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4.2.2 Examples of groups

4.2.2.1 The group Z/nZ

First, it is clear that if n is a positive integer, the set nZ of integers of the form nk,

where k varies in Z (the set of multiples of n), forms an additive subgroup of (Z, +).
Proposition 4.2.9. Every subgroup of (Z,+) is of the form (nZ,+).

Remark 4.2.10. The congruence relation modulo n, where n € N and denoted by =, is

defined as follows
Ve,y € Z, x =yn| < (v —y) € nZ < 3k € N/y =1z —nk.

Read as "z is congruent to y modulo n,” it defines an equivalence relation in (7Z,+).

The quotient set is finite and can be written as

Z/nZ={0, 1, 2, .., n—1}.
e The quotient addition on Z/nZ induced by that of Z is given by
Vao,y € Z/nZ, i+y = m
e The quotient multiplication on Z/nZ induced by that of Z is given by

Va,y € Z/nZ, Xy =1 X ¥.

For example, writing the addition and multiplication tables in the quotient set Z/nZ.

+10]1 x |01
0(0]1 0100
i]i0 i|oi

Proposition 4.2.11. The set (Z/nZ,+) forms a commutative group (quotient group of

7 by the congruence relation) with neutral elements 0 for addition operation.

Proof. Left to the reader.
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4.2.2.2 Permutation Group

Definition 4.2.12. Let E be a set. A permutation of E is a bijection from E to itself.
We denote the set of permutations of E as Sg. If E = {1,...,n}, we simply write S,.
The set Sg equipped with the composition law of applications forms a group with identity

e = Id, called the symmetric group on the set E.

Example 4.2.13. Let’s assume E = {1,2,3,4,5}, and we denote a permutation o € S;

as follows
1 23 45
g =
2415 3
Which means (1) = 2, 0(2) = 4, etc.
If we consider
1 23 45 1 23 45
o = and 0y =
32451 4 1 2 5 3

Then, o1 0 05(3) = 01(2) = 2.

4.2.3 Group homomorphism

Definition 4.2.14. Let (G,*) and (H,*) be two groups. An application [ from G to H

s a group homomorphism when

Ve,y € G, flexy) = fz)* f(y).
Moreover,
1. If G = H and % = %, il is called an endomorphism.
2. If f is bijective, it is called an isomorphism.
3. If f is a byective endomorphism, it is called an automorphism.

Examples 4.2.15. o The application x — 2x realizes an automorphism of (R, +).
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e The application f : R — R that associates each real number with its exponential is

a group morphism of R under addition to RY under multiplication, since f(x+y) =

f(x)- f(y), for all x,y € R.

Proposition 4.2.16. (Some Elementary Properties of Group Homomorphisms) Let f be

a homomorphism from (G, x) to (H,*)

1.

4.

5.

f(eG) = €H.

Forallz € G, f(2') = (f(x)) (where 2’ is the symmetric of x in G, and (f(x))" is
the symmetric of f(x) in H).

If f is an isomorphism, then its reciprocal application f=' is an isomorphism from

(H,x) to (G,*).
If G < G then f(G") < H.

If H < H then f~1(H') < G.

Proof :

1.

fleaxeq) = f(eq) then f(eq)x f(eq) = f(eq), which shows that by composing on
the right with f(eq)’, that f(eq) = en.

. Let x €@

f@)x f(x) = f(a'xz) = f(ec) = en.
On the other hand,

fx)x f(a') = flzxa’) = f(ec) = en.
Hence, f(a') = (f(2))"

Let y; and y, be two arbitrary elements of H. Set x1 = f~'(y1), z2 = f~'(y2). Since
f is a group homomorphism, we have f(x1*x3) = f(x1)*f(22), so f(x1*xs) = y1xYya,
which implies @1 % 22 = f~'(y1 x y2), 1.e., f7H(y1) * f7(y2) = f~'(y1 x y2). This

proves that f~!is a group morphism from H to G, which completes the proof.
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4. Left for the reader.

5. Let H' be a subgroup of H, let G’ = f~'(H’), and show that G’ is a subgroup of
G. Since f(eq) = eg according to (1) and ey € H' since H' is a subgroup of H, we
have eq € G’, then G’ # ().

Let x and y be two arbitrary elements of G'. Thus, f(z) € H' and f(y) € H', so
f(z)*(f(y)) € H' since H' is a subgroup of H. Hence, f(z*y') € H'. We conclude
that (z xy') € G', which proves the desired result.

Definition 4.2.17. Let f be a homomorphism from G to H

1. The kernel of f, denoted Ker(f), is the set of antecedents of ey under f
Ker(f) = {x € G| f(x) = en}.

2. The image of f, denoted Im(f), is f(G) (the set of images of elements in G under
f)
Remark 4.2.18. According to the last two points of proposition (4.2.16), the kernel and
image of f are respective subgroups of G and H.

Proposition 4.2.19. Let f be a homomorphism from (G, x*) to (H,*)

1. [ is surjective if and only if Im(f) = H.

2. [ is injective if and only if Ker(f) = {eg}.

Proof : (1) is immediate by the definition of onto mapping. To prove (2), first assume
that f is injective. Let = be an element of Ker(f). We have f(z) = ey, and since
f(eq) = en, we deduce that f(x) = f(eq), which implies = eg due to the injectivity of
f- Thus, Ker(f) = {ec}-

Conversely, suppose that Ker(f) = {ec}, and let’s show that f is injective. Consider
x,y € G such that f(x) = f(y). Then, f(x)* (f(y)) = eu, so f(x xy') = ey, which
means = x 3y € Ker(f). Since Ker(f) = {eg}, we get x xy' = e, and consequently,

x = y. This demonstrates the injectivity of f, this completes the proof. O



