
Siemens AG

Plant and Systems Engineering

Information modelling –

Getting started with EXPRESS–G

xpress–g_en

– 2 –Getting started with EXPRESS–G

Getting started with EXPRESS–G

1 Introduction

EXPRESS G is a diagrammatic modeling notation for the purpose of an object–oriented information modeling.
This notation is based on the standardized EXPRESS-G notation, which is itself described in ISO 10303-11: Indus-
trial Automation Systems – Product Data Representation and Exchange – Part 11: Description Methods: The EX-
PRESS Language Reference Manual.

2 Modeling and notation

2.1 Entity

An entity (or entity type) is a class (or set) objects. Each object in the class is somehow similar to every other object
in that class, in that the object exhibit the same characteristics and/or behaviour.

In the diagrammatic modelling notation, an entity is shown as a rectangular box; the entity name is written inside the
box. Examples of entities are: the set of all employees in a company (entity name employee); The set of all work
projects (entity name project). The notation for these examples is shown in figure A.1

Figure A.1 – Entity

employee project

2.2 Attributes

An entity has attributes, describing the characteristics of this object. Attributes are defined as simple data types , e.g.
integer, string, logical, boolean or more complex types as, e.g. other entities.Lines are used to connect the entity with
its attributes. The names of the attributes are written above and along the lines. If the name of an attribute is com-
posed of several terms, the underscore sign (_) is used as intermediate character. A solid line shows a mandatory
attribute, whereas a dashed line shows an optional attribute.

Figure A.2 presents a person defined by certain characteristics including a first name, a last name, a birth date, a
description of their hair and including the possibility to have a nickname.

Figure A.2 – Attribute and data type

person

hair

STRING

hair_type

page#, ref#, date

first_name

last_name

nickname

birth_date

2.3 Enumeration

A data type enumeration expresses the existence of a range of values belonging to this attribute. Only one of the
enumerated values may be chosen. Figure A.2 depicts the symbol, by which the data type is written within the

xpress–g_en

– 3 –
Getting started with EXPRESS–G

dashed box having a vertical bar at the right end of the box.

In figure A.2 different hair types are defined and exactly one value of the range has to be associated with the person.

2.4 Select

A data type select allows the possibility to choose exactly one of a defined variety of, e.g. other data types or entities.
The name of the data type is written within a dashed box having a vertical bar at the left end of the box.

Figure A.3 shows an example for the use of the select data type. The data type has to be selected as one of the data
types INTEGER, STRING, BOOLEAN, LOGICAL, REAL, BINARY or the entity measure_with_unit.

Figure A.3 – Select data type

BOOLEAN

select_type

STRING

INTEGER

BOOLEAN

LOGICAL

REAL

BINARY

measure_with_unit

2.5 Cross references

Graphical representations can span more than one page. If a relationship occurs between definitions on separate
pages, the relationship line on each of the two pages is ended by a rounded box. It contains the page number, the
reference number and the name of the entity referred to (see figure A.2). The page number is the number of that page
where the referenced entity occurs. A reference number is used to distinguish between multiple references on a
page.

2.6 Relationship

A relationship expresses a dependency or interaction between two entities. A relationship has cardinality, which
indicates the number of objects in each of the entities at either end of the relationship that may be involved in a par-
ticular instance of that relationship. A relationship also has a name.

In the diagrammatic modelling notation, a relationship is shown as a solid or dashed thin line which is terminated by a
circular arrowhead; the relationship name is written next to the line. The direction of a relationship is towards the
arrowhead, which is important in that the name of the relationship must reflect its direction. A solid line indicates a
compulsory relationship, whereas a dashed line indicates optional relationship (see figure A.4).

xpress–g_en

– 4 –Getting started with EXPRESS–G

Figure A.4 – Relationships (1)

A B

C D

Every A refers exactly
one B

Every C optionally
refers exactly one D

refers

refers

A cardinality string may be added to the relationship name, in which case it can take one of a number of forms (see
below). If a relationship has no cardinality string included in is name, then the cardinality is assumed to be exactly
one.

