
Formal Specification
Why even bother when building modern commercial software?

Practical Formal Specification Fundamentals

Formally describing system data structures and functions paves the way
to demonstrating the correctness (or not) of systems, and allows for the
possible automation of this process. “Mission-critical” systems generally
contain parts that have to be formally specified to achieve or meet
obligatory regulatory certification.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 2 of 54

General Agenda

• Generic introduction to formal specification

• Formalism in Software Engineering

• Sets and specification calculi

• Algebraic specifications

• Model-based specifications

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 3 of 54

What is Formal Specification
Generic introduction to formal specification

Using a description vocabulary, syntax and semantics, that have

been formally defined, to specify behaviour of systems.

Therefore: The components of such a description must be based

on mathematical principles!

Examples of such principles include the application of set theory,

propositional and predicate calculi, algebraic specification, or
their derivatives.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 4 of 54

A well-known (cult) film

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 5 of 54

The “Good”

• Using them forces one to deeply understand the behaviour of a
system and its manifestation as a software solution;

• The only approach available to prove correct conformance to
functional specification, and consequently correct behaviour;

• System behaviour modelled using formal specifications can be
reasoned about using proven mathematical techniques and
relationships;

• Can be clear indicators towards defining useful prototypes and
testing scenarios;

• Can be used, or considered, as an internal prognostic (peace-of-
mind) tool for developers;

• Focus-oriented – problem discovery.

Generic introduction to formal specification

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 6 of 54

The “Bad”

• Their effective use is not simply an acquired talent, but does
imply an affinity to such analytical methods;

• They are labour-intensive and may increase the overall cost of
the software development process;

• Many modern software development courses skirt the whole
domain of formal specification – so the talent is rare;

• Formal specifications are non-compressive and directly “non-
evident”;

• Not applicable to every type of software solution;

• Mainstream software development deals with solutions whose
benefit from formal treatment is unclear;

• Not ideal as a vehicle to convey development information to
non-technical stakeholders.

Generic introduction to formal specification

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 7 of 54

The “Ugly”

• Software developers sometimes wrongly consider testing as a
full or partial substitute for verification;

• Developers sometimes tend to reason about the correctness of
a system through the lens of testing;

• Developers confuse validation with verification.

• It is not difficult to loosely understand formal specification and
consequently loosely attribute it to a variety of specification
models.

• They do not always scale up easily and evidently.

Generic introduction to formal specification

Always bear in mind…

Validation = Are we building the right solution?

Verification = Are we building the solution right?

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 8 of 54

The 14 “myths” of formal methods in SE

A. Hall. “Seven myths of formal methods”. In: Software, IEEE 7.5 (Sept. 1990), pp. 11–19;
J.P. Bowen and M.G. Hinchey. “Seven more myths of formal methods”. In: Software, IEEE 12.4 (1995), pp. 34–41.

1. They guarantee perfect software and eliminate the need for testing;
2. They are all about proving programs correct;
3. They are only useful in safety-critical systems;
4. Their application requires highly trained mathematicians;
5. Their applications increases development costs;
6. They are unacceptable to users;
7. They are not used on real large-scale systems;
8. They delay the development process;
9. They are not supported by tools;
10. They replace traditional engineering design methods;
11. They only apply to software;
12. They are not required [i.e. carried out as optional addition];
13. They are not supported [by the development community and its

stakeholders];
14. Formal methods [specialising] people always use formal methods.

Formalism in Software Engineering

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 9 of 54

The resulting “10 Commandments”

• Thou shalt choose an appropriate notation.

• Thou shalt formalise but not over-formalise.

• Thou shalt estimate costs.

• Thou shalt have a formal methods guru on call.

• Thou shalt not abandon thy traditional development methods.

• Thou shalt document sufficiently.

• Thou shalt not compromise thy quality standards.

• Thou shalt not be dogmatic.

• Thou shalt test, test, and test again.

• Thou shalt reuse.

Jonathon P. Bowen and Michael G. Hinchey, Ten Commandments of Formal Methods, IEEE Computer, 28(4):56--63, April 1995.

