
Data modeling in UML and ORM: a comparison 1

Data modeling in UML and ORM: a comparison

Dr. Terry Halpin and Dr. Anthony Bloesch

Visio Corporation

This paper first appeared in the Journal of Database Management, vol. 10, no. 4 (Oct-Dec., 1999), Idea
Group Publishing, Hershey PA, USA, pp. 4-13. (http://www.idea-group.com).

The Unified Modeling Language (UML) is becoming widely used for software and

database modeling, and has been accepted by the Object Management Group as a standard

language for object-oriented analysis and design. For data modeling purposes, UML

includes class diagrams, that may be annotated with expressions in a textual constraint

language. Although facilitating the transition to object-oriented code, UML’s

implementation concerns render it less suitable for developing and validating a conceptual

model with domain experts. This defect can be remedied by using a fact-oriented approach

for the conceptual modeling, from which UML class diagrams may be derived. Object-

Role Modeling (ORM) is currently the most popular fact-oriented approach to data

modeling. This paper examines the relative strengths and weaknesses of ORM and UML

for data modeling, and indicates how models in one notation can be translated into the

other.

Introduction

The syntax The Unified Modeling Language (UML) is gaining popularity, and has been

adopted by the Object Management Group as a standard for object-oriented (OO)

modeling [24]. Much of UML has a programming flavor, with many constructs designed

to assist developers of object-oriented code. The UML notation includes Use case

diagrams, Static Structure diagrams (Class diagram, Object diagram), Behavior diagrams

(Statechart diagram, Activity diagram), Interaction diagrams (Sequence diagram,

Collaboration diagram), and Implementation diagrams (Component diagram,

Deployment diagram). Since this paper focuses on conceptual data modeling, we restrict

our discussion of UML to its class and object diagrams, as supplemented by textual

annotations. Some empirical studies indicate that Entity Relationship (ER) schemas are

often more correct and easier to develop than corresponding OO schemas [25]. There are

many OO approaches however, and UML may be used for analysis by ignoring its

implementation features. When used purely for analysis, UML class diagrams provide an

extended ER notation.

UML’s object-oriented approach facilitates the transition to object-oriented code. As

shown later however, UML can make it awkward to capture and validate data concepts

Data modeling in UML and ORM: a comparison 2

and business rules with domain experts, and to cater for structural changes in the

application. These problems can be remedied by using a fact-oriented approach where

communication takes place in simple sentences, each sentence type can easily be

populated with multiple instances, and attributes are eschewed in the base model. Object

Role Modeling (ORM) is a fact-oriented approach that harmonizes well with UML, since

both approaches provide direct support for roles, n-ary associations and objectified

associations. ORM pictures the world simply in terms of objects (entities or values) that

play roles (parts in relationships). For example, you are now playing the role of reading,

and this paper is playing the role of being read. Overviews of ORM may be found in [13,

14, 15] and a detailed treatment in [12].

The following section discusses criteria for evaluating the suitability of a conceptual

modeling language. These design principles are then used to examine the relative

strengths and weaknesses of UML and ORM for data modeling, focusing first on the data

structures, and then moving on to constraints, outlining how models in one notation can

be translated into the other. We then evaluate textual language support for constraints,

derivation rules and queries. The conclusion summarizes the main points and identifies

topics for future research.

Conceptual modeling language criteria

A modeling method comprises both a language and a procedure to guide modelers in

using the language to construct models. A language has associated syntax (marks),

semantics (meaning) and pragmatics (use). Written languages may be graphical

(diagrams) and/ or textual. The terms “abstract syntax” and “ concrete syntax” are

sometimes used to distinguish underlying concepts (e.g. class) from their representation

(e.g. named rectangle). Conceptual modeling portrays the application domain at a high

level, using terms and concepts familiar to the application users, ignoring logical and

physical level aspects (e.g. the underlying database or programming structures used for

implementation) and external level aspects (e.g. what screen forms will be used for data

entry). The following criteria drawn from various sources [e.g. 4, 19, 20, 22] provide a

basis for evaluating conceptual modeling languages.

