Chapter 4

Algebraic structures

4.1 Binary operations

Binary operations (or Internal composition laws) are called on a non-empty set E, any application * from $E \times E$ to E.

The image *(x, y) is often denoted as x * y.

Examples 4.1.1. 1. Ordinary addition + is an internal composition law on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} .

Ordinary multiplication \times is an internal composition law on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} . Subtraction is an internal composition law on \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , but not on \mathbb{N} .

- 2. The composition \circ is an internal composition law on set $\mathcal{A}(E)$, the set of applications from E to E. If $f: E \longrightarrow E$ and $g: E \longrightarrow E$ are two applications, then $f \circ g: E \longrightarrow E$ is also an application.
- 3. The intersection \cap is an internal composition law on set $\mathcal{P}(E)$, the set of subsets of E.

Definition 4.1.2. A non-empty set E equipped with one or more binary operations is called an algebraic structure. If the operations are denoted as $*_1, *_2, ..., *_n$, then the algebraic structure is noted as $(E, *_1, *_2, ..., *_n)$.

Example 4.1.3. $(\mathbb{N}, +)$, $(\mathbb{Z}, +, -)$, $(\mathbb{R}, +, \times)$, $(\mathcal{A}(E, E), \circ)$, and $(\mathcal{P}(E), \cap)$ are algebraic structures.

Definition 4.1.4. Let * be an binary operation on a non-empty set E. Then

- 1. We say that the law * is associative if, for all x, y, z in E, we have (x * y) * z = x * (y * z).
- 2. An element e of E is called the neutral element (or unit element) of *, if for every x in E, we have e*x=x*e=x.
- 3. If e is the neutral element of *, we say that an element x in E is invertible (or symmetrizable) if there exists an element y in E such that x * y = y * x = e, and y is called the inverse (or symmetrical) of x and is denoted as x^{-1} .
- 4. We say that the law * is commutative if, for all x, y in E, we have x * y = y * x.

Remark 4.1.5. If the law * is associative, parentheses can be omitted, and we can write x * y * z instead of (x * y) * z and x * (y * z).

Examples 4.1.6. 1. The usual addition + on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and \mathbb{C} is an associative and commutative law, and it has 0 as the neutral element.

In \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} , every element x has its symmetrical (inverse) x^{-1} . In \mathbb{N} , the only element with a symmetrical property for the usual addition is 0.

The usual multiplication \times on \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , and \mathbb{C} is an associative and commutative law, with 1 as the identity element.

In \mathbb{Q}^* , \mathbb{R}^* and \mathbb{C}^* , every non-zero element x has its inverse (symmetrical) $\frac{1}{x}$. The element 0 does not have an inverse for the usual multiplication \times .

In \mathbb{Z} , the only invertible elements for the usual multiplication are ± 1 .

2. The composition \circ on $\mathcal{A}(E, E)$ is an associative law, with the identity function Id_E as the neutral element. The only invertible elements are the bijective functions. $((f \circ g) \circ h = f \circ (g \circ h), f \circ Id_E = f = Id_E \circ f$, where Id_E is the identity function and f has a reciprocal function f^{-1} as its inverse for the composition, as

 $f \circ f^{-1} = Id_E = f^{-1} \circ f$). The composition is not commutative if E contains at least two elements.

Theorem 4.1.7. Let E be a set with an internal composition law *. Then

- 1. The neutral element e, if it exists, is unique.
- 2. If * is associative and there exists a neutral element e, then the inverse element x^{-1} of an element x (if it exists) is unique. Additionally, if y also has an inverse, then $(x*y)^{-1} = y^{-1}*x^{-1}$.

Proof: Let's assume e' is another neutral element of *. Then, we have e' * e = e * e' = e, and since e is also a neutral element, we get e' * e = e * e' = e'. Hence, e' = e, and the neutral element is unique.

Let's assume x' is another inverse of x. Then, we have x*x' = x'*x = e, and consequently, $x^{-1} = (x'*x)*x^{-1} = x'*(x*x^{-1}) = x'$. So, the inverse is unique

We have $x * x^{-1} = e = x^{-1} * x$, since the inverse is unique, then x is the inverse of x^{-1} . Which means $(x^{-1})^{-1} = x$.

We also have $(y^{-1} * x^{-1}) * (x * y) = y^{-1} * x^{-1} * x * y = e$ and $(x * y) * (y^{-1} * x^{-1}) = x * y * y^{-1} * x^{-1} = e$, since the inverse is unique. Then, $y^{-1} * x^{-1}$ is the inverse of x * y. Which means $(x * y)^{-1} = y^{-1} * x^{-1}$.

4.2 Groups

Definition 4.2.1. Let (G,*) be a structured set. We say that (G,*) is a group if

- (a) the law * is associative on G,
- (b) there exists a neutral element for the law * in G,
- (c) every element of G is symmetrizable for the law *.

We also say that the set G has a group structure for the law *.

We say that the group (G,*) is commutative (or abelian) if the law * is commutative on G.

Example 4.2.2. We provide examples of groups

- 1. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} equipped with addition.
- 2. \mathbb{Q}^* , \mathbb{R}^* and \mathbb{C}^* , equipped with multiplication.

4.2.1 Subgroups

Definition 4.2.3. (Subgroups) A subgroup of a group (G, *) is a non-empty subset H of G such that

- 1. * induces an internal composition law on H.
- 2. Equipped with this law, H is a group. We denote it as H < G.

Proposition 4.2.4. The set $H \subseteq G$ is a subgroup of a group (G, *) if and only if

- 1. H is non-empty.
- 2. For all $(x, y) \in H^2$, $x * y \in H$.
- 3. For all $x \in H$, $x^{-1} \in H$.

Proposition 4.2.5. The set H is a subgroup of a group (G,*) if and only if

- 1. H is non-empty.
- 2. For all $(x,y) \in H^2$, $x * y^{-1} \in H$.

Example 4.2.6. • Let (G,*) be a group. Then G and $\{e_G\}$ are subgroups of G.

• (Z,+) is a subgroup of (R,+).

Proposition 4.2.7. The arbitrary intersection of subgroups of a group (G, *) is a subgroup of (G, *).

Proof: Let $(H_i)_{i\in I}$ be a family of subgroups of a group G. Let $K = \bigcap_{i\in I} H_i$ be the intersection of all the H_i 's. The set K is non-empty since it contains the identity element e, which belongs to each of the subgroups H_i . Let x and y be two elements of K. For all $i \in I$, we have $x * y^{-1} \in H_i$, since H_i is a subgroup. Thus, $x * y^{-1} \in K$, which proves that K is a subgroup of G.

Remark 4.2.8. The arbitrary union of subgroups of a group (G,*) is not necessarily a subgroup of (G,*).