specification is a very bulky document.

Achieving a high level of precision

consistently is an almost impossible task. It
can lead to statements such as the

interface to the system used by radar operators

should be user-friendly or the virtual interface

shall be based on simple overall concepts that

are straightforward to understand and use and

few in number. A casual perusal of these

statements might not detect the underlying lack

of any useful information.

Incompleteness: The most frequently

occurring problems with system specifications.

For example, consider the functional

requirement: The system should maintain the

hourly level of the reservoir from depth

sensors situated in the reservoir. These values

should be stored for the past six months. This

describes the main data storage part of a

system. If one of the commands for the system

was: The function of the AVERAGE

command is to display on a PC the average

water level for a particular sensor between two

times. Assuming that no more detail was

presented for this command, the details of the

command would be seriously incomplete. For

example, the description of the command does

not include what should happen if a user of a

system specifies a time that was more than six

months before the current hour.

On the other hand Formal specification

languages have a mathematical (usually formal

logic) basis and employ a formal notation to

model system requirements. The desired

properties of a formal specification

consistency, completeness, and lack of

ambiguity are the objectives of all

specification methods. However, the use of

formal methods results in a much higher

likelihood of achieving these ideals. The

formal syntax of a specification language

enables requirements or design to be

interpreted in only one way, eliminating

ambiguity that often occurs when a natural

language (e.g., English) or a graphical notation

must be interpreted by a reader. The

descriptive facilities of set theory and logic

notation (enable clear statement of facts

(requirements). To be consistent, facts stated in

one place in a specification should not be

contradicted in another place. Consistency is

ensured by mathematically proving that initial

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

3www.ijert.org

facts can be formally mapped (using inference

rules) into later statements within the

specification. Completeness is difficult to

achieve, even when formal methods are used.

Some aspects of a system may be left

undefined as the specification is being created;

other characteristics may be purposely omitted

to allow designers some freedom in choosing

an implementation approach; and finally, it is

impossible to consider every operational

scenario in a large, complex system. Things

may simply be omitted by mistake [2].

4. Overview of Z Formal

Specification Language

In this section, we briefly describe Z formal

specification language. A Z specification for

employee maintenance is presented to

illustrate the use of language. We then describe

how the specification can be strengthened.

4.1. Description of Z Formal

Specification Language
 The Z language is a model oriented,

formal specification language that was

proposed by Jean-Raymond Abrail, Steve

Schuman and Betrand Meyer in 1977 and it

was later further developed at the

programming research group at Oxford

University [10]. It is based on Zermelo Fränkel

axiomatic set theory and first order predicate

logic. The Z notation [1], [11] is a strongly

typed, mathematical, specification language. It

has robust commercially available tool support

for checking Z texts for syntax and type errors

in much the same way that a compiler checks

code in an executable programming language.

It cannot be executed, interpreted or compiled

into a running program. It allows specification

to be decomposed into small pieces called

schemas. The schema is the main feature that

distinguishes Z from other formal notations. In

Z, both static and dynamic aspects of a system

can be described using schemas. The Z

specification describes the data model, system

state and operations of the system. Z

specification is useful for those who find the

requirements, those who implement programs

to meet those requirements, those who test the

consequences, and those who write instruction

manuals for the system [1].

Figure 2.1: Z Process

Z also helps in refinement towards an

implementation by mathematically relating the

abstract and concrete states. Z is being used by

a wide variety of companies for many different

applications.

In the Z notation there are two languages [1]:

Mathematical Language
The mathematical language is used to describe

various aspects of a design: objects and the

relationships between them by using

propositional logic, predicate logic, sets,

relation and functions.

Schema Language

The schema language is used to structure and

compose descriptions: collecting pieces of

information, encapsulating them, and naming

them for reuse.

4.2. Structure for Z Specification
Schemas are box like structure that introduces

variables and specifies the relationship

between these variables [1]. A schema is

shown below. All declarations are made above

the central line and predicates are defined

below the central line.

 SchemaName

Declarations

Predicates

DECLARATION: The declarations part of the

schema will contain:

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

4www.ijert.org

a list of variable declarations; and

 references to other schemas (this is called

schema inclusion).

PREDICATES: Values of variables are

constrained below the central line. The

predicate part of a schema contains:

 a list of predicates, separated either by

semi-colons or new lines.

The declarations part is separated from the

predicate part by the horizontal line.

4.3. Z Conventions [1]
 If any variable name, N, is followed by „

e.g. N‟, this means that it represents the

value of the state variable N after the

operation. In Z terminology, N is

decorated with a dash.

 If a schema name is decorated with , this

introduces the dashed values of all names

defined in the specification together with

the invariant applying to these values.

 If a variable name is decorated with !, this

means that it is an output e.g. message!.

 If a variable is decorated with ?, this

means that it is an input e.g. amount?.

 If a schema name is prefixed with the

Greek character Xi (X), this means that

dashed versions of the variables defined in

the named schema are introduced. For all

variable names introduced in the schema,

the values of corresponding dashed names

are the same. That is, the values of state

variables are not changed by the

operation.