Formalism in Software Engineering

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 10 of 54

Position of Formal methods in SE

Define
requirements

Specify
requirements

Model
functionality

Formal
specification

Architectural
design

Detailed
design

Implementation
process

Formalism in Software Engineering

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 11 of 54

Categories of Formal Specification in SE

• Algebraic

What can a system do; what can you expect from a system?

• Model-based

How does a system move from state to state?

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Example: My whiskey collection!

Looking at it Algebraically:
Which operations can I perform on my collection?
Which outcomes can I predict from such operations?

Looking at it from a Model-based perspective:
How does the state of my collection change according to
operations applied to it?
How can I determine the various states of my collection?

Slide 12 of 54

The Basic Concepts of Formal Specification

• Set theory

Reasoning about collections and their logical interactions
e.g. Cars, buses, tricks or motorbikes are all forms of vehicles.

Formally expressed as: {car,bus,truck,motorbike}  {vehicles}

• Propositional calculus (Zeroth-order logic)

Reasoning about statements and what can be inferred from them
e.g. p = A lab is a room; q = AC is off in an empty room; r = AC is off.

Formally expressed as: p  q  r

• Predicate calculus (First-order logic)

Reasoning about the properties of propositional elements as groups
of elements
e.g. “x” is a room of type “lab”; “L” is a specific empty Lab; “O” is an AC that is off;
For all labs that are empty labs, their AC is off.

Formally expressed as: x(Lx  Ox)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 13 of 54

Sets

• Are collections of elements

• Have elements that can be tangible or intangible entities

• Are represented by standard notation “{ }”

• Are manipulated by standard elementary operations

• Are entities which can interact with each other

• Can be denoted through meaningful or symbolic identifiers

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Simple set examples:
Set of colours: {green,blue,yellow}
Set of sports: {tennis,football,skating}
Set of lecturers in this room: {ernest}
Empty set: { } or 

Slide 14 of 54

Main Set Operators

If more explanation is required, operator definitions can be found in most
formal specification textbooks or Internet sources.

Examples:

Valletta  {Maltese towns} Membership

Kiev  {Maltese towns} Membership

#{joe,veronica,mark} = 3 Cardinality

{paul,richard,claire,george}  {Group B} Inclusion

P{Dynamo,CSKA} = { { },{Dynamo},{CSKA},{Dynamo,CSKA} } Power Set

{ford,toyota,kia}  {toyota,audi} = {ford,toyota,kia,audi} Union

{ford,toyota,mercedes}  {ford,audi} = {ford} Intersection

{ford,toyota,subaru} \ {ford,toyota,kia} = {subaru} Complement

{ford,toyota,subaru}  {ford,toyota,kia} = {subaru,kia} Sym. Difference

{1,2,3} x {2,4} = { {1,2},{2,2},{3,2},{1,4},{2,4},{3,4} } Cartesian prod.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 15 of 54

Comprehensive Specification of resulting sets

• Direct (as in the previous slide)

• Resulting from operations on other sets, as follows:

Basically, we wish to state the following to specify a set:

Create a new set resulting from using the original set whose
elements are from a specific range, selecting elements according
to a specific condition and applying to these elements a specific
operation.

Sets using Comprehensive Specification

{Signature | Predicate • Term}

)}()(|:{ xExPXx 

{set : range | condition • operation}

Ernest Cachia - Department of Computer Information Systems

University of Malta, Faculty of ICT

In constructor form

…or in formal notation:

In general:

Slide 16 of 54

Set Construction Examples

Alternate even numbers:

{ x : N | x mod 2 = 0 ∙ 2 * x } = {0,4,8,12,16,20,…}

Tens:

{ x : N | x ∙ 10 * x } = {0,10,20,30,40,…}

Squares of multiples of 4 (excluding zero):

{ x : Z | (x mod 4 = 0)  (x > 0) ∙ x * x } = {16,64,144,256,…}

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 17 of 54

Some Set-Based Specification Exercises

Write 3 elements from the sets specified by the following
comprehensive specifications:

{n : N | n > 10  n < 20 • n}

{n : N | n3 > 10 • n}

{x, y : N | x + y = 100 • (x, y)}

{x, y : N | x + y = 5 • x2 + y2}

Interpret the following:
{m : monitors | MonitorState(m, on) • m}

{f : SysFiles | f  DelFiles  f  ArcFiles • f}

Write the comprehensive specification of:
{(10,100),(11,121),(12,144),(13,169),(14,196)}

{11,12,13,…}

{3,4,5,…}

{(0,100),(1,99),(2,98),…}

{x:N | x  10 • (x,x2)}

{25,17,13,…}

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Monitors that are on

Deleted system archive files

Slide 18 of 54

Propositional Calculus

• Deals with straightforward logical reasoning

• Basically consists of statements which can be true or false (the
“Excluded Middle” law)

• Are mutually exclusive, i.e. never true or false at the same time (the
“Contradiction” law)

• Is fundamental, i.e. forms the basis of higher-order logic

• Is axiomatic, i.e. not in itself subject to further proof

• In theory, can be used to describe anything that can be represented
in the form of statements

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 19 of 54

Proposition (and non) Examples

• Some birds can fly
• The nation of Malta is in Asia
• Dogs are mammals
• All fish live in water
• All fish live in sea water
• Mary is the only lady in our group

• Sit down.
• How are you today?
• Get my tea, please.
• What is the weather like?

ARE

ARE NOT

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 20 of 54

Representing Propositions

Consider the following propositions that all make the
same statement

• 10 is greater than 8

• 8 is less than 10

• 8 < 10

• 10 > 8

• There is a positive number such that if we add it to eight the
result would be ten.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 21 of 54

Propositional Calculus Notation

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

• Negation (not): ¬
• Conjunction (and): ∧
• Disjunction (or): ∨
• Material implication (if...then): →
• Biconditional (if and only if): ↔

Some symbolic examples:

 ((P  Q)  Q)

 ((P  Q)   R)  P

 P  (P  (Q  P))

((P  Q)  (R  S)  (P  R))  (Q  S)

Taking:
P as true
Q as false
R as false
S as true

true

false

false

true

Slide 22 of 54

Contradictions and Tautologies

• A contradiction is a proposition that is always false for all
possible values and variables in it.

• A tautology is a proposition that is always true for all
possible values and variables in it.

Examples:

contradiction

tautology

() () tautology

a a

a a

a b c c a





   

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 23 of 54

De Morgan’s Laws (at the heart of transformation)

Some other propositional calculus transformation rules regularly used:

• Implication (IF) (P  Q)  (Q  R)  (P  R)

• Bicondition (IF AND ONLY IF) (P  Q)  (Q  P)  (P  Q)

• Conjunction (P  Q)

• Disjunction introduction P  (P  Q)

• Disjunctive syllogism ((P  Q)   P)  Q

• Constructive (((P  Q)  (R  S))  (P  R))  (Q  S)

• Absorption (P  Q)  (P  (P  Q))

• Hypothetical syllogism ((P  Q)  (Q  R))  (P  R)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

 (P  Q)  P   Q

 (P  Q)  P   Q

Slide 24 of 54

Using propositions to describe behaviour

Consider the following text fragment describing an aspect of the
behaviour of an intruder alarm system (adapted from Sommerville, I.):

“The system should be considered to be ready
for intruders (alert) only when it is armed
and in practice alert mode. If the system is
in teaching mode and in practice alert mode,
then it is considered to be alert. The system
should be able to be in teaching mode and in
practice alert mode while still being not
alert.”

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 25 of 54

Specifying the text using Propositions

Consider the following text:
The system should be considered to be ready
for intruders (alert) only when it is armed
and in practice alert mode.

alert  armed  practice

If the system is in teaching mode and in
practice alert mode, then it is considered
to be alert.

teaching  practice  alert

The system should be able to be in teaching
mode and in practice alert mode while still
being not alert.

teaching  practice  ¬ alert
Therefore…

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 26 of 54

Detecting Contradictions

From the previous analysed specification:
alert  armed  practice
teaching  practice  alert
teaching  practice  ¬alert

The second and third propositions yield a contradiction:

teaching  practice  alert

teaching  practice  ¬alert

alert  ¬alert …contradiction!