• Expressibility

• Clarity

• Semantic stability

• Semantic relevance

• Validation mechanisms

• Abstraction mechanisms

• Formal foundation

The expressibility of a language is a measure of what it can be used to say. Ideally, a

conceptual language should be able to completely model all details about the application

domain that are conceptually relevant. This is called the 100% Principle [22]. ORM is a

method for modeling and querying an information system at the conceptual level, and for

Data modeling in UML and ORM: a comparison 3

mapping between conceptual and logical levels. Although various ORM extensions have

been proposed for object-orientation and dynamic modeling [e.g. 1, 7, 21], the focus of

ORM is on data modeling, since the data perspective is more stable and it provides a

formal foundation on which operations can be defined. In this sense, UML is generally

more expressive than standard ORM, since its use case, behavior and implementation

diagrams model aspects beyond static structures. An evaluation of such additional

modeling capabilities of UML and ORM extensions is beyond the scope of this paper. We

show later that ORM diagrams are graphically more expressive than UML class diagrams.

The clarity of a language is a measure of how easy it is to understand and use. To

begin with, the language should be unambiguous. Ideally, the meaning of diagrams or

textual expressions in the language should be intuitively obvious. At a minimum, the

language concepts and notations should be easily learnt and remembered. Semantic

stability is a measure of how well models or queries expressed in the language retain their

original intent in the face of changes to the application. The more changes one is forced to

make to a model or query to cope with an application change, the less stable it is.

Semantic relevance requires that only conceptually relevant details need be modeled. Any

aspect irrelevant to the meaning (e.g. implementation choices, machine efficiency) should

be avoided. This is called the conceptualization principle [22].

Validation mechanisms are ways in which domain experts can check whether the

model matches the application. For example, static features of a model may be checked by

verbalization and multiple instantiation, and dynamic features may be checked by

simulation. Abstraction mechanisms allow unwanted details to be removed from

immediate consideration. This is very important with large models (e.g. wall-size schema

diagrams). ORM diagrams tend to be more detailed and larger than corresponding UML

models, so abstraction mechanisms are often used. For example, a global schema may be

modularized into various scopes or views based on span or perspective (e.g. a single page

of a data model, or a single page of an activity model). Successive refinement may be

used to decompose higher level views into more detailed views. Tools can provide

additional support (e.g. feature toggles, layering, and object zoom). Such mechanisms can

be used to hide and show just that part of the model relevant to a user’s immediate needs

[12, 6]. With minor variations, these techniques can be applied to both ORM and UML.

ORM also includes an attribute abstraction procedure to generate an ER diagram as a

view.

A formal foundation is needed to ensure unambiguity and executability (e.g. to automate

the storage, verification, transformation and simulation of models), and allow formal

proofs of equivalence and implication between alternative models [17]. Although ORM’s

richer, graphical constraint notation provides a more complete diagrammatic treatment of

schema transformations, use of textual constraint languages can partly offset this

advantage. For their data modeling constructs, both UML and ORM have an adequate

formal foundation. Since ORM and UML are roughly comparable with regard to

abstraction mechanisms and formal foundations, our following evaluation focuses on the

criteria of expressibility, clarity, stability, relevance and validation.

Data modeling in UML and ORM: a comparison 4

Data structures

Table 1 summarizes the main correspondences between conceptual data modeling

concepts in ORM and UML. In this section we consider the left half of the table. In UML

and ORM, objects and data values are both instances. Each object is a member of at least

one type, known as class in UML and an object type in ORM. ORM classifies objects into

entities (UML objects) and values (UML data values—constants such as character strings

or numbers).

In UML, entities are identified by oids, but in ORM they must have a reference

scheme for human communication (e.g. employees might be referenced by social security

numbers). UML classes must have a name, and may also have attributes, operations

(implemented as methods) and play roles. ORM object types must have a name and play

roles. Since our focus is on the data perspective, we avoid any detailed discussion of

operations, except to note that some of these may be handled in ORM as derived

relationship types. A relationship instance in ORM is called a link in UML (e.g. Employee

101 works for Company ‘Visio’). A relationship type in ORM is called an association in

UML (e.g. Employee works for Company). Object types in ORM are depicted as named

ellipses, and simple reference schemes may be abbreviated in parentheses below the type

name. Classes in UML are depicted as named rectangles to which attributes and

operations may be added.

