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Chapter 4

Algebraic structures

4.1 Binary operations

Binary operations (or Internal composition laws) are called on a non-empty set F, any
application * from F X F to F.

The image *(x,y) is often denoted as x * y.

Examples 4.1.1. 1. Ordinary addition + is an internal composition law on N, Z, Q,
R, and C.
Ordinary multiplication X is an internal composition law on N, Z, Q, R, and C.

Subtraction is an internal composition law on Z, Q, R, and C, but not on N.

2. The composition o is an internal composition law on set A(E), the set of applications
from E to E. If f: E — FE and g : E — E are two applications, then fog :

E — FE is also an application.

3. The intersection N is an internal composition law on set P(E), the set of subsets of

E.

Definition 4.1.2. A non-empty set E equipped with one or more binary operations is
called an algebraic structure. If the operations are denoted as *i,*s, ..., *,, then the alge-

braic structure is noted as (E, %1, %9, ..., %p).
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Example 4.1.3. (N, +), (Z,+,—), (R,+, x), (A(E, E),0), and (P(E),N) are algebraic

structures.
Definition 4.1.4. Let x be an binary operation on a non-empty set E. Then

1. We say that the law * is associative if, for all z,y,z in E, we have (z xy) x z =

T (y*2z).

2. An element e of F is called the neutral element (or unit element) of x, if for every

xin E, we haveexx =xxe = .

3. If e is the neutral element of x, we say that an element z in FE is invertible (or
symmetrizable) if there exists an element y in E such that v xy =y*xx = e, and y

is called the inverse (or symmetrical) of x and is denoted as x™".

4. We say that the law * is commutative if, for all x,y in E, we have x xy =y * x.

Remark 4.1.5. If the law * is associative, parentheses can be omitted, and we can write

x *y* z instead of (x xy) * z and x * (y * 2).

Examples 4.1.6. 1. The usual addition + on N, Z, Q, and C is an associative and
commutative law, and it has 0 as the neutral element.
InZ, Q, R, and C, every element x has its symmetrical (inverse) 1. In N, the
only element with a symmetrical property for the usual addition s 0.
The usual multiplication X on N, Z, Q, R, and C is an associative and commutative
law, with 1 as the identity element.
In Q*, R* and C*, every non-zero element x has its inverse (symmetrical) % The
element 0 does not have an inverse for the usual multiplication x.

In 7, the only invertible elements for the usual multiplication are +1.

2. The composition o on A(E, E) is an associative law, with the identity function Idg
as the neutral element. The only invertible elements are the bijective functions.
((fog)oh = fo(goh), foldg = f = Idg o f, where Idg is the identity

function and f has a reciprocal function f~1 as its inverse for the composition, as
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foft=1Idg = ftof). The composition is not commutative if E contains at

least two elements.
Theorem 4.1.7. Let E be a set with an internal composition law *. Then

1. The neutral element e, if it exists, is unique.

2. If * is associative and there exists a neutral element e, then the inverse element v~ "

of an element x (if it exists) is unique. Additionally, if y also has an inverse, then

(*xy) b=y txah

Proof : Let’s assume €’ is another neutral element of x. Then, we have ¢/ xe = exe’ = ¢,
and since e is also a neutral element, we get ¢/ xe = e x ¢/ = ¢/. Hence, ¢/ = e, and the
neutral element is unique.

Let’s assume z’ is another inverse of . Then, we have xxx’ = 2'*2 = e, and consequently,

1

vl = (' xx)xx7 ! =2« (xx2 ') = 2'. So, the inverse is unique

1

' = e = 27! % 2, since the inverse is unique, then x is the inverse of 271

We have = x x~

Which means (z71)~! = z.

We also have (y Lz ) x(xxy) =y lxaolxoxy=cand (zxy)*(y Lxal) =

rxy*xy ' xx~ ! = e, since the inverse is unique. Then, 3~ * 27! is the inverse of x * y.

Which means (z*y) ' =y txa™t O

4.2 Groups

Definition 4.2.1. Let (G, %) be a structured set. We say that (G, x) is a group if
(a) the law * is associative on G,

(b) there exists a neutral element for the law * in G,

(c) every element of G is symmetrizable for the law *.

We also say that the set G has a group structure for the law *.
We say that the group (G, *) is commutative (or abelian) if the law * is commutative on

G.
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Example 4.2.2. We provide examples of groups
1. Z, Q, R and C equipped with addition.

2. QF, R* and C*, equipped with multiplication.

4.2.1 Subgroups

Definition 4.2.3. (Subgroups) A subgroup of a group (G, *) is a non-empty subset H of
G such that

1. * induces an internal composition law on H.
2. Equipped with this law, H is a group. We denote it as H < G.
Proposition 4.2.4. The set H C G is a subgroup of a group (G,*) if and only if
1. H s non-empty.
2. For all (z,y) € H?, v xy € H.
3. Forallx e H v '€ H.
Proposition 4.2.5. The set H is a subgroup of a group (G,*) if and only if
1. H s non-empty.
2. For all (x,y) € H*, zxy ' € H.
Example 4.2.6. e Let (G,*) be a group. Then G and {eq} are subgroups of G.
e (Z,+) is a subgroup of (R,+).

Proposition 4.2.7. The arbitrary intersection of subgroups of a group (G, %) is a subgroup

of (G, %).
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Proof : Let (H;);e; be a family of subgroups of a group G. Let K = (. ; H; be the

iel
intersection of all the H;’s. The set K is non-empty since it contains the identity element
e, which belongs to each of the subgroups H;. Let x and y be two elements of K. For all
i € I, we have x xy~! € H;, since H; is a subgroup. Thus, z*y~! € K, which proves that

K is a subgroup of G. O

Remark 4.2.8. The arbitrary union of subgroups of a group (G,x) is not necessarily a

subgroup of (G, *).