Cardinalities can be expressed in terms of sets, bags, lists and arrays. A set is an unordered variable length collec-
tion of unique items. A bag is an unordered variable length collection of not necessarily unique items A list is an
ordered variable length collection of not necessarily unique items; however there are possibilities to constraint the list
to a list of unique items. An array is a fixed size collection of not necessarily unique items which can be accessed by
an index.

A cardinality can be shown as a string in the form C[m:n] , where C is one of S(set), B(bag), L(list) or A(array), where
m is the lowest number of items allowed in the aggregation, and where n is the highest number of items allowed. If the
cardinality is shown as m:n , then it is assumed to be as set (S). If the cardinality is shown as a single number (n), then
it is assumed to be S[n:n] . See figure A.5. Note that an upper limit of ? indicates ”unbounded”.

Figure A.5 – Relationships (2)

A B

C D Every C refers to a list
of one or more D’s

refers L[1:?]

refers S[0:?] Every A refers to a set
of zero, one or more B’s

Examples of relationships are: manages (a manager manages exactly one project); is_worked_on_by (a project is
worked on by zero, one ore more non–managers). The notation for these examples is shown in figure A.6.

Figure A.6 – Relationship (3)

manager

project

non–manager

manages

is_worked_on_by S[0:?]

NOTE – A containment relationship is a special type of relationship (also called ownership). Such relationships are specially identified be-

cause of the special behaviour of the relationship.

Consider the two entities A and B, which have a containment relationship owns between them (every A owns zero, one ore more B’s). See

figure A.7.

Figure A.7 – Relationships (4)

A B
owns S[0:?]

xpress–g_en

– 5 –
Getting started with EXPRESS–G

NOTE – If a database were constructed according to this model, then the database would not be in a valid state unless every instance of B

were owned by one and only one instance of A. If an instance of A were deleted, then all the instances of B owned by that A would need to be

deleted as well. (This is the special nature of the containment relationship). Note that this type of relationship is not specially indicated in the

diagrammatic notation; however, any relationship like that shown in figure A.7 must be considered to be a possible containment relationship.

2.6.1 Inverse Relationship

In most cases, an inverse relationship can be inferred directly from the original relationship. For example, in figure
A.7, the relationship owns has inferred inverse relationship is_owned_by, directed from entity B towards entity A,
and having in this example the cardinality ”exactly one”. Strictly speaking, this should be shown as in figure A.8. (An
inverse relationship is indicated by writing (INV) at the front of the name of the relationship).

Figure A.8 – Relationships (5)

A
owns S[0:?]

(INV) is_owned_by

Every A owns zero, one
or more B’s; every B is
owned by exactly one A

B

2.6.2 Entity generalisation and specialisation

Two or more entities which have some (but not all) characteristics and/or behaviour in common may be generalised
into a supertype . Each of the entities that the supertype generalises is known as a subtype .

Another interpretation of subtypes and supertypes is to consider that a supertype entity is specialised into a series of
subtypes. Each of the subtypes is a specialisation inherits all of the characteristics and behaviour of the supertype,
but adds new characteristics and/or behaviour of its own.

Note that it is possible for an entity to be both a supertype and a subtype simultaneously.

Figure A.9 – Subtypes and supertypes (1)

A

B C

A is a supertype of B and C

B is a subtype of A
C is a subtype of A

1

In the diagrammatic modelling notation, the relationship between a supertype and its subtypes is shown by using a
series of thick lines, each one terminated at the subtype end with an open circle. See figure A.9.

Figure A.9 shows the notation for a non–abstract supertype . A non–abstract supertype is an entity which can be
instanced as an object, but which is nonetheless a supertype. An abstract supertype , on the other hand, is a super-
type entity which cannot be instanced. Figure A.10 shows the notation for an abstract supertype.

xpress–g_en

– 6 –Getting started with EXPRESS–G

Figure A.10 – Subtypes and supertypes (2)

(ABS) D

E F

D is an abstract supertype of E and F

E is a subtype of D
F is a subtype of D

1

In figure A.9, an object of type A exhibits the characteristics and behaviour of the entity A, whereas an object of type B
exhibits the characteristics and behaviour of entities A and B simultaneously. In figure A.10, it is not possible for
objects of type D to be instanced. In other words, figure A.10 shows a ”complete specialisation” (all objects of type D
are also of type E or type F), whereas figure A.9 shows an ”incomplete specialisation” (there are some objects of type
A which are neither of type B nor of type C).

