
NIAM CONCEPTUAL DATA-BASE DESIGN IN
CONSTRUCTION MANAGEMENT

By William J. Rasdorf1 and Osama Y. Abudayyeh2

ABSTRACT: With the continued use of data bases in engineering applications and
the continued proliferation of engineering data, the importance of proper data
base design needs increasing attention. This paper presents a new data-modeling
methodology called NIAM. NIAM is a graphical modeling language used to design
conceptual schemas that can be mapped onto any data-base model, e.g., the re
lational and hierarchical data models. The paper describes a procedure, called the
optimal normal form algorithm, for mapping a NIAM conceptual schema onto a
fifth normal form relational data model. It then provides a brief background on
the relational data model and the normalization process. Examples from the con
struction management domain are used to describe the principles and concepts of
the NIAM modeling methodology.

INTRODUCTION

Engineering systems are data-driven environments. Data are not only
important in the analysis of the performance of an engineering system, but
are also vital to the design of future systems. Therefore, managing infor
mation becomes vital to the success of any engineering system, particularly
because of the large volumes of data that are involved. The difficulty is that
the proper use and management of data requires that they be well modeled.
Unfortunately, engineering data models are almost universally developed
in an ad hoc manner. This paper shows that there is a preferable, formal
methodology by which to develop such models. Furthermore, the meth
odology produces essentially an engineering drawing that schematically rep
resents a very good data model design.

A construction project is one example of an engineering system where
there is a great deal of data. The primary objective during the construction
process is completing the project on time and within the budget while meet
ing established quality requirements and other specifications. Achieving this
objective requires a substantial focus on managing the construction process.
Managing a construction process in itself is a challenging assignment that
cannot be performed effectively and successfully without a good information
system to deal with the data and, subsequently, the knowledge that is ex
tracted from that data.

However, managing a construction process is impossible without a plan
and a control system. A plan establishes goals for a project's schedule, cost,
and resource usage, as well as the tasks and methods for carrying out the
work. This plan is usually developed based on a firm's historical records
and past experience with similar projects. On the other hand, a control
system collects actual data on a project's schedule, cost, and resource usage;

'Assoc. Prof., Dept. of Civ. Engrg., North Carolina State Univ., Box 7908, Ra
leigh, NC 27695.

2Grad. Res. Asst., Dept . of Civ. Engrg., North Carolina State Univ., Box 7908,
Raleigh, NC.

Note. Discussion open until June 1, 1992. To extend the closing date one month,
a written request must be filed with the ASCE Manager of Journals. The manuscript
for this paper was submitted for review and possible publication on January 14,1991.
This paper is part of the Journal of Computing in Civil Engineering, Vol. 6, No. 1,
January, 1992. ©ASCE, ISSN 0887-3801/92/0001-0041/$l.00 + $.15 per page. Paper
No. 1186.

41

compares existing progress to the planned schedule (analysis) to highlight
potential problem areas that need special attention; and makes decisions
and recommendations based on the results of the analysis.

Planning and control systems require the acquisition, storage, and use of
large amounts of data. Presently, construction data are manually acquired
using a variety of forms that vary in format and structure. For example,
Fig. 1 shows a daily-time-sheet form, which is extracted from a forms book
developed by R.S. Means Co. (Means 1986). Its purpose is to keep a daily
record of the activities performed by all workers at a construction job site
by recording the daily regular and overtime hours worked and the units
produced by each worker on the different tasks. The form is also used daily
for keeping track of equipment use. The data acquired by this form are
usually used to analyze labor costs and to provide a weekly payroll record.

One mechanism to effectively store and use construction data ia a data
base management system (DBMS). DBMS provides distributed access to
data and ensures data integrity. Distributed access is supported by storing
data items once without considering their intended use. Then, different users
can have different views of the same data items without having to store data
repeatedly in different forms. Data integrity is achieved by properly de
signing the data-base structure (schema) to provide the most appropriate
centralized storage schema that supports different users' needs. Integrity
control eliminates data redundancy and inconsistency, specifically when data
are updated (Date 1986).

A good data-base schema design depends on how accurately and com
pletely one can model the data involved in the construction management
environment. One can approach data modeling for data-base design from
two different perspectives. On the one hand, one can design a data-base
schema in an ad hoc manner. However, this design approach does not
guarantee an optimal or even a good data-base schema. On the other hand,
one can design a data-base schema in a systematic fashion using a formal

DA,a / / / « V V / / / / /
TIME SHEET A . / . /-J/'J/ / / / / /

PHOJECT / jp / \ / (u / y j ? / / / / / /

FOREMAN [> , £:C\CK.f\ / <*/Jf w 7 / / / / / J /6/\i/<^/ V / / /
WEATHEH CONDITIONS 5 U H M y ^ / y /,£• / v J^/ \f / / / /

TEMPERATURE 5 f c 5 0 F /

NO

lot

IQ2.

fclO

/ ̂
DA ..Cfl_LUktaY

5. Hvbcffc

EQUIPMENT

SnyAt Cfaflf

™«
UM.S

-«»
„..,
~ x «

u - 1

«X*>

««-»
« U » !

u * . i

^

vm'////
8
12.

JL.

8
«»/!

2

/ T O T A L S

/ R E G -

f ULAR

-g—

8

2 .

TIME

7

MB \ioAC~li m
SHEET NO

RATES

REG

ULAR

15"

15

OVEfl-

rrM£

ao
Zo

OUTPUT

FIG. 1. Daily Time Sheet (Reproduced with Permission from R. S. Means Com
pany, Inc.)

42

file:///ioAC~li

methodology that guarantees a quality design. This paper presents one such
formal modeling methodology that implements the second approach and
provides a conceptual schema design that can be mapped onto any data
base model. The methodology described herein is called Nijssen's infor
mation analysis methodology (NIAM). This paper presents the NIAM data-
modeling methodology and describes its basic concepts. To aid the reader
in understanding the overall purpose of NIAM, the section below compares
the developments of information systems and engineering systems and il
lustrates how NIAM fulfills the design phase of the problem-solving process.

Information Engineering
l The process of designing and developing an information management

system is considered to be similar to the development of engineering systems.
The process of developing an engineering system goes through at least three
general phases: conceptualization, design, and construction. In the concep
tualization phase, a problem is identified and a solution is sought. In the
process of seeking a solution, the problem and the specifications for the
desired solution become formally defined. Once the specifications are es-

, tablished, the design phase, and subsequently construction, can proceed. A
set of engineering drawings is developed during design, and the actual en
gineering artifact is built during construction.