 If a schema name is prefixed with the

Greek character Delta (D), this implies

that values of one or more state variables

will be changed by the operation where

that schema is introduced. For all variable

names introduced in the named schema,

corresponding dashed names are also

introduced and may be referenced in

operations.

4.4. Benefits and Limitations of Z
 4.4.1. Benefits of Z [1]:

 A Z specification forces the software

developer to completely analyze the

problem domain. (e.g. identify the state

space and pre and post conditions for all

operations).

 A Z specification forces all major design

decisions to be made prior to coding the

implementation. Coding should not

commence until you are certain about

what you should be coding.

 A Z specification is a valuable tool for

generating test data, and the conformance

testing of completed systems.

 A Z specification allows formal

exploration of properties of system.

 The flexibility to model a specification

which can directly lead to the code.

 A large class of structural models can be

described in Z without higher – order

features, and can thus be analyzed

efficiently.

 Independent Conditions can be easily

added later.

4.4.2. Limitations of Z [12]:

 Z does not provide any support for

concurrency.

 It does not provide any concept for timing

aspects.

 Sequencing operations is difficult with Z.

 Explicit representation of Non-

determinism (how to represent un-

determined or unknown parameters ?!)

 No single approach has yet asserted itself

as the best starting point for defining

reasoning about real-time behavior in Z.

5. An Example
 A specification to convert requirements

written in natural language to Z formal

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

5www.ijert.org

specification language method is given below.

The specification depicts small operation to

add, students details such as rollno, name,

class, section, address into school database.

5.1. Specification

[ROLLNO,NAME,CLASS,SECTION,ADDRESS]

 STUDENT_REPORT ::= okadded | alreadyPresent

5.2. Verification

To type check a document clicks the fuzz

button in Z/Word tool [13]. The results are

displayed in a dialog box.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

6www.ijert.org

Figure 5.1: Type checking the Z specifications.

 6. Conclusions

 Following conclusions are drawn:

 Z is one of the numbers of specification

languages which are being developed

around the world. Z can be used to

compactly specify real systems (ATM). Z

has various collection of library

(Mathematical Toolkit), which supports

user to specify the requirements without

any ambiguity.

 Large specifications are achievable in

Z, using the schema notation for

structuring. Also it is possible to produce

hierarchical specifications. A part of a

system is specified in isolation, and then

put into a global context.

 By applying formal method in terms of Z

notation, it is observed that it does not

require a high level of mathematics rather

it requires knowledge of basic set theory

and first order logic for the analysis of a

complete system.

 Difficulties with Z are cannot do

concurrency, Timing aspects,

Algorithmic aspects and programming

constraints, and Sequencing operations.

6. References

[1] J. Davies and J. Woodcock, “Using Z:

Specification, Refinement, and Proof”, In

Prentice Hall, 1996.

[2] R. Pressman, “Software Engineering- A

Practitioner‟s Approach”, McGraw Hill, 5th edition,

2000.

[3] D. Bjorner, Pinnacles of software engineering:

25 years of formal methods‖ , In Annals of

Software Engineering, vol. 10, pp. 11–66, 2000.

[4] C. B. Jones, “Systematic Software Development

using VDM”, In Prentice Hall, 1990.

[5] J.R. Abrial, “The B Book - Assigning Programs

to Meanings”, Cambridge University Press, 1996.

[6] P. D. MOSSES, CASL Reference Manual: The

Complete Documentation the Common Algebraic

Specification Language‖ , Lecture Notes in

Computer Science, Springer-Verlag, Vol. 2960,

2004.

[7] J. A. Gougen and J. J. Tardo, An introduction to

OBJ: a language for writing and testing formal

algebraic Specifications. In The IEEE Conference

on specifications of Reliable Software.

IEEEComputer Society Press, pp. 170-189, 1979.

[8] C. A. R. Hoare, Communicating Sequential

Processes‖ , In Prentice Hall, NJ, 1985.

[9] R.Alur, R. Grosu, Y. Hur, V. Kumar, and I. Lee,

Modular specification of hybrid systems in

CHARON. In Hybrid Systems: Computation and

Control, Third International Workshop,

HSCC,2000.

[10]J.R. Abrial, S. A. Schuman and B. Meyer: “A

Specification Language, in On the Construction of

Programs”, Cambridge University Press, eds. A. M.

Macnaghten and R. M. McKeag, 1980.

[11] J.M. Spivey, “The Z Notation, Reference

Manual”, 2nd edition, Prentice Hall International,

1992.

[12] M. Joseph, ―Formal Techniques in Real-Time

and Fault-Tolerant Systems‖ , Lecture Notes in

Computer Science 331, pp. 160- 174.

[13] http://sourceforge.net/projects/zwordtools/.

International Journal of Engineering Research & Technology (IJERT)

Vol. 1 Issue 6, August - 2012
ISSN: 2278-0181

7www.ijert.org