Table 1 Basic correspondence between ORM and UML conceptual concepts for data models

Data instances/structures Constraints

ORM UML ORM UML

Entity Object Internal uniqueness Multiplicity of ..1 §

Value Data value External uniqueness — { use qualified assoc. § }

Object Object or Data value Simple mandatory role Multiplicity of 1..

Entity type Class Disjunctive Mandatory role —

Value type Data type Frequency: internal; external Multiplicity §; —

Object type Class or Data type Value Enumeration, and textual

— { use relationship type } Attribute Subset and Equality Subset §

Unary relationship type — { use Boolean attribute } Exclusion Or-constraint §

2+-ary relationship type Association Subtype link and definition Subclass discriminator etc. §

2+-ary relationship instance Link Ring constraints —

Nested object type Association class Join constraints —

Co-reference Qualified association § Object cardinality Class multiplicity

— { use unique and mand. §} Aggregation/composition

— Defaults/changeability

Textual constraints Textual constraints

§ = incomplete coverage of corresponding concept

Data modeling in UML and ORM: a comparison 5

Apart from object types, the only data structure in ORM is the relationship type. In

particular, attributes are not used at all in base ORM. This is a fundamental difference

between ORM and UML (and ER for that matter). Wherever an attribute is used in UML,

ORM uses a relationship instead. The advantages of this are not fully recognized, despite

debates in the past over the issue [e.g. 9]. Firstly, attribute-free models and queries are

more stable, because they are free of changes caused by attributes evolving into other

constructs (e.g. associations), or vice versa. For example, suppose we model car as an

attribute of Employee. If we later decide that employees may drive many cars, we need to

replace this attribute by an association (Employee drives Car) or a multi-valued attribute

(cars). If we decide to record data about cars (e.g. carmodel) a Car class must be

introduced. If attributes are replaced, queries and constraints based on them also need

replacing. Since we can’t be sure about our future modeling needs, use of attributes in the

base model decreases semantic stability.

An ORM model is essentially a connected network of object types and relationship

types. The object types are the semantic domains that glue things together, and are always

visible. This connectedness reveals relevant detail and enables ORM models to be queried

directly, traversing through object types to perform conceptual joins [5]. In addition,

attribute-free models are easy to populate with multiple instances, facilitate verbalization

(in sentences), are simpler and more uniform, avoid arbitrary modeling decisions, and

facilitate constraint specification (see later).

Attributes however have two advantages: they often lead to a more compact diagram,

and they can simplify arithmetic derivation rules (see later). For this reason, ORM

includes algorithms for dynamically generating attribute-based diagrams as views [6, 12].

These algorithms assign different levels of importance to object types depending on their

current roles and constraints, redisplaying minor fact types as attributes of the major

object types. Elementary facts are the fundamental conceptual units of information, are

uniformly represented as relationships, and how they are grouped into structures is not a

conceptual issue. Apart from standard ORM, the OSM modeling method also rejects the

use of attributes because of their inherent instability [8].

ORM allows relationships of any arity (number of roles), each with at least one

reading or predicate name. An n-ary relationship may have up to n readings (one starting

at each role), to more naturally verbalize constraints and navigation paths in any

direction. ORM also allows role names to be added. A predicate is an elementary sentence

with holes in it for object terms. These object holes may appear at any position in the

predicate (mixfix notation), and are denoted by an ellipsis “…” if the predicate is not infix-

binary. In support of our clarity criterion, mixfix notation enables natural verbalization of

sentences in any language (e.g. in Japanese, verbs come at the end of sentences). ORM

includes procedures to assist in the creation and transformation of models. A key step in

its design procedure is the verbalization of relevant information examples, such as sample

reports expected from the system. These “data use cases” are in the spirit of UML use

cases, except the focus is on the underlying data.

ORM sentence types (and constraints) may be specified either textually or graphically.