Similarly, the development of an engineering information management
system goes through the aforementioned three phases. Fig. 2 schematically
shows the process of developing an engineering information system. In the
figure, conceptualization involves identifying the components of the desired
information system. Such components include data items and processing
methods used in acquiring and storing data. These are identified by analyzing
sources of data and information, e.g., forms, reports, and graphs. The result
of this phase is a formal specification of the desired engineering information

I management system.
Design involves the systematic modeling of the data identified in the

previous phase, within the context of the formal specifications, to arrive at
I the best structure and organization for data storage and use. In Fig. 2,
I NIAM serves as the systematic modeling methodology for the design phase.
I The outcome of the NIAM design phase is a graphical conceptual data
I schema diagram that is viewed as an engineering drawing, which requires
I the approval of the client (owner) before proceeding with the construction
I of the system. In fact, NIAM diagrams have been used as engineering
I drawings by Sandia Laboratories as a communication vehicle between the
1 designer and the client, where the actual construction of the information
I system does not proceed without the acceptance of the drawings by both
I the designer and the client (Sharp 1990). Once the NIAM diagrams are
I approved, construction proceeds, and the physical data-base schema is de-
1 veloped by going through a transformation step. The transformation of a
I NIAM conceptual schema diagram into a relational schema is accomplished
I by the optimal normal form algorithm, as is shown in Fig. 2.
I The body of this paper is divided into three major sections. The first one
I introduces and describes the NIAM modeling methodology, using con

struction management examples, and introduces examples of information
I drawings. The second section describes the algorithm that maps NIAM
I conceptual data models onto relational data models. The third section il-
I lustrates how a NIAM conceptual model is developed and mapped onto a

relational data model using the algorithm.

43

Engineering Data
and

Processing Methods

1
NIAM

Methodology

NIAM
Conceptual

Schema
Diagram

1 '

Optimal
Normal
Form

Algorithm

Relational
Database
Schema

Conceptualization

Design

Construction

FIG. 2. Engineerng System Development Process

NIAM MODELING METHODOLOGY

Modeling for information systems design has evolved over the years from
a process-oriented approach to the more data-oriented approach. The
process-oriented approach focuses on what the output should be and what
processing mechanisms are needed to produce the desired output; in con
trast, the data-oriented approach focuses on the inputs to the process. This
latter approach attempts to build a data representation model of the intended
information system without regard to future uses of the data. This approach,
which is fairly recent and becoming increasingly more accepted, is thought
to be the most fundamental approach to modeling information systems
(Nijssen and Halpin 1989; Raymond 1987). This claim is made because of
the simple way the design deals with examples of input data that are familiar
to the designer and not with processes that manipulate the data. Also, with
the data-oriented approach, the conceptual design can be very easily vali
dated by testing it with examples.

The NIAM modeling methodology, first researched by Nijssen and Fal-
kenberg, has been revised into its present form by Halpin (Nijssen and
Halpin 1989). It is a simple, natural approach to semantic modeling that
produces a conceptual data-base schema design that is independent of, and

44

can be mapped to, any data-base model. Semantic modeling involves iden
tifying a set of semantic concepts that can be used to formally model the
real world and to represent the meanings of data. A semantic model is
composed of objects and the relationships between them.

NIAM is composed of two main stages: defining facts and defining con
straints. These two stages are introduced in the following subsections.

Defining Facts
The first stage of the design procedure, defining facts, starts by examining

the inputs to the information system under consideration. Such inputs are
normally available in the form of reports, documents, input forms, graphs,
etc. These types of inputs are used to represent the meaning and organization
of data items pertinent in a given domain. One example of an input form
in the construction management domain is shown in Fig. 1. This form, in
fact, will be used in this paper to provide examples for the concepts and
principles of the NIAM modeling methodology.

This section details how elementary facts are developed from examples,
how a formal graphical language represents these facts, and how the con
ceptual schema is refined to eliminate unnecessary fact types.

Developing Elementary Facts
Elementary facts orginate from "representative examples." An elemen

tary fact is defined as a fact that cannot be split into smaller facts while
preserving the original information. To illustrate how facts are extracted
from examples, reconsider the form shown in Fig. 1. A number of facts can
be extracted from the form, such as the following:

1. The worker with name "D. Callaway" has a worker-ID number of 101.
2. The worker with name "S. Hubert" has a worker-ID number of 102.
3. The worker with worker-ID number 101 has worked a regular period of

8 hours performing a task named "hang doors" on "June 7, 1992."
4. The worker with worker-ID number 102 has worked a regular period of

8 hours performing a task named "install hardware" on "June 7, 1992."
5. The worker with worker-ID number 102 has worked an overtime period

of 2 hours performing a task named "unload material" on "June 7, 1992."

To model such an input form, one should work with a representative and
significant set of examples (facts) like those just enumerated. A set of
examples is said to be significant if it provides all the relevant information
and constraints about the domain to be modeled. To understand the concept
of significance, consider facts 4 and 5 from the list enumerated. If fact 5
was omitted, the data-base designer may have assumed that a worker can
only work on one task in a given day. However, fact 5 eliminates such an
assumption and informs the designer that a worker can work on more than
one task in a given day. Also, by examining both facts 4 and 5, one can
correctly conclude that a worker may not work more than eight regular
hours on a shift. Additionally, since this is a daily time sheet form, it is
obvious that each day a new form will be generated and facts can be re
peated. Moreover, one might further deduce from facts 4 and 5 that a worker
may work overtime hours beyond a regular 8-hour shift. Thus, one might
assume that the facts enumerated do provide a representative and significant
set.

Next, to understand the elementary fact concept, consider fact 3. Ex-

45

amining this fact shows that it cannot be split into simpler facts and therefore
is an elementary fact. As proof, assume for a moment that the fact could
be split into the three following simpler facts: (3a) The worker with worker-
ID number 101 has worked a regular period of 8 hours; (3b) the worker
with worker-ID number 101 has worked on a task named "hang doors";
and (3c) the worker with worker-ID number 101 has worked on "June 7,
1992." Clearly, by splitting fact 3 into facts (3a), (3b), and (3c), information
is lost. Fact (3a) states that worker with ID 101 has worked 8 regular hours
without providing any information about how these hours were spent. Fact
(3b) states that the worker hung doors without providing any information
about how much time was spent in doing so or when this activity occurred.
Fact (3c) states that the worker worked on June 7, 1992, without providing
any information about how much time was spent or what was done on that
day. Thus, splitting fact 3 does not preserve the original information content
provided by the example daily time sheet form. Therefore, fact 3 cannot
be split, and thus is an elementary fact in our example context.