Furthermore, the first proposition yields another contradiction:

teaching  practice  ¬(armed  practice) simplifies to…

alert  ¬armed  ¬practice …contradiction because being alert requires
being armed!

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 27 of 54

Consider This Statement

“Fido is a dog, dogs like bones, so Fido

likes bones”.

Propositional analysis of this sentence yields three propositions,
namely:

Fido is a dog (propos. 1) …let’s call this “P”

Dogs like bones (propos. 2) … “Q”

Fido likes bones (propos. 3) … “R”

Can we derive “R” from “P” and “Q” using purely propositional
calculus? – Naturally, no (we can only infer it), as no properties
of “P” and “Q” are known, apart from them being true or false.

Therefore…

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 28 of 54

Introducing the notion of “a predicate”

We resort to predicate calculus.

Formally, predicates can be seen as direct indicators of object
properties and relationships. Denoted as P(x), where P denotes
the predicate on the term(s) represented by x.

• Examples of unary predicates:

dog(fido) =true; Df

dog(lecturer) =false. Dl …(?)

• Examples of n-ary predicates:

owned(Labrador,Boxer); O(l,b)

father(John,Mary); F(j,m)

team(Paul,Albert,Vincent). T(p,a,v)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 29 of 54

Predicate calculus example

Predicate logic employs variables for specific objects, function and
relation symbols, and quantifiers (,). So, using our previous
“Fido” example:

Fido is a dog “P” Df

Dogs like bones “Q” Bd

Fido likes bones “R” Bf

Denoting “any dog” by “d”, “is a dog” by “D” and “likes bones”
by “B”:

d · (Df  Bd)  Bf or…

d:dog · (Df  Bd)  Bf

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 30 of 54

Introducing Quantification
(making predicate calculus)

Quantification Places bounds on free variables (i.e. names of objects)

Is a unary predicate

Produce propositions

1. There exists an object ‘x’ to which the predicate ‘P(x)’ applies.
2. For all objects ‘x’, the predicate ‘P(x)’ applies.

P(x)

(1)
x·P(x) and

(2)
x·P(x)

Some examples:

x:staff_age • x  50 meaning, there is staff who is older than 50;

x:names • relatives(x) meaning, the persons by these names are all relatives.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 31 of 54

Predicate Calculus in Definitions

• Can be viewed as conditional statements obeying propositional
behaviour with specific values.

• Consider a triangle - We can say the following…

For any triangle:

1. It will consist of three sides;

2. Any of its sides will be greater than zero length;

3. The sum of the length of any two of its sides will be greater than
the length of the remaining side.

Therefore…

a b

c

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 32 of 54

Predicate Calculus Example

In predicate calculus form the basic properties of any triangle “T” could
be written as follows (using qualification and predicate notation):

T := if 123, or more formally…
T := a,b,c • (a,b,c), and more specifically…

taking (a,b,c) := ((a0)(b0)(c0))((a+bc)(b+ca)(a+cb))

yields…
T := a,b,c • ((a0)(b0)(c0))((a+bc)(b+ca)(a+cb))

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 33 of 54

A More Familiar Predicate Form

Consider the predicates:

numerically_bigger_than(x,y)

are_equal(a,b)

Can be written as…

x > y

a = b

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 34 of 54

Quantification Examples

 i : 1..10 · i2 = 64

 proc : processors · ProcessorState(proc, active)

 i :  · i > 10 MonitorTemp = i

 m : AllocatedMonitors · MonState(m, ready)

 i : 1..100; m : AllocatedMonitors · activity(m, functioning) 

AmbientTemp = i

 r : CurrentReactors; m : AllocatedMonitors ·

MonState(m, functioning)  connected(r, m)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 35 of 54

x,y,z • x  y  y  z  x  z

x  x  10  x + y  100

x,y  N  x + y  N

x,y  {1,2,3,4}  x + y  {1,2,3,4}

x,y  {1,2,3,4} • x  y  x - y  {1,2,3,4}

(p  q) p  q

x  y  x – y  0

x + y  0  x  0  y  0

More Examples (loosely adopted from Behforooz, A.)