Both are formal, and can be automatically transformed into the other. In an ORM

diagram, roles appear as boxes, connected by a line to their object type. A predicate

Data modeling in UML and ORM: a comparison 6

appears as a named, contiguous sequence of role boxes. Since these boxes are set out in a

line, fact types may be conveniently populated with tables holding multiple fact instances,

one column for each role. This allows all fact types and constraints to be validated by

verbalization as well as sample populations. Communication between modeler and

domain expert takes place in a familiar language, backed up by population checks.

UML uses Boolean attributes instead of unary relationships, but allows relationships

of all other arities. Each association may be given at most one name. Binary associations

are depicted as lines between classes, with higher arity associations depicted as a

diamond connected by lines to the classes. Roles are simply association ends, but may

optionally be named. Verbalization into sentences is possible only for infix binaries, and

then only by naming the association with a predicate name (e.g. “ employs”) and using an

optional marker “�” to denote the direction. Since roles for ternaries and higher arity

associations are not on the same line, directional verbalization is ruled out. This non-linear

layout also makes it impractical to conveniently populate associations with multiple

instances. Add to this the impracticality of displaying multiple populations of attributes,

and it is clear that class diagrams do not facilitate population checks (e.g. see later

discussion of Figure 3 and Figure 4). UML does provide object diagrams for instantiation,

but these are convenient only for populating with a single instance. Hence, “ the use of

object diagrams is fairly limited” ([24]). We conclude that ORM surpasses UML on the

validation mechanism criterion.

Both UML and ORM allow associations to be objectified as first class object types,

called association classes in UML and nested object types in ORM. UML requires the same

name to be used for the association and the association class, impeding natural

verbalization, in contrast to ORM nesting based on linguistic nominalization (a verb

phrase is objectified by a noun phrase). UML allows objectification of n:1 associations.

Currently ORM forbids this except for 1:1 cases, since attached roles are typically best

viewed as played by the object type on the “many” end of the association [11]. However,

ORM could be relaxed to allow this, with its mapping algorithms adding a pre-processing

step to re-attach roles and adjust constraints internally. In spite of identifying association

classes with their underlying association, UML displays them separately, making the

connection by a dashed line. In contrast, ORM intuitively envelops the association with an

object type frame (see Figure 1).

Figure 1: Writing is depicted as an objectified association in UML and ORM

Writing

period [0..1]

Person
(name)

Paper
(nr)

wrote

"Writing !"

Period
(days)+

took

personName {P}

Person Paper

paperNr {P}

1..

author

UML ORM

Data modeling in UML and ORM: a comparison 7

Constraints

In Figure 1, the UML diagram includes multiplicity constraints on the association roles.

The “1..*” indicates that each paper is written by one or more persons. In ORM this is

captured as a mandatory role constraint, represented graphically by a black dot.

VisioModeler, a popular ORM tool, allows this constraint to be entered graphically, or by

answering a multiplicity question, or by induction from a sample population, and can

automatically verbalize the constraint. If the inverse predicate “ is written by” has been

entered (its display may be suppressed for tidiness, as in Figure 1), VisioModeler

verbalizes the constraint as “ each Paper is written by at least one Person” .

In UML the “ *” on the right hand role indicates that each person wrote zero or more

papers. In ORM the lack of a mandatory role constraint on the left role indicates it is

optional (a person might write no papers), and the arrow-tipped line spanning the

predicate is a uniqueness constraint indicating the association is many:many (when the

fact table is populated, each whole row is unique). A uniqueness constraint on a single

role means that entries in that column of the associated fact table must be unique. Figure 2

summarizes the equivalent constraint notations for binary associations, read from left to

right. The third case (m:n optional) is the weakest constraint pattern. Though not shown

here, 1:n cases are the reverse of the n:1 cases, and 1:1 cases combine the n:1 and 1:n cases.