To further understand NIAM, consider the concepts identified in this and
the following paragraphs. In NIAM, the domain of interest, sometimes
referred to as the universe of discourse (UOD), is thought of as a set of
entities that define a relationship. A fact type asserts that certain entities
play certain roles in a relationship. Each entity has a type that defines its
set of all possible instances. Each entity type must play at least one role.
A role is a part played by an entity type in some relationship. Each role is
played by exactly one entity type. A role name should be unique within the
context of a fact type.

Each fact type has an arity, which indicates the number of entity types
involved. Unary facts have one entity type and are often called properties.
Fact types with arity greater than one are sometimes called relations. An
instance of an entity type in a fact type is called a label, and the unit of
measurement or the reference base for the entity type is called its reference
mode. Two fact types can be developed in the NIAM methodology: ho
mogeneous and heterogeneous. A homogenous fact type involves only one
entity type playing one or more roles, whereas a heterogeneous fact type
involves at least two different entity types. The facts considered so far are
homogeneous.

As an example of the concepts introduced, consider fact 1. Fact 1 is an
instance of a fact type that may have the name "employee." One entity
type of fact 1 would be "worker," which has a reference mode of name.
This entity type has a text label with a value of "D. Callaway." The role
played by the worker entity type in the employee fact type is "has." Other
entity types and roles also exist in this fact type. For example, "worker-
ID" is an entity type, having a reference mode of number, a role of "belongs
to," and a numeric label of 101. Note that this fact has an arity of two. Also
note that a role may not be always explicitly stated in a fact, but can be
implicitly deduced as an inverse of some explicit role. For example, "has"
is an explicit role, whereas "belongs to" is not and is deduced as the inverse
of the "has" role.

As a further example, consider fact 3. Fact 3 is an instance of a fact type
that may have the name "regular-hours." (Note that fact 4 is also an instance
of this fact type.) One entity type in this fact would be "worker-ID," which
has a reference mode of number. This entity type has a numeric label with
a value of 101. The role played by the worker-ID entity type in the regular-
hours fact type is "has worked." Other entity types and roles also exist in

46

this fact type, as shown in Table 1. Note from the table that this fact has
an arity of four. Also note that a day entity type is introduced to represent
the date given in this fact type. Moreover, "worked by" is an implicit role
and is deduced as the inverse of the "has worked" role.

Using a shorthand notation for representing fact types, entity types are
written with the first character of the name capitalized, reference modes
are enclosed in parentheses, text labels are enclosed in double quotes, and
numeric labels are written as numbers. Additionally, the fact type name
precedes the elementary fact instance. For example, facts 1, 2, 3, 4, and 5
are expressed as:

1. Employee: Worker (name) "D. Callaway" has worker-ID (number) 101.
2. Employee: Worker (name) "S. Hubert" has worker-ID (number) 102.
3. Regular-hours: Worker-ID (number) 101 has worked regular-period (hours)

8 performing task (name) "hang doors" on day "June 7, 1992."
4. Regular-hours: Worker-ID (number) 102 has worked regular-period (hours)

8 performing task (name) "install hardware" on day "June 7, 1992."
5. Overtime-hours: Worker-ID (number) 102 has worked overtime-period

(hours) 2 performing task (name) "unload material" on day "June 7, 1992."

NIAM Graphical Language
After these elementary facts have been extracted from examples, they

need to be represented using a formal method (or language). NIAM provides
a formal graphical language to represent facts. Specifically, in this language,
the following symbols are used (Nijssen and Halpin 1989): (1) An ellipse
represents an entity type with the name of the entity written inside it and
the reference mode written underneath the name enclosed in parentheses;
(2) a rectangle represents a role; (3) a line segment connects an entity type
to each role that it plays; (4) a contiguous sequence of n role rectangles,
each of which is connected to exactly one entity type, represents an rc-ary
fact type; and (5) the roles are written as a single predicate having empty
gaps, indicated by quotation marks, written inside an end rectangle in an
n-ary fact type. For roles, the notation indicates the first entity type occu
pying the first gap in the predicate. The remaining gaps are occupied by
the remainder of the entity types in the fact type as they appear from this
end to the other end. The graphical representation of a fact is called a
conceptual schema diagram (CSD).

To illustrate the use of the NIAM graphical language, consider facts 1
and 3 introduced earlier. Fig. 3(a) shows a conceptual schema diagram for
fact 1, a binary fact which is of the "employee" type. The two entity types
involved are "worker" and "worker-ID." Their reference modes are name

TABLE 1. Entity Types, Reference Modes, Labels, and Roles for Regular-Hours
Fact Type

Entity type
(1)

Worker-ID
Regular period
Task
Day

Reference mode
(2)

Number
Hours
Name
Date

Label
(3)

101
8
Hang doors
June 7, 1992

Role name
14)

Has worked
Worked by
Performing
On

47

Entity Type

Reference Mode

Numeric Label

(b)

FIG. 3. Employee: Binary Fact Type: (a) Conceptual Schema Diagram; (b) Schema-
Based Diagram

and number, respectively. The explicit role played by worker is "has," and
the implicit role played by worker-ID is "belongs to." For clarity, we do
not show implicit roles in our schematic convention. To validate the con
ceptual schema design of this fact, the diagram is populated with example
labels producing what is called a schema-based diagram. The schema-based
diagram for employee is shown in Fig. 3(b). To be validated, this diagram
should produce at least the original information available from the input
form of Fig. 1 before the conceptual schema diagram can be accepted as
being correct. Of course, it is understood that Fig. 3 only represents a portion
of the original information. The conceptual schema shown in Fig. 3 is only
a part (subschema) of the overall conceptual schema for the input form of
Fig. 1, which is presented later in the paper.

Fig. 4 shows a conceptual schema diagram for fact 3, a fact of arity four,
which is of the "regular-hours" type. "Regular hours" has four role rec
tangles, each connected to exactly one entity type. The four entity types
involved are "worker-ID," "regular-period," "task," and "day." Their ref
erence modes are number, hours, name, and date, respectively. The roles
played by each entity are as shown in Fig. 4, and the diagram is populated
with example labels.

