4.3 Ring Structure

Definition 4.3.1. A ring is a set equipped with two binary operations $(A, *, \star)$ such that

- 1. (A,*) forms a commutative group with the identity denoted as 0_A .
- 2. The operation ★ is an associative and distributive binary operation on A with respect to *

$$\forall x, y \in A, \ x \star (y * z) = x \star y * x \star z, \ and \ (x * y) \star z = x \star z * y \star z.$$

Example 4.3.2. The sets $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$, and $(\mathbb{C}, +, \times)$ are well-known rings.

Definition 4.3.3. (Types of rings)

1. A ring (A, *, *) is said **Ring with unity** if its multiplicative identity exists i.e.,

$$\exists 1_A \in A, \ 1_A \star x = x \star 1_A = x, \ \forall x \in A.$$

- 2. A ring (A, *, *) is said **Commutative ring** (or abelian ring) if the operation * is commutative.
- **Remark 4.3.4.** 1. If the operation \star is commutative, the ring is called a commutative or abelian ring.
 - 2. The set $A \{0_A\}$ is denoted A^* .
 - 3. For simplicity, we temporarily omit the notations \star and * defined on A in favor of the notations additive (+) and multiplicative (\times) . So we refer to the ring $(A, +, \times)$ instead of $(A, *, \star)$.

Definition 4.3.5. 1. A commutative ring $(A, +, \times)$ is called integral if it is

- (a) different from the zero ring (i.e., if $A \neq \{0_A\}$),
- **(b)** $\forall a, b \in A, (a \times b = 0) \Rightarrow (a = 0 \lor b = 0).$

2. When a product $a \times b$ is zero but neither a nor b is zero, we say that a and b are zero divisors.

Example 4.3.6. • $(\mathbb{Z}, +, \times)$ of integers is integral, it has no zero divisors.

• The ring $\mathbb{Z}/6\mathbb{Z}$ of residue classes modulo 6 is not integral since $\dot{2}\dot{\times}\dot{3}=\dot{6}$, so $\dot{2}\dot{\times}\dot{3}=\dot{0}$. The same applies to $\mathbb{Z}/4\mathbb{Z}$.

Definition 4.3.7. Let $(A, +, \times)$ be a ring, (not necessarily commutative) and 0_A be the zero of the ring. An element $a \in A$ is said nilpotent if

$$\exists n \in \mathbb{N}^*, \ a^n = 0_A.$$

- **Remark 4.3.8.** 1. $(A, +, \times)$ be a ring, (not necessarily commutative), then it is clear that a nilpotent element of A is a zero divisor.
 - 2. Every ring has at least a nilpotent element which is 0_A .

Proposition 4.3.9. Let $(A, +, \times)$ be a ring. The computation rules in rings are as follows

- 1. $\forall x \in A, \ x \times 0_A = 0_A \times x = 0_A$ (The element 0_A is then called an absorbing element for the law \times .)
- 2. $\forall x, y \in A, (-x) \times y = x \times (-y) = -(x \times y).$
- 3. $\forall x \in A, (-1_A) \times x = -x.$
- 4. $\forall x, y \in A, (-x) \times (-y) = x \times y.$
- 5. $\forall x, y, z \in A, \ x \times (y z) = x \times y x \times z \ and \ (y z) \times x = y \times x z \times x.$

Notations and Conventions. Let (A, *, *) be a ring. Let n be a non-zero natural number, and let x be an element of A.

1. We denote the element nx in A, which is equal to the composition by the first law * of n terms equal to x. In other words, for all $n \in \mathbb{N}^*$ and $x \in A$,

$$nx = \underbrace{x * x * x * \dots * x}_{n \ terms}$$

In particular, taking n = 1, we have 1x = x for all $x \in A$.

2. Similarly, we denote the element x^n in A, which is equal to the composition by the second law \star of n terms equal to x. In other words, for all $n \in \mathbb{N}^*$ and $x \in A$,

$$x^n = \underbrace{x \star x \star x \star \dots \star x}_{n \text{ terms}}$$

In particular, taking n = 1, we have: $x^1 = x$ for all $x \in A$.

3. And for n = 0? Let's denote by 0_A the zero element and by 1_A the unit element of (A, *, *) (this notation is a bit unfortunate here as it reminds us of the additive notation and the multiplicative notation that we are trying to avoid). Then, by convention, for all $x \in A$, $0x = 0_A$ and $x^0 = 1_A$.

4.3.1 Sub-rings

Definition 4.3.10. Let (A, *, *) be a ring. A non-empty subset A_1 of A is a sub-ring of A if the laws * and * induce binary operations on A_1 , and equipped with these laws, $(A_1, *, *)$ is a ring.

Proposition 4.3.11. A non-empty subset A_1 of A is a sub-ring of A if and only if

- 1. $0_A \in A_1$;
- 2. For all $x, y \in A_1$, $x * y^{-1} \in A_1$;
- $3. \ \forall x, y \in A_1, \ x \star y \in A_1.$

Example 4.3.12. $(\mathbb{Z}, +, \times)$ is a sub-ring of $(\mathbb{Q}, +, \times)$, which is a sub-ring of $(\mathbb{R}, +, \times)$, and that is a sub-ring of $(\mathbb{C}, +, \times)$.

4.3.2 Ring Homomorphisms

Definition 4.3.13. Let $(A, +_A, \times_A)$ and $(B, +_B, \times_B)$ be two rings with unity. A ring homomorphism from A to B is a function from A to B such that

- 1. $f(1_A) = 1_B$;
- 2. For all $x, y \in A$, $f(x +_A y) = f(x) +_B f(y)$, and $f(x \times_A y) = f(x) \times_B f(y)$.

4.3.3 Ideals of a Commutative Ring

Let $(A, +, \times)$ be a commutative ring

Definition 4.3.14. (Ideal) A subset I of A is an ideal of the ring $(A, +, \times)$ if

- 1. (I, +) is a subgroup of (A, +);
- 2. For every $a \in A$, we have $aI \subset I$, in other words $\forall a \in A, \forall x \in I : ax \in I$.

Proposition 4.3.15. A subset I of A is an ideal of the ring $(A, +, \times)$ if and only if

- 1. $0_A \in I$;
- 2. For all $x, y \in I$, $x y \in I$.
- 3. $\forall a \in A, \ \forall x \in I, \ a \times x \in I$.

Examples 4.3.16. 1. Every non-trivial ring has at least two ideals: the trivial ideal $\{0\}$ and A itself. The ideals of A, distinct from A, are called proper ideals.

2. Every element x of A defines a principal ideal

$$\langle x \rangle = xA = \{ax/a \in A\}.$$

It is the smallest ideal that contains a, and we say it is generated by a.

3. More generally, if $x_1, x_2, ..., x_n$ belong to A, the smallest ideal containing $x_1, x_2, ..., x_n$ is

$$\langle x_1, x_2, ..., x_n \rangle = x_1 A + x_2 A + ... + x_n A = \{a_1 x_1 + ... + a_n x_n / a_1, ..., a_n \in A\}.$$

Indeed, it is immediately verified that $I = x_1A + x_2A + ... + x_nA$ is non-empty and stable under linear combinations, therefore it is an ideal.

4.4 Field Structure

Definition 4.4.1. A field is a commutative ring in which every non-zero element is invertible.

If, in addition, the second operation \times is commutative on \mathbb{K} , then we say that the field $(\mathbb{K}, +, \times)$ is commutative.

Example 4.4.2. $(\mathbb{Q}, +, \times)$ and $(\mathbb{R}, +, \times)$ are commutative fields. $(\mathbb{Q}, +, \times)$ is not a field.