An entity can be a subtype of more than one supertype simultaneously. This is known as ”multiple inheritance”. Fig-
ure A.11 shows the notation for an entity A which is a subtype of two other entities B and C.

Figure A.11 – Subtypes and supertypes (3)

(ABS) B

X A

B is an abstract supertype of X and A
C is a supertype of Y and A

X is a subtype of B
Y is a subtype of C
A is a subtype of B & C

C

Y

1 1

An example of a generalisation is that which generalises the manager and non–manager entities into the em-
ployee supertype (see figure A.12). The objects in the manager entity are slightly different to those in the non–man-
ager entity (managers manage a project and supervise other employees, whereas non–managers share a lot of
common characteristics (e.g. both appear on a payroll), there are occasions when it is convenient to refer to such
objects as simply an employee. This implies the existence of an abstract supertype called employee .

Figure A.12 – Subtypes and supertypes (4)

(ABS) employee

manager non–manager

1

An example of a specialisation is that which specialises the mammal entity into the cat and dog subtypes (see figure
A.13). All objects in the mammal entity share common characteristics and behaviour (e.g. they all have hair, and
suckle their young). The objects in the cat entity are slightly different to those in the dog entity in a number of re-
spects. Note that this is an example of an incomplete specialisation, because there are objects in the mammal entity
which neither cats nor dogs (e.g. whales, horses, humans).

xpress–g_en

– 7 –
Getting started with EXPRESS–G

As a general rule, the process of generalisation will often lead to the definition of an abstract supertype, whereas the
process of specialisation will often lead to the conversion of an existing entity into a non–abstract supertype (unless
the specialisation is complete, in which case the entity is converted into an abstract supertype).

Figure A.13 – Subtypes and supertypes (5)

mammal

cat dog

1

Many models specifically avoid the use of non–abstract supertypes. This is achieved by the addition of an extra
catch–all subtype. For example, in the specialisation of the mammal entity shown in figure A.13, a new subtype
entity called other_mammal could be added (as in figure A.14), making the specialisation complete, and converting
the mammal entity into an abstract supertype.

Figure A.14 – Subtypes and supertypes (6)

(ABS) mammal

cat dog other_mammal

1

3 Example Model

Figure A.15 shows a simple example of an information model drawn using the notation described above.

Figure A.15 – Example Model

(ABS) employee

manager non–manager

project

supervises S[0:?]

manages
is_worked_on
_by S[0:?]

1
(INV) is_supervised_by S[0:1]

(INV) is_managed_by (INV) works_on

The model should be read as follows:

1. Every manager and non–manager is also an employee; every employee is either a manager or a non–man-
ager.

xpress–g_en

– 8 –Getting started with EXPRESS–G

2. Each manager manages exactly one project; each project is managed by exactly one manager.

3. Each manager supervises zero, one or more employees; each employee is supervised by zero or one man-
ager. Note that there may be some employees who are not supervised (e.g. the General manager).

4. Each project is worked on by zero, one or more non–managers; each non–manager works on exactly one
project.

Note that each entity describes a complete set of objects in a particular domain of interest. A relationship is between
one group of objects and another group of objects; each group of objects involved in such a relationship may be a
subset of the whole group like objects in the domain of interest. A common mistake that is made while reading an
information model is to assume that a relationship is between all of the objects in one entity and all of the objects in
another entity.

–––––––––––––––––

Published by Siemens AG Contact: Fritz Reuter
Industrial Projects and Technical Services Tel +49 (0)9131/7–43825
ATD TD5 SP Fax +49 (0)9131/7–20249
P.O. Box 3240, D–91050 Erlangen email:pdm@erl9.siemens.de

Siemens Aktiengesellschaft (C) Siemens AG 1994..98

All Rights reserved
Germany Printed in the Fed. Rep. of Germany

Know–how in
Systems Integration.
Siemens