Refining Conceptual Schema
Refining the conceptual schema involves eliminating unnecessary fact

types, unnecessary entity types, or both. An unnecessary fact type is ob
served when one fact type can be derived from another fact type(s). For
instance, in Fig. 1 an elementary fact could have been derived to represent
the total regular time column. However, this column is derived from the
summation of regular hours worked by the individual workers. In other

48

Entity Types

Reference
Modes

Roles

Labels 101
102

8
8

hang doors
install hardware

June 7,1992
June 7,1992

FIG. 4. Schema-Based Diagram for Fact Type of Arity 4

words, a total regular time fact depends on the regular-hours fact type.
Thus, this new fact type can be eliminated from the conceptual schema
diagram, though some prefer keeping it and adding an asterisk to indicate
that it is a derived fact type.

Unnecessary entity types occur when two different entity types can be
combined into one. One good indicator that two entity types may be com
bined is when both have the same reference mode (Nijssen and Halpin
1989). As an example, two entity types were introduced in facts 4 and 5,
namely "regular-period" and "overtime-period." Both entity types have
hours for their reference modes, suggesting that these two could be com
bined. To do this, a new entity type of the name "period" is introduced to
replace the two entity types. The role "has worked" played by worker-ID
is changed to "has worked regular" in fact 4 and to "has worked overtime"
in fact 5. This process is shown in Fig. 5. Fig. 5(a) shows the two fact types
"regular-hours" and "overtime-hours," of which facts 4 and 5 are instances,
respectively. Note how the two fact types share three other entity types.
Fig. 5(b) shows how the two entity types mentioned are combined, causing
the two fact types to share all four entity types.

However, the aforementioned fact type can be further refined. A new
entity type called "status" can be introduced that defines the status of the
hours to be either regular or overtime and combines the two fact types into
a single fact type having the arity of five, as shown by the schema-based
diagram of Fig. 6(a). This fact type will be referred to as "worker-hours."
Thus, facts 3,4, and 5 are modified to the following: Fact 3. Worker-hours:
Worker-ID (number) 101 has worked period (hours) 8 having status (code)
"regular" performing task (name) "hang doors" on day (date) "June 7,
1992"; fact 4. Worker-hours: Worker-ID (number) 102 has worked period
(hours) 8 having status (code) "regular" performing task (name) "install
hardware" on day (date) "June 7,1992"; and fact 5. Worker-hours: Worker-
ID (number) 102 has worked period (hours) 2 having status (code) "over
time" performing task (name) "unload material" on day (date) "June 7,
1992." However, not all entity types with the same reference mode need
to be combined. This decision depends on the entity types and their re
spective pieces of information they model. For example, both "worker"
(facts 1 and 2) and "task" (facts, 3, 4, and 5) entity types have names for

49

REGULAR-HOURS

(a)

REGULAR-HOURS

(b)

FIG. 5. Conceptual Schema Diagram Refinement: (a) Before Combining Similar
Entity Types; (b) After Combining Similar Entity Types

their reference mode. But these entity types represent two different and
distinct pieces of information, and thus are not combined into a single entity
type.

In some situations, as will be explained in the ensuing paragraphs, it is
preferred to use nesting as an alternative to increasing the arity of a fact
type. Nesting is a mechanism provided by NIAM that treats a relationship
between entity types as an entity type itself, and this entity type is called
an objectified relationship type. Since a relationship between entity types
is composed of roles, so is the objectified relationship type. A fact type that
includes an objectified relationship type is called a nested fact type. The
objectified relationship type, just like any other entity type, must play at
least one role and is represented in NIAM by an ellipse that encloses roles.
To understand the nested fact type and objectified relationship type con
cepts, consider the two fact types shown in Fig. 5(b) ("regular-hours" and
"overtime-hours"). The nesting mechanism will be applied to them. The
two fact types shown in Fig. 5(b) will be called the flattened version as
opposed to the nested version that will be developed shortly (Nijssen and
Halpin 1989). Applying the nesting mechanism, facts 3, 4, and 5 (instances
of the flattened version) are modified to the following nested version: Fact
3. Regular-hours: Worker-ID (number) 101 performed task (name) "hang
doors" on day (date) "June 7, 1992." This activity lasted regular period

50

WORKER-HOURS

... has worked... having., .performing.. .on..

101
102
102
102

8

8
2
2

regular

regular
overtime
overtime

hang doors
install hardware
unload material
install hardware

June 7,1992

June 7,1992
June 7,1992
June 7,1992

(a)
Activity

REGULAR-HOURS

...lasted regular.,,

OVERTIME-HOURS

...lasted overtime...

Activity

101, hang doors, June 7,1992

102, install hardware, June, 71992

102,unloadmaterial, June7,1992

lasted
regular

8

8

lasted
overtime

-• 1
2 i

2 1
1

FIG. 6.
Nesting

(b)

Refining Conceptual Schema: (a) By Creating Status Entity Type; (b) By

(hours) 8; fact 4. Regular-hours: Worker-ID (number) 102 performed task
(name) "install hardware" on day (date) "June 7,1992." This activity lasted
regular period (hours) 8; fact 5. Overtime-hours: Worker-ID (number) 102
performed task (name) "unload material" on day (date) "June 7, 1992."
This activity lasted overtime period (hours) 2. Note how "regular-hours"
and "overtime-hours" fact types are broken into two sentences. One sen
tence groups "worker-ID," "task," and "day." The other sentence refers
to the entity types in the first sentence by using the name "activity." "Ac
tivity" is called an objectified relationship type. "Activity" is assigned to
"period" in the second sentence by using the role name "lasted regular" or
"lasted overtime." "Regular-hours" and "overtime-hours" are called nested
fact types and are shown in Fig. 6(b) using the schema-based diagram format.
In this figure, the two nested fact types share the common objectified re
lationship type, "activity." Note how "activity" is composed of the "per
formed" and "on" explicit roles played by "worker-ID" and "day," re
spectively, and some implicit role (not shown) for "task." Also note that
"activity" plays two different roles in each nested fact type, namely "lasted
regular" and "lasted overtime."

51

The nested fact type in the example is equivalent to the flattened version
of Fig. 5(b). However, the nested version is a better representation in this
case, especially when it is mapped onto the relational model. This is because
the nested version can be mapped into one relation, as will be shown later,
whereas the flattened version maps into two relations. Furthermore, the
conceptual schema diagram shown in Fig. 6(b) holds fewer data values than
that held by the flattened version shown in Fig. 6(a). To illustrate how this
is the case, consider the examples shown in the schema-based diagrams of
Fig. 6. For instance, assume that the worker with "worker-ID 102" worked
an additional two overtime hours on installing hardware as shown in Fig.
6. These data require two rows to represent using the schema shown in Fig.
6(a), with duplicate data ("worker-ID," "task," and "day"). However,
these same data require one row to represent using the schema of Fig. 6(b)
and eliminate the redundancy encountered by the schema of Fig. 6(a). This
issue will be revisited later when both versions are mapped onto the rela
tional model.

