4.2.2 Examples of groups

4.2.2.1 The group $\mathbb{Z}/n\mathbb{Z}$

First, it is clear that if n is a positive integer, the set $n\mathbb{Z}$ of integers of the form nk, where k varies in \mathbb{Z} (the set of multiples of n), forms an additive subgroup of $(\mathbb{Z}, +)$.

Proposition 4.2.9. Every subgroup of $(\mathbb{Z}, +)$ is of the form $(n\mathbb{Z}, +)$.

Remark 4.2.10. The congruence relation modulo n, where $n \in \mathbb{N}$ and denoted by \equiv , is defined as follows

$$\forall x, y \in \mathbb{Z}, \ x \equiv y[n] \Leftrightarrow (x - y) \in n\mathbb{Z} \iff \exists k \in \mathbb{N}/y = x - nk.$$

Read as "x is congruent to y modulo n," it defines an equivalence relation in $(\mathbb{Z}, +)$. The quotient set is finite and can be written as

$$\mathbb{Z}/n\mathbb{Z} = \{\dot{0}, \dot{1}, \dot{2}, ..., \hat{n-1}\}.$$

 $\textit{For example $\mathbb{Z}/2\mathbb{Z}$} = \{\dot{0},\dot{1}\},\,\mathbb{Z}/3\mathbb{Z} = \{\dot{0},\dot{1},\dot{2}\},\,\mathbb{Z}/4\mathbb{Z} = \{\dot{0},\dot{1},\dot{2},\dot{3}\},\,\textit{and $\mathbb{Z}/6\mathbb{Z}$} = \{\dot{0},\dot{1},\dot{2},\dot{3},\dot{4},\dot{5}\}.$

• The quotient addition on $\mathbb{Z}/n\mathbb{Z}$ induced by that of \mathbb{Z} is given by

$$\forall x, y \in \mathbb{Z}/n\mathbb{Z}, \ \dot{x} + \dot{y} = \hat{x} + y.$$

• The quotient multiplication on $\mathbb{Z}/n\mathbb{Z}$ induced by that of \mathbb{Z} is given by

$$\forall x, y \in \mathbb{Z}/n\mathbb{Z}, \dot{x} \dot{\times} \dot{y} = \widehat{x \times y}.$$

For example, writing the addition and multiplication tables in the quotient set $\mathbb{Z}/n\mathbb{Z}$.

÷	Ò	i	×	Ò	i
Ò	Ò	i	Ò	Ò	Ó
i	i	Ö	i	Ö	i

Proposition 4.2.11. The set $(\mathbb{Z}/n\mathbb{Z}, +)$ forms a commutative group (quotient group of \mathbb{Z} by the congruence relation) with neutral elements $\dot{0}$ for addition operation.

Proof. Left to the reader.

4.2.2.2 Permutation Group

Definition 4.2.12. Let E be a set. A permutation of E is a bijection from E to itself. We denote the set of permutations of E as S_E . If $E = \{1, ..., n\}$, we simply write S_n . The set S_E equipped with the composition law of applications forms a group with identity e = Id, called the symmetric group on the set E.

Example 4.2.13. Let's assume $E = \{1, 2, 3, 4, 5\}$, and we denote a permutation $\sigma \in S_5$ as follows

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 5 & 3 \end{pmatrix}$$

Which means $\sigma(1) = 2$, $\sigma(2) = 4$, etc.

If we consider

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 5 & 1 \end{pmatrix} \text{ and } \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 1 & 2 & 5 & 3 \end{pmatrix}$$

Then, $\sigma_1 \circ \sigma_2(3) = \sigma_1(2) = 2$.

4.2.3 Group homomorphism

Definition 4.2.14. Let (G,*) and (H,*) be two groups. An application f from G to H is a group homomorphism when

$$\forall x, y \in G, \ f(x * y) = f(x) \star f(y).$$

Moreover,

- 1. If G = H and $* = \star$, it is called an endomorphism.
- 2. If f is bijective, it is called an isomorphism.
- 3. If f is a bijective endomorphism, it is called an automorphism.