All numeric values x, y, and z for
which x is greater than y and y is
greater than z, x is greater than z

There exists a numeric value x, such that
either x is greater than 10 or for some
value y the sum of x and y is less than
100

If x and y are natural numbers, then x+y
is also a natural number

There exist x and y from the set {1,2,3,4}
such that the sum of x and y is also a
member of the set {1,2,3,4}

For all values x and y from the set
{1,2,3,4} for which x is greater than y,
the difference between x and y is also an
element of the set {1,2,3,4}

The complement (negation of) two
logical AND-ed values is the same as the
complement of each OR-ed value

The numeric value x is greater than y if
and only if the difference between x and
y is positive
If the sum of x and y is positive, it cannot
be concluded that both x and y are
positive

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

/

Slide 36 of 54

Algebraic Specifications

• A specification technique mainly used for abstract data types

• Based on a strong mathematical foundation – namely algebraic
relationships and logical equivalence

• Have been in use for relatively long periods of time

• Are universal in their application

• Employ fundamental principles

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 37 of 54

Building Algebraic Specifications

• Clearly comprehend the system to model

• Determine the operations necessary for the system you have in
mind

• Specify the relationship between the system’s operations

• Write the specification down according to adopted standard
(most are based on the foundational concepts of the Common
Algebraic Specification Language – CASL)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 38 of 54

Algebraic Specification Schema Structure

Type: <resulting type>
Imports: <what it uses/assumes>

Signatures:
<a list of the abstract types that
result from every relevant
operation specified within the
axiomatic part schema>

Axioms:
<a list of the relevant operations
that will be used to prove
situations based on logical
equivalence>

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 39 of 54

Algebraic Specification Example
(1/2) (loosely adopted from Sommerville, I - 2009)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

A list of elements:

Operations:

Action Name

Create a new list [Create]

Add an an element [Add]

Get the first list element [Get]

Retain the list except the
first element [Tail]

Count length of list [Count]

Classification

Basic

Basic

Inspector

Extra

Inspector

Slide 40 of 54

Algebraic Specification Example
(2/2) (loosely adopted from Sommerville, I - 2009)

Type: list
Imports: Z, Boolean

Signatures:
Create()  list
Add(list, elem)  list
Get(list)  elem
Tail(list)  list
Count(list)  Z

Axioms:
1) Count(Create()) = 0;
2) Count(Add(l, e)) = if Count(l) = 0 then 1
else count(l)+1;
3) Get(Create()) = error;
4) Get(Add(l, e)) = if count(l) = 0 then e else
get(l);
5) Tail(Create()) = create();
6) Tail(Add(l, e)) = if count(l) = 0 then create()

else l;

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Axiom construction:
Basics x ((Extras+B[a]) + (Inspectors+B[a]))
Therefore: 2x((1+0)+(2+0)) = 6 Axioms
Extras & Inspectors “act” on Basics

Slide 41 of 54

Algebraic Specification Example
(1/2) (loosely adopted from Pressman, R. S.)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

A queue of integers:

Operations:

Action Name

Add an item to end of
queue [Add]

Remove an item from
end of queue [Rem]

Check if queue empty [IsEmpty]

Read first queue item [ReadFirst]

Read last queue item [RaadLast]

Create a new queue [Create]

Classification

Basic

Extra

Inspector

Inspector

Inspector

Basic

Slide 42 of 54

Algebraic Specification Example
(2/2) (loosely adopted from Pressman, R. S.)

Type: queue
Imports: Z, Boolean

Signatures:
Create()  queue
Add(int, queue)  queue
Rem(int, queue)  queue
ReadFirst(queue)  Z
ReadLast(queue)  Z
IsEmpty(queue)  Boolean

Axioms:
1) IsEmpty(Create()) = TRUE;
2) IsEmpty(Add(z, q)) = FALSE;
3) Rem(Create()) = error;
4) Rem(z, Add(z, q)) = q;
5) ReadFirst(Create()) = error;
6) ReadFirst(Add(z, q)) = if IsEmpty(q) then z

else ReadFirst(q);
7) ReadLast(Create()) = error
8) ReadLast(Add(z, q)) = if IsEmpty(q) then z

else ReadLast(q);

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Axiom construction:
Basics x ((Extras+B[a]) + (Inspectors+B[a]))
Therefore: 2x((1+0)+(3+0)) = 8 Axioms
Extras & Inspectors “act” on Basics

Slide 43 of 54

Algebraic Specification Example
(1/2) (dopted from Ghezzi, et al.)