But how can one decide whether to use a nested version or a flattened
one? The answer to this question lies in the following general rule: A nested
fact type is used whenever two fact types share all their entity types, and
the uniqueness constraint (discussed in the following) is applied to the same
roles in both fact types; otherwise, the flattened version is preferred (Nijssen
and Halpin 1989). Thus, Fig. 6(b) is ued to model worker hours given by
facts 3, 4, and 5.

Defining Constraints
After the conceptual schema diagram has been developed, the next stage

in the CSDP is to represent the constraints that govern the behavior of the
elementary fact types and entity types on the diagram. Such constraints play
a key role when the conceptual schema is mapped onto a relational data
model. In this section four major constraint types will be described: unique
ness, entity type, and mandatory and optional roles (Nijssen and Halpin
1989). Other constraints can also be represented in NIAM and are described
in detail in Nijssen and Halpin (1989).

Uniqueness Constraint
Uniqueness constraints are needed to control redundancy in a conceptual

schema design. As a rule, no elementary fact may be repeated or used twice,
indicating that fact instances must be unique. An entity type in a fact type
can by itself be unique, meaning that no entity instance for this entity type
is repeated. This results in a column with no duplicate values in the schema-
based diagram. On the other hand, there are cases where no one entity
type by itself is unique, but the combination of some or all of the entity
types across the fact type yields unique fact instances. When an entity type
is unique, it is called a single key, whereas when combined entity types are
unique, they produce a composite key.

In NIAM, uniqueness constraints are represented by double-sided arrows
drawn on the top or bottom side of the role(s) participating in the key. To
illustrate the uniqueness constraint representation, consider the "worker-
hours" fact type shown in the schema-based diagram of Fig. 6(a). In this
figure, no one column is unique in itself, indicating that there are no single
keys for this fact type. Carefully examining this fact type indicates that the
only composite key is the one including the "has worked," "having," "per
forming," and "on" roles that are played by "worker-ID," "status," "task,"

52

and "day" entity types, respectively. Thus, the uniqueness double-arrow
line spans these four roles, as shown in Fig. 7(a).

The uniqueness constraint can also be applied to nested fact types. One
requirement for creating an objectified relationship type is that the unique
ness constraint arrow must span all the roles included in the objectified
relationship. For example, consider the flattened fact type shown in Fig.
5(a) and its nested version shown in Fig. 6(b). The roles "has worked
regular," "performing," and "on" are part of the composite key of the
flattened version of this fact type as shown in Fig. 7(b). When the nesting
mechanism is applied, "activity" enclosed these roles, and the uniqueness
constraint arrow spans all three of them as shown by Fig. 7(c). Note from
Fig. 7(c) how "activity" plays two unique roles—"lasted regular" and "lasted
overtime"—in two separate nested (binary) fact types. Also note how the
role played by the "worker-ID" entity type changed to "performed" and
the "task" entity type is no longer playing an explicit role.

Task x \ / Day •.
(name) J \ _ (date) /

WORKER-HOURS

...hasworked...having...performing...on.,.

REGULAR-HOURS

(a)

(b)

Activity

FIG. 7. Uniqueness Constraint: (a) Worker-Hours Fact Type (Arity of Five); (b)
Flattened Version of Regular Hours and Overtime Hours; (c) Nested Version of
Regular Hours and Overtime Hours

53

Entity Type Constraint
Entity type constraints are used to enforce certain membership types and

ranges of data that an entity type supports. One form of entity type con
straints is called the population set constraint. It is used to indicate the
allowable members for a certain entity type and is represented in NIAM
by listing all possible members between the braces. To understand this form,
consider the conceptual schema shown in Fig. 7(a). Status can only have
two member: "regular" and "overtime." This constraint is represented by
{regular, overtime} and is appended to the conceptual schema diagram to
the side of the "status" entity type as shown in Fig. 8.

A second form of entity type constraints is called the "range" constraint.
This form is used to indicate the allowable range of values supported by
the entity type being considered. It is represented by the brackets with the
range of possible values enclosed. For example, "period" can only have
values in the range between zero and eight hours. This constraint, expressed
as [0..8], is appended to the conceptual schema diagram to the side of the
"period" entity type as shown in Fig. 8.

A third form of entity type constraints is called the character string con
straint. This form is used to impose a length on a character string or to
specify a structure of a character string. It is represented by the angle
brackets enclosing the number of characters allowed by using the en format,
where n = the desired number of characters, or enclosing the desired
structure of the string. For example, instances of "task" can have a maximum
of 20 characters. This is represented by <c20> and is appended to the
conceptual schema diagram to the side of the "task" entity type, as shown
in Fig. 8. As an example of a character structure specification, consider that
the instances of "day" must have the following format: month day, year.
This is expressed by <month day, year> and is appended to the conceptual
schema diagram to the side of the "day" entity type as shown in Fig. 8.

Mandatory and Optional Roles Constraint
Information on an input form may either by mandatory or optional. To

formally specify these types of information in NIAM, the relevant roles arc
marked as either mandatory or optional. A role in a fact type is mandatory
if every member of the population of the entity type attached to the role is
required to play this role; otherwise the role is optional. A mandatory role
is represented on a conceptual schema diagram by adding a bullet at the
point where the arc from the role meets the entity type. If an entity type
plays only one role, this role is mandatory (Nijssen and Halpin 1989).

To illustrate the mandatory role concept, consider the schema-based dia
gram shown in Fig. 3. In this fact type, every member of the population of
"worker" must have a "worker-ID" number. Thus, every member of "worker"

<monthday,year>

FIG. 8. Examples of Entity-Type Constraint

54

is playing the explicit role "has," indicating that this role is mandatory.
Similarly, every member in "worker-ID" plays the implicit "belongs to"
role, indicating that this role is mandatory. Therefore, this fact is shown in
Fig. 9 as having two mandatory role bullets. One thing that should be noted
in Fig. 9 is that the fact type is only a subschema, and subschemas should
not be marked with the mandatory role bullets before considering the overall
schema. The reason for this is that a subschema entity type may appear to
be playing a mandatory role, but when the subschema is merged with other
subschema to form the overall schema, the role may become optional.