Examples 4.2.15. • The application $x \mapsto 2x$ realizes an automorphism of $(\mathbb{R}, +)$.

• The application $f : \mathbb{R} \longrightarrow \mathbb{R}_+^*$ that associates each real number with its exponential is a group morphism of \mathbb{R} under addition to \mathbb{R}_+^* under multiplication, since $f(x+y) = f(x) \cdot f(y)$, for all $x, y \in \mathbb{R}$.

Proposition 4.2.16. (Some Elementary Properties of Group Homomorphisms) Let f be a homomorphism from (G, *) to (H, \star)

- 1. $f(e_G) = e_H$.
- 2. For all $x \in G$, f(x') = (f(x))' (where x' is the symmetric of x in G, and (f(x))' is the symmetric of f(x) in H).
- 3. If f is an isomorphism, then its reciprocal application f^{-1} is an isomorphism from (H, \star) to (G, *).
- 4. If G' < G then f(G') < H.
- 5. If H' < H then $f^{-1}(H') < G$.

Proof:

- 1. $f(e_G * e_G) = f(e_G)$ then $f(e_G) * f(e_G) = f(e_G)$, which shows that by composing on the right with $f(e_G)'$, that $f(e_G) = e_H$.
- 2. Let $x \in G$

$$f(x') \star f(x) = f(x' * x) = f(e_G) = e_H.$$

On the other hand,

$$f(x) \star f(x') = f(x * x') = f(e_G) = e_H.$$

Hence, f(x') = (f(x))'.

3. Let y_1 and y_2 be two arbitrary elements of H. Set $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. Since f is a group homomorphism, we have $f(x_1*x_2) = f(x_1)*f(x_2)$, so $f(x_1*x_2) = y_1*y_2$, which implies $x_1 * x_2 = f^{-1}(y_1 * y_2)$, i.e., $f^{-1}(y_1) * f^{-1}(y_2) = f^{-1}(y_1 * y_2)$. This proves that f^{-1} is a group morphism from H to G, which completes the proof.

- 4. Left for the reader.
- 5. Let H' be a subgroup of H, let $G' = f^{-1}(H')$, and show that G' is a subgroup of G. Since $f(e_G) = e_H$ according to (1) and $e_H \in H'$ since H' is a subgroup of H, we have $e_G \in G'$, then $G' \neq \emptyset$.

Let x and y be two arbitrary elements of G'. Thus, $f(x) \in H'$ and $f(y) \in H'$, so $f(x) \star (f(y))' \in H'$ since H' is a subgroup of H. Hence, $f(x * y') \in H'$. We conclude that $(x * y') \in G'$, which proves the desired result.

Definition 4.2.17. Let f be a homomorphism from G to H

1. The kernel of f, denoted Ker(f), is the set of antecedents of e_H under f

$$Ker(f) = \{x \in G \mid f(x) = e_H\}.$$

2. The image of f, denoted Im(f), is f(G) (the set of images of elements in G under f).

Remark 4.2.18. According to the last two points of proposition (4.2.16), the kernel and image of f are respective subgroups of G and H.

Proposition 4.2.19. Let f be a homomorphism from (G,*) to (H,*)

- 1. f is surjective if and only if Im(f) = H.
- 2. f is injective if and only if $Ker(f) = \{e_G\}$.

Proof: (1) is immediate by the definition of onto mapping. To prove (2), first assume that f is injective. Let x be an element of Ker(f). We have $f(x) = e_H$, and since $f(e_G) = e_H$, we deduce that $f(x) = f(e_G)$, which implies $x = e_G$ due to the injectivity of f. Thus, $Ker(f) = \{e_G\}$.

Conversely, suppose that $Ker(f) = \{e_G\}$, and let's show that f is injective. Consider $x, y \in G$ such that f(x) = f(y). Then, $f(x) \star (f(y))' = e_H$, so $f(x * y') = e_H$, which means $x * y' \in Ker(f)$. Since $Ker(f) = \{e_G\}$, we get $x * y' = e_G$, and consequently, x = y. This demonstrates the injectivity of f, this completes the proof.