University of science and technology Oran M-B

Academic year 2023/2024

Department of Mathematics

Algebra 1

Exercise series $N^{\circ}04$

Exercise 1:

Show that the given laws equip the set G with a group structure and determine if it's abelian

1. $x * y = \frac{x+y}{1+xy}$ on G =]-1, 1[;2. $(x, y) * (x', y') = (x + x', ye^{x'} + y'e^{-x})$ on $G = \mathbb{R}^2$.

Exercise 2:

In the following cases, determine if H is a subgroup of group G

- 1. $G = (\mathbb{Z}, +); H = \{\text{even numbers}\}.$
- 2. $G = (\mathbb{R}, +); H = [-1, +\infty[.$
- 3. $G = (\mathbb{R}^*, \times); H = \mathbb{Q}^*.$

4. $G = (\{bijections from E to E\}, \circ); H = \{f \in G; f(x) = y\}$ where E is a set and $x, y \in E$ with $x \neq y$.

Exercise 3:

Let (G, *) be a group, we consider H subset of G defined by

$$H = \{h \in G, \forall g \in G, g * h = h * g\}.$$

- 1. Show that (H, *) is a subgroup of G.
- 2. If G is a commutative group, what is H?

Exercise 4:

Let the following elements in S_4

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad M_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$$

Compute $M_1 \circ M_3$, $M_1 \circ M_1$, $M_1 \circ M_2$ and $M_2 \circ M_1$.

Exercise 5:

Justify that $x \mapsto e^x$ is a morphism from $(\mathbb{C}, +)$ to $(\mathbb{C}^*,)$. What is its image? Its kernel?

Exercise 6:

Let (G, +) be a commutative group. We denote by End(G) the set of endomorphisms of G, on which we define the operation + as follows

$$\forall f, g \in End(G), (f+g)(x) = f(x) + g(x), \forall x \in G.$$

Prove that $(End(G), +, \circ)$ forms a ring.

Exercise 7:

We consider $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}; a, b \in \mathbb{Z}\}.$

- 1. Show that $(\mathbb{Z}[\sqrt{2}], +, \times)$ is a ring.
- 2. We denote $N(a + b\sqrt{2}) = a^2 2b^2$. Show that, for all x, y from $\mathbb{Z}[\sqrt{2}]$, we have N(xy) = N(x)N(y).
- 3. Deduce that the invertible elements of $\mathbb{Z}[\sqrt{2}]$ are those that can be written as $a + b\sqrt{2}$ with $a^2 2b^2 = \pm 1$.

Exercise 8:

Let p be a prime number. We define

$$\mathbb{Z}_p = \{ \frac{a}{b}, \ (a,b) \in \mathbb{Z} \times \mathbb{Z}, p \wedge b = 1 \}.$$

- 1. Prove that \mathbb{Z}_p is a sub-ring of $(\mathbb{Q}, +, \times)$.
- 2. Prove that for any nonzero rational number $x, x \in \mathbb{Z}_p$, or $x^{-1} \in \mathbb{Z}_p$.
- 3. Let B be a sub-ring of \mathbb{Q} containing \mathbb{Z}_p . Show that $B = \mathbb{Q}$ or $B = \mathbb{Z}_p$.