To illustrate the optional role concept, consider the following elementary
fact that can be deduced from the input form of Fig. 1: Weather-condition:
Day (date) "June 7, 1992" has weather (condition) "sunny." This fact is
represented by the schema diagram shown in Fig. 10. Since "day" plays
roles in other fact types such as the one shown in Fig. 7, the role played
by "day" in the subschema of Fig. 10 must be considered within the context
of the overall schema. Carefully observing the population of "day" and
having sufficient knowledge about the construction management UOD in
dicate that not every day has a record of weather condition. This conclusion
indicates that "has" played by "day" is optional within the context of "weather-
condition," and this is shown by the single bullet in Fig. 10.

As a final note on the mandatory role constraint, the concept of dis
junction mandatory role constraint is introduced. An entity is said to be
playing a disjunction mandatory role if it plays at least two roles in two
different fact types and every member of the population of the entity type
must be recorded as playing at least one role. The disjunction mandatory
role is represented by a bullet joining the arcs coming from the roles par
ticipating in this constraint as shown in Fig. 11. The figure shows the "ac
tivity" objectified relationship type in the two nested fact types playing a
disjunction mandatory role. This means that the members of activity must
have lasted a regular period, an overtime period, or both.

Other Constraints
The NIAM methodology allows for modeling a number of other constraint

types. For a detailed presentation of these constraints the reader is en
couraged to consult Nijssen and Halpin (1989).

NIAM/RELATIONAL CONCEPTUAL MODEL TRANSFORMATION

Once the conceptual schema diagram is developed and loaded with the
necessary constraints, it becomes ready to be mapped onto any computa-

EMPLOYEE

...has..

FIG. 9. Mandatory Role Constraint Example

FIG. 10. Optional Role Constraint Example

55

Activity

FIG. 11. Disjunction Mandatory Role

tional model. Among the most popular computational data models available
today are the relational, hierarchical, and network models. This section
focuses on mapping the NIAM model onto a relational data model. This is
done using an algorithm, called the optimal normal form (ONF) algorithm.
Discussions of the relational data model and the normalization process are
presented next, followed by a description of the ONF algorithm.

Relational Data Model
The relational data model uses the concept of a relation to represent data

in a two-dimensional tabular format (Date 1986). In other words, a relation
is a table consisting of columns rows. Each column has a domain, which is
the set of possible values that the column can assume. The "worker-ID"
column in the "worker-information" relation shown in Fig. 12, for example,
draws its values from the unique worker identification scheme used by a
company. Each row is accessed by a unique identifier called a key, where
a key can be a single column or a combination of columns (a composite
key). To illustrate these concepts, consider the relations shown in Fig. 12.
"Worker-ID" is a column in the "worker-information" relation, which serves
as a single key for this relation. "Code," "worker-ID," and "date" are
columns in the "worker-hours" relation, which comprise the composite key
for this relation.

The relational data model consists of a collection of interrelated relations
and a set of operators that allow adding, deleting, modifying, and retrieving
data from relations. Relations are linked to each other by using common
columns that associate row(s) of any one relation to one or more rows of
any other relation. To illustrate this, consider the "worker-hours" and the
"worker-information" relations shown in Fig. 12. The "worker-ID," "task,"
and "date" columns in the "worker-hours" relation uniquely identify a row
of this relation, and thus act as a composite key. Similarly, the "worker-
ID" column is a single key for the "worker-information" relation. However,
the "worker-ID" column in the "worker-hours" relation associates each row
of this relation with one row of the "worker-information" relation. A short
hand notation to represent the two relations shown in Fig. 12, with keys
underlined, is given by:

• Worker-information(WorkerlD, Name, Regular Rate, Overtime Rate).
• Worker-hours (WorkerlD, Task, Regular Hours, Overtime Hours, Date).

56

Column

Worker-Information Relation

WorkerlD

101

102

•

Name

D. Callaway

S.Hubert

•

RegularRate

$ 15/hr

$15/hr

;

OvertimeRate

$20/hr

$20/hr

*

Worker-Hours Relation

WorkerlD

101

102

102

Task

hang doors

install hardware

unload material

RegularHours

8

e

OvertimeHours

2

2

Date

June 7,1992
June 7,1992
June 7,1992

** ** **

* single key
* * composite key

FIG. 12. Two Example Relations

Normalization
Normalization is a method used by relational data model designers to

design a good data-base schema. This means creating data-base tables that
eliminate redundancies in the stored data and protect the data-base from
insertion and deletion anomalies (problems), thus preserving its correctness
and its integrity (Date 1986; Schaefer 1984). When changes are made in a
well-designed data base, errors will not occur and meaning will not be lost.
Normalization is the process of decomposing large tables into smaller ones
that are free of anomalies. The process is initiated by developing one large
table of a "poor" design. Then, a set of rules is applied to enhance the table
design, breaking it into smaller ones. These rules transform the poor design
into six consecutive refined designs, each of which reduces the number of
anomalies associated with the previous design. A measure or classification
of these designs is referred to as their normal form. The designs are referred
to as being in first normal form (INF), second normal form (2NF), third
normal form (3NF), Boyce/Codd normal form (BCNF), fourth normal form
(4NF), and fifth normal form (5NF) (Date 1986). The objective of data
base schema design is to achieve the highest normal form possible. The
NIAM methodology and its optimal normal form (ONF) algorithm guar
antee a 5NF relational data-base schema.

Optimal Normal Form (ONF) Algorithm
This section introduces and describes an algorithm to map the NIAM

conceptual schema onto a relational schema. The algorithm, named the
optimal normal form (ONF), produces a relational schema in 5NF.

57

The ONF algorithm consists of three major steps which are summarized
in the following (Nijssen and Halpin 1989): (1) A separate relation is created
for each NIAM fact type that has no single key. The shortest key is selected
as the key for the relation; (2) fact types that share a common entity type
and have single keys based on the common entity type are grouped into
one relation. The key is selected based on this common entity type; and (3)
a separate relation is created for every remaining fact type, and a key is
selected for every relation. Moreover, objectified relationship types in nested
fact types are treated as normal entity types. However, any relation created
based on an objectified relationship type must have columns related to the
entity types included in that objectified relationship type. Then, once the
relations are defined, the primary keys are underlined and optional columns
are marked by the symbol "OP." The use of the ONF algorithm to transform
a conceptual schema diagram into a 5NF relational data base is illustrated
in detail in a later section. Examples from the construction management
UOD can be found in the next section.