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

String manipulation:

Operations:

Action Name

Create a new string [Create]

Concatenate strings [Con]

Add a character [Add]

Check string equality [Equal]

Count string length [Count]

Check for zero length [isEmpty]

Classification

Basic

Extra

Basic

Inspector

Inspector

Inspector

Slide 44 of 54

Algebraic Specification Example
(2/2) (adopted from Ghezzi, et al.)

Type: char, string
Imports: N, Boolean

Signatures:
Create()  string
Con(str1, str2)  string
Add(char, str)  string
Equal(str1, str2)  Boolean
Count(str)  N
IsEmpty(str)  Boolean

Axioms:
1) IsEmpty(Create()) = TRUE;
2) IsEmpty(Add(c, s)) = FALSE;
3) Count(Create()) = 0;
4) Count(Add(c, s) = if count(s) = 0 then 1 else
Count(s)+1;
5) Con(s, Create()) = s;
6) Con(s1, Add(c, s2)) = Add(c, con(s1, s2));
7) Equal(Create(),Create()) = TRUE;
8) Equal(Create(), Add(c, s)) = FALSE;
9) Equal(Add(c, s1), Add(c, s2)) = Equal(s1, s2)
10) Equal(Add(c, s), create()) = FALSE;

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Axiom construction:
Basics x ((Extras+B[a]) + (Inspectors+B[a]))
Therefore: 2x((1+0)+(1+2)) = 10 Axioms
Extras & Inspectors “act” on Basics

Slide 45 of 54

Other Examples

Various other examples may be discussed during lectures using
other documents.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 46 of 54

The Z-Specification Language

• Attempts to place a notational framework on formal system
specification

• Based on set theory

• Is model-based (relies on well understood mathematical entities
and their relationship)

• Equally used to model (specify) state as well as operations on states

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 47 of 54

Some Basic Z-Schema Examples (1/2)

a is a natural number and b is a set formed of natural
numbers as shown. a is contained in b.

Note: Generically, to indicate “a set of”, the notation “P (with a hollow stem)”.
Example “b: PN”
Linear equivalent would be: [a:N; b:{7,1,3,24} | a b]

a b

a : N

b : {7, 1, 3, 24}

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 48 of 54

Some Basic Z-Schema Examples (2/2)

a c

b c





a c b c  

Is equivalent to…

Or linearly…

a, b : N

c : PN

a, b : N

c : PN

a, b : N; c : PN | a  c  b  c

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 49 of 54

Naming Schemas

MonNo AvailableMonitors

MonCondition

Or…

MonNo : N

AvailableMonitors : PN

MonCondition ≝
[MonNo : N; AvailableMonitors : PN | MonNo  AvailableMonitors]

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 50 of 54

Z-Schema Conventions

•Delta

– Denoted by the Greek literal ()

– Used to extend the schema components to indicate update
operations, i.e. changes in state variables (updating operations).

•“Xi”

– Denoted by the Greek literal ()

– Used to indicate that stored data is not affected, i.e. enquiry
operations.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 51 of 54

Delta Convention Examples (taken from Ince)

Specify a system which will keep track of students who have handed in
Assignments. There are clearly three sets involved…
Class (all the students in the class)
HandedIn (all the students in the class who have handed in their

assignment)
NotHandedIn (all the students in the class who have not handed in their

assignment)

, , : P

', ', ' : P

Class HandedIn NotHandedIn STUDENTS

Class HandedIn NotHandedIn STUDENTS

' ' '
' '

HandedIn NotHandedIn Class
HandedIn NotHandedIn
HandedIn NotHandedIn Class
HandedIn NotHandedIn

 
 
 
 

 Assignment

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 52 of 54

Use of a Delta Schema (based on previous example)

? :stud STUDENTS

Assignment

?
' \{ ?}

' { ?}
'

Stud NotHandedIn
NotHandedIn NotHandedIn Stud
HandedIn HandedIn Stud
Class Class




 


