Exercise series N°04

Exercise 1:

Show that the given laws equip the set G with a group structure and determine if it's abelian

- 1. $x * y = x^{ln(y)}$ on $G = \{x \in \mathbb{R}, x > 0 \text{ and } x \neq 1\};$
- 2. $(x,y)*(x',y') = (x+x',ye^{x'}+y'e^{-x})$ on $G = \mathbb{R}^2$.

Exercise 2:

In the following cases, determine if H is a subgroup of group G

- 1. $G = (\mathbb{Z}, +); H = \{\text{even numbers}\}.$
- 2. $G = (\mathbb{R}, +); H = [-1, +\infty[.$
- 3. $G = (\mathbb{R}^*, \times); H = \mathbb{Q}^*.$

Exercise 3:

Let the following elements in S_4

$$id = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}, \quad M_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}.$$

Compute $M_1 \circ M_3$, $M_1 \circ M_1$, $M_1 \circ M_2$ and $M_2 \circ M_1$.

Exercise 4:

Let (G, *) be a group, we consider H subset of G defined by

$$H=\{h\in G, \forall g\in G,\ g*h=h*g\}.$$

- 1. Show that (H, *) is a subgroup of G.
- 2. If G is a commutative group, what is H?

Exercise 5:

1. Let $G = \mathbb{R}$, and * is a binary operation on G defined by

$$\forall x, y \in G, \ x * y = x + y - \frac{1}{2}.$$

- (a) Prove that * is a commutative operation.
- (b) Prove that (G, *) is group.
- 2. Let

$$f: (G, *) \to (\mathbb{R}, +)$$

 $x \mapsto f(x) = 2x - 1.$

- (a) Prove that f is a group homomorphism.
- **(b)** Is f bijective? Justify.

Exercise 6:

Let $\mathbb D$ be the set of decimal numbers: $\mathbb D=\Big\{\frac{n}{10^k}\;\Big|\;n\in\mathbb Z,\;k\in\mathbb N\Big\}$. Show that $\mathbb D$ is a subring of $(\mathbb R,+,\times)$.

Exercise 7:

We consider $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2}; \ a, b \in \mathbb{Z}\}.$

- 1. Show that $(\mathbb{Z}[\sqrt{2}], +, \times)$ is a ring.
- 2. We denote $N(a+b\sqrt{2})=a^2-2b^2$. Show that, for all x,y from $\mathbb{Z}[\sqrt{2}]$, we have N(xy)=N(x)N(y).
- 3. Deduce that the invertible elements of $\mathbb{Z}[\sqrt{2}]$ are those that can be written as $a + b\sqrt{2}$ with $a^2 2b^2 = \pm 1$.

Exercise 8:

Let p be a prime number. We define

$$\mathbb{Z}_p = \{ \frac{a}{b}, \ (a, b) \in \mathbb{Z} \times \mathbb{Z}, p \wedge b = 1 \}.$$

- 1. Prove that \mathbb{Z}_p is a sub-ring of $(\mathbb{Q}, +, \times)$.
- 2. Prove that for any nonzero rational number $x, x \in \mathbb{Z}_p$, or $x^{-1} \in \mathbb{Z}_p$.
- 3. Let B be a sub-ring of \mathbb{Q} containing \mathbb{Z}_p . Show that $B = \mathbb{Q}$ or $B = \mathbb{Z}_p$.