NIAM/RELATIONAL SCHEMA MODELING EXAMPLE

This section presents a complete NIAM conceptual model for the con
struction data entry form that- is shown in Fig. 1 and mentioned in various
sections of this paper. First, it provides a significant fact list that covers all
the fact types needed to model the form. Secondly, it presents a NIAM
conceptual schema diagram. Finally, it maps the NIAM conceptual schema
diagram onto a relational data model using the ONF algorithm.

Elementary Facts
Using the notations discussed previously, a significant elementary fact list

is presented in the following. These facts are either the ones noted earlier
as examples for the different concepts introduced by this paper, or new facts
that are introduced to complete the model of the input form. Facts that
were discussed earlier are duplicated here to provide a complete example:

1. Employee: Worker (name) "D. Callaway" has worker-ID (number) 101.
2. Employee: Worker (name) "S. Hubert" has worker-ID (number) 102.
3. Regular-rate: Worker (name) "D. Callaway" has regular rate amount (dollars) 15.
4. Regular-rate: Worker (name) "S. Hubert" has regular rate amount (dollars) 15.
5. Overtime-rate: Worker (name) "D. Callaway" has overtime rate amount (dollars)

20.
6. Overtime-rate: Worker (name) "S. Hubert" has overtime rate amount (dollars) 20.
7. Regular-hours: Worker-ID (number) 101 performed task (name) "hang doors" on

day (date) "June 7, 1992." This activity lasted regular period (hours) 8.
8. Regular-hours: Worker-ID (number) 102 performed task (name) "install hardware"

on day (date) "June 7, 1992." This activity lasted regular period (hours) 8.
9. Overtime-hours: Worker-ID (number) 102 performed task (name) "unload mate

rial" on day (date) "June 7, 1992." This activity lasted overtime period (hours) 2.
10. Materials: Worker-ID (number) 101 used material (code) "M10" in amount of

quantity (number) 12 for task (name) "hang doors" on day (date) "June 7, 1992."
11. Materials: Worker-ID (number) 102 used material (code) "M20" in amount of

quantity (number) 100 for task (name) "install hardware" on day (date) "June 7, 1992."
12. Material-catalog: Material (code) "M10" has description (text) "wooden doors."
13. Material-catalog: Material (code) "M20" has description (text) "steel wires."
14. Material-units: Material (code) "M10" has units (unit) "count."
15. Material-units: Material (code) "M20" has units (unit) "linear feet (ft)."
16. Equipment-hours: Equipment (code) "E10" operated period (hours) 2 for task

(name) "hang doors" on day (date) "June 7, 1992."

58

17. Equipment-catalog: Equipment (code) "E10" has description (text) "small crane."
18. Weather-condition: Day (date) "June 7, 1992" has weather (condition) "sunny."
19. Temperature: Day (date) "June 7, 1992" has temperature (degrees F) 80.
20. Responsible-foreman: Foreman (name) "D. Egan" filled form on day (date) "June

7, 1992."

From this list one can observe that 13 fact types are created to convey the
information recorded in the form. These fact types are "employee,"
"regular-hours," "overtime-hours," "regular-rate," "overtime-rate," "ma
terials," "material-catalog," "material-units," "equipment-hours," "equip
ment-catalog," "weather-condition," "temperature," and "responsible-
foreman." Note that "material-catalog" is not explicitly observed from the
input form. However, material coding is a common practice in the construc
tion management UOD, and thus this embedded knowledge is used to
develop "material-catalog."

NIAM Conceptual Schema
Fig. 13 shows the complete NIAM conceptual schema diagram for the

input form of Fig. 1. This diagram, representing each fact type mentioned
in the previous section, was developed in three steps. The conceptual schema
diagram was first developed without considering any constraints. Then,

<c20>

j ~ | •••has... | 6: MATERIAL-CATALOG
< >..« >. 7: MATERIAL-UNITS

8: EMPLOYEE
9: REGULAR-RATE
10: OVERTIME-RATE
11: EQUIPMENT-CATALOG
12: REGULAR-HOURS
13: OVERTIME-HOURS

FIG. 13. NIAM Conceptual Schema Diagram for Input Form of Fig. 1

59

uniqueness constraints were added. Finally, mandatory and optional roles
were identified and marked on the figure.

From Fig. 13, one can observe nine binary fact types, one fact type with
arity of four, one fact type-with arity of five, and two nested fact types. The
binary fact types are "employee," "regular-rate," "overtime-rate," "weather-
condition," "temperature," "material-catalog," "material-units," "equip
ment-catalog," and "responsible-foreman." In these binary facts, three have
two single keys and four have one single key. "Equipment-hours" has an
arity of four and a composite key of length to three. "Materials" has a arity
of five and a composite key of length four. The two nested fact types are
"regular-hours" and "overtime-hours." They share one objectified rela
tionship type ("activity") that encloses three roles spanned by the unique
ness constraint. Note that each nested fact type has one single key associated
with "activity."

Relational Data Model
Mapping the conceptual schema diagram of Fig. 13 onto a relational data

model requires that the three steps of the ONF algorithm be completed
sequentially. It is absolutely necessary to make the transformation from a
conceptual schema diagram to a relational model. It is not possible to trans
form from facts to tables, but rather the tables are derived from the con
ceptual schema diagram. The mapping to the relational models will be
considered in the sequence suggested by the ONF algorithm. The following
subsections detail the mapping process.

Step One of ONF Algorithm
Step one of the ONF algorithm states that a separate relation is created

for each NIAM fact type that has no single key. Thus, because "materials"
and "equipment-hours" fact types on Fig. 13 (numbers 1 and 2) do not have
single keys, each one of them is mapped onto a separate relation. The two
relations corresponding to these fact types are named as their fact types.
Thus, the two relations are: Materials(MaterialCode, WorkerlD, Task, Day,
Quantity); and Equipment-Hours(EquipmentCode, Task, Day, Period). Note
that MaterialCode, WorkerlD, Task, and Day are selected as the composite
key for Materials relation. Similarly, EquipmentCode, Task, and Day form
the composite key for Equipment-Hours relation.

No additional fact types can be processed by step one of the algorithm;
thus step one is completed and step two can begin.