HandIn

Model the handing in of a student assignment:

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 53 of 54

Use of a “Xi” Schema (based on previous example)

, , : P

', ', ' : P

Class HandedIn NotHandedIn STUDENTS

Class HandedIn NotHandedIn STUDENTS

'
'

'

NotHandedIn NotHandedIn
HandedIn HandedIn
Class Class






 Assignment

Model a query for the number of students who have handed in:

Therefore:

AssignQuery ≝
[HandedIn! : N;  Assignment | HandedIn! = #HandedIn]

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 54 of 54

Schema Inclusion

A simple example of this will be presented during lectures.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 55 of 54

Another Schema Inclusion Example (1/2)

, , : P
:

: P
:

AllFiles FreeFile FilesInUse FILES
File FILES
RegisteredUsers NAMES
User NAMES

\

User RegisteredUsers
File AllFiles
AllFiles FreeFiles FilesInUse
FreeFile AllFiles FilesInUse
FreeFiles FilesInUse
FreeFile FilesInUse




 

 


FileStatus

: P
FileStatus
InvalidUsers NAMES

User RegisteredUsers
User InvalidUsers
RegisteredUsers InvalidUsers




 

UserStatus

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 56 of 54

Another Schema Inclusion Example (2/2)

, , : P
:

, : P
:

AllFiles FreeFile FilesInUse FILES
File FILES
RegisteredUser InvalidUser NAMES
User NAMES

\

User RegisteredUsers
User InvalidUsers
RegisteredUsers InvalidUsers
File AllFiles
AllFiles FreeFiles FilesInUse
FreeFile AllFiles FilesInUse
FreeFiles FilesInUse
FreeFile FilesInUse




 


 

 


FileAndUserStatus

Results in the following schema…

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 57 of 54

Another Schema Inclusion Example (taken from Ince)

#upper lower MaxSize 

SetInv

middle upper lower 

MidInv

The above schemas result in…

#
middle upper lower

upper lower MaxSize
 
 

MidInv

Upper, lower : PN
MaxSize: N

middle: PN
SetInv

Middle : PN
Upper, lower: PN
MaxSize : N

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 58 of 54

Sequences

• Are not sets

• Can be viewed as collections with predefined constraints

• Exist in different forms

• Can have operations applied to them

• Widespread use in computer systems

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 59 of 54

Types of Sequences

• Normal (including empty)

seq

• Non-empty

seq1

• Injective (not containing duplicates)

iseq

Therefore…

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 60 of 54

Formal Sequence Definitions

• Definitions…

seq T = = { f : N T | dom f = 1 .. #f }

seq1 T = = { f : seq T | #f > 0 }

iseq T = = seq T  (N T)

• Some examples…

E.g. of (seq N) is {1 3, 2 9, 3 9, 4 11}

written as 3,9,9,11

E.g. of (iseq files) is {1 UpdateFile, 2 LogFile, 3 TaxFile}

written as UpdateFile,LogFile,TaxFile

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 61 of 54

Sequences in Z

Examples of these will be presented during lectures.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 62 of 54

Sequence (in Z) Example

FileQueue

InQueue, OutQueue : seq Files

#InQueue < #OutQueue

Rentals

Pending, Overdue : seq ID

MostOverdue!, SoonToBeOverdue! : ID

MostOverdue! = head Overdue

SoonToBeOverdue! = head Pending

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 63 of 54

[SeqOps]

head, last : seq1 SeqOps  SeqOps

tail, front : seq1 SeqOps  seq SeqOps

s : seq1 SeqOps •

head s = s(1) 

last s = s(#s) 

tail s = ( n : 1 .. #s-1 • s(n+1)) ({1} s) 

front s = (n : 1 .. #s-1 • s(n))

Heads n’ Tails

• Formally defining the “head”, “last”, “tail”, and “front”
sequence operators using a Z-schema.

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

Slide 64 of 54

Summary

•Formal approaches

•Sets, propositions and predicates

•Algebraic specifications

•Z-Schemas

Ernest Cachia - Department of Computer Information Systems
University of Malta, Faculty of ICT