Step Two of ONF Algorithm
Step two of the ONF algorithm states that fact types that share a common

entity type and have single keys based on the common entity type are
grouped into one relation. Thus, consider the three binary fact types,
"responsible-foreman," "weather-condition," and "temperature," from Fig.
13 (numbers 3, 4, and 5). They are attached to the "day" entity type and
satisfy the conditions listed. Therefore, these three fact types are grouped
together and mapped onto one relation. This relation is named "daily-
information" and is given by: Daily-Information(Day, ForemanNainc,
WeatherCondition OP, Temperature OP). Note that "weather-condition"
and "temperature" columns include an optional marker (OP) since "day"
plays an optional role in their corresponding fact types. In other words,
weather conditions and temperature information are not necessarily re
corded daily. "Day" is selected as the single key for this relation.

60

Other fact types in Fig. 13 that are grouped into one relation are the
following: "material-catalog" and "material-units" (numbers 6 and 7), and
"employee," "regular-rate," and "overtime-rate" (numbers 8, 9, and 10).
The resulting relations are named "material-information" and "worker-
information," which are written as: Material-information(MaterialCode,
Description, Units); and Worker-information(WorkerID, Name,
RegularRate, Overtime-rate). "MaterialCode" and "WorkerlD" are se
lected as the single keys for the "material-information" and "worker-in
formation" relations, respectively. Note that "description" is also a common
entity type between "material-catalog" and "equipment-catalog." Descrip
tion plays optional roles in both fact types. "Material-catalog" is grouped
at the "material" side rather than at the "description" side because "ma
terial" plays a mandatory role in "material-catalog." This causes it to be
grouped with "material-units" rather than with "equipment-catalog." Such
grouping decisions should always be exercised when performing step two
of the ONF algorithm (Nijssen and Halpin 1989).

No additional fact types can be processed by step two of the algorithm;
thus step two is completed and step three can begin.

Step Three of ONF Algorithm
Step three of the ONF algorithm states that a separate relation is created

for every remaining fact type. Thus, consider all remaining fact types shown
in Fig. 13. A separate relation is created for each fact type. Therefore, an
Equipment-Information relation is created for the "equipment-catalog" fact
type (number 11 in Fig. 13). The resulting relation is given by: Equipment-
Information(EquipmentCode, Description). Next, consider the two nested
fact types "regular-hours" and "overtime-hours" in Fig. 13 (numbers 12
and 13). As mentioned earlier, the nesting approach to modeling this fact
type is better than the fact type shown in Fig. 6(a). To understand why this
is the case, refer to the two relations shown in the following, which are the
relational equivalents to the fact type of Fig. 6(a) and the two nested fact
types of Fig. 6(b), respectively: Worker-hours(WorkerlD, Task, Date, Pe
riod, Status); and Worker-hours(WorkerlD, Task, Day, RegularHours,
OvertimeHours). Now, assume that a worker with "worker-ID 103" worked
eight regular hours and two overtime hours on a "concrete pouring" task
on "June 7, 1992." Populating this information requires two rows in the
first relation with duplicate data in "worker-ID," "task," and "day" col
umns. However, this same information requires only one row in the second
relation. Therefore, the second relation is obviously a better representation.
Note that in the second relation, one or both "regular hours" and "overtime
hours" columns must be recorded. This is obvious from the disjunction
mandatory role played by "activity" in the two nested fact types shown in
Fig. 13. This means that at any one time, "regular hours" or "overtime
hours" can be optional, but not both.

No additional fact types can be processed by step three; thus step three
is completed. The design of the data base is completed.

SUMMARY AND CONCLUSIONS

The underlying thesis of this paper is that a formal approach to conceptual
data modeling is essential in engineering. The paper presented one such
formal, conceptual data-modeling methodology called NIAM. The NIAM
methodology adopts the data-oriented approach to modeling for engineering

61

data-base design. NIAM data models are independent of any computational
data models and can be mapped onto any one of them. This paper empha
sized mapping to the relational data model using the "optimal normal form"
algorithm because of the relational model's standardized and widely ac
cepted data storage and retrieval mechanisms and because of its increasing
use in engineering applications. The ONF algorithm, which produces 5NF
relational models, was used to develop and map an example of a NIAM
data model. This example was taken from the construction management
UOD.

NIAM should play a key role in future engineering data-base design
because of its simple and natural-language approach to data and semantic
modeling. Additionally, its graphical flavor lends itself to the engineering
drawings format that engineers are used to developing. Furthermore, NIAM
guarantees uniformity in data-base schema design and generation, and si
multaneously ensures a high degree of data-base integrity (producing 5NF
relational models), thus contributing effectively to standardization efforts
with respect to the development and implementation of engineering data
bases on an industry-wide basis, as well as with respect to data exchange.

ACKNOWLEDGMENTS

This work was sponsored by the National Science Foundation under Grant
MSM-8451465, a Presidential Young Investigator Award. The support of
the NSF is gratefully acknowledged. The writers would also like to ac
knowledge the R. S. Means Company for their permission to reproduce
their form for publication in this paper.

APPENDIX. REFERENCES

Date, C. J. (1986). An introduction to database systems. 1, The Systems Programming
Series, Addison-Wesley Systems Programming Series, Reading, Mass.

Eaton, D. (1990). "Enhancing a relational database: Stepwise, bottom-up design."
Proc. 1990 North American INGRESS Users Association Conf., 1.

Finkelstein, R. (1989). "Database design with NIAM." Database Programming De
sign Mag., 15-16.

Mean forms for building construction professionals. (1986). R. S. Means Co., Kings
ton, Mass.

Nijssen, G. M., and Halpin, T. A. (1989). Conceptual schema and relational database
design: A fact-oriented approach. Prentice-Hall, Englewood Cliffs, N.J.

"Conceptual design and building of relational databases." (1988). Oracle Mag., 2(2),
65-69.

Rasdorf, W. J. (1987). "Extending database management systems for engineering
applications." Comput. Mech. Engrg., 5(5), 62-69.

Raymond, L. (1987). "Information systems design for project management: A data
modeling approach." Proj. Mgmt. J., 18(4), 94-99.

Schaefer, M. J., Rehak, D R., and Fenves, S. J. (1984). "Introduction to relational
databases using structural engineering examples." J. Tech. Topics Civ. Engrg.,
ASCE, 110(1), 1-18.

Sharp, J. K. (1990). "Information engineering: Sandia's computer integrated man
ufacturing (CIM) databases." Proc. 1990 ASME Int. Computers in Engineering
Conf. and Exposition, American Society of Mechanical Engineers (ASME), Bos
ton, Mass. 93-99.

Stevens, N. H. (1989). "NIAM in relational modeling." Database Programming
Design Mag., 11-15.

62