Figure 2: Some equivalent representations in UML and ORM

An internal constraint applies to roles in a single association. For an n-ary association,

each internal uniqueness constraint must span at least n-1 roles. Unlike many ER

notations, UML and ORM can express all possible internal uniqueness constraints. For

example, Figure 3 is a UML diagram that includes a ternary association (Usage) in which

both Room-Time and Time-Activity pairs are unique. This schema also includes a textual

constraint written informally as note attached by dashed lines to the three associations

involved in the constraint. A textual constraint is needed here since UML provides no

graphical way of capturing the constraint. UML does allow the constraint to be captured

A BA B
n:1
both roles
optional

0..1*

A BA B
n:1
first role

mandatory

1..*

*

A BA B*

A BA B*

1

m:n
both roles
optional

*

m:n
first role
mandatory

UML ORM

Data modeling in UML and ORM: a comparison 8

formally in OCL, but the syntax of OCL is too mathematical for it to be used to validate

rules with subject matter experts who typically have little technical background.

Figure 3: Multiplicity constraints on a ternary in UML, and a textual constraint declared in a note

An ORM depiction of the same situation is shown in Figure 4, along with sample

populations. The dotted arrow is a join-subset constraint (see later) that formally captures

the textual constraint shown in the UML version. Note how useful populations are for

checking the constraints. For example, the data clearly illustrate the uniqueness

constraints. If Time-Activity is not really unique, this can be shown by adding a

counterexample. If UML object diagrams were used to show these populations, the

constraint patterns would be far harder to see, since each instance of each class and

association would be shown separately (checking even the simple 1:1 constraint between

facility codes and names requires inspecting three facility objects). Although in principle,

ORM-like fact tables could be used with UML associations, relating association-roles to

the relevant fact columns would often be awkward.

Multiplicity constraints in UML may specify any range of occurrence frequencies (e.g.

1, 3..7) but each is applied to a single role (for n-aries, the range indicates what is possible

when the other n-1 classes have a fixed value). ORM allows the same ranges, but

partitions the multiplicity concept into the orthogonal notions of mandatory role and

frequency constraints. This useful separation localizes global impact to just the

mandatory role constraint (e.g. every population instance of an object type A must play

every mandatory role of A). Because of its non-local impact, modelers should omit this

constraint unless it is really needed (as in Figure 1). ORM frequency constraints apply

only to populations of the constrained roles (e.g. if an instance plays that role, it does so

the specified number of times) and hence have only local impact. Frequency constraints in

ORM are depicted as number ranges next to the relevant roles. For example, to add the

constraint that papers must be reviewed by at least 2 people, we add the mark “≥2” beside

the first role of Paper is reviewed by Person. Uniqueness constraints are just frequency

constraints with a frequency of 1, but have a special notation because of their importance.

Room

roomNr {P}

Time

dhCode {P}

Activity

activityName {P}

*

0..1 0..1

Usage

Facility

facilityCode {P}

*

* *

*

Provides Requires

if a Room at a Time is used for an
Activity that requires a Facility then
that Room provides that Facility

Data modeling in UML and ORM: a comparison 9

Figure 4: An ORM diagram with sample populations

Attribute multiplicity constraints in UML are placed in square brackets after the

attribute name (e.g. Figure 1). If no such constraint is specified, the attribute is assumed to

be single-valued and mandatory. Multi-valued attributes are arguably an implementation

concern. Mandatory role constraints in ORM may apply to a disjunction of roles, e.g. each

academic is either tenured or contracted till some date. UML cannot express disjunctive

mandatory role constraints graphically. Perhaps influenced by oids, UML omits a

standard notation for attribute uniqueness constraints (candidate keys). It suggests that

boldface might be used for this (or other purposes) as a tool extension. Another

alternative is to annotate unique attributes with comments (e.g. {P} for primary reference,

{U1} etc.).

Frequency and uniqueness constraints in ORM may apply to a sequence of any

number of roles from any number of predicates. This goes far beyond the graphical

expressibility of UML. For example, consider the m:n fact type Account(nr) is used by

Client(nr) and the n:1 fact type Account(nr) has AccountType(code), and add the

uniqueness constraint that for any given account type, each client has at most one account

[12, p. 407]. ORM constraints that span different predicates are called external constraints.

Only a few of these can be graphically expressed in UML. For example, subset and

equality constraints in ORM may be expressed between two compatible role-sequences,

where each sequence is formed by projection from possibly many connected predicates.

Figure 5 includes two simple examples: students have second names only if they have

first names, and may pass tests in a course only if they enrolled in that course. ORM

visually distinguishes value types from entity types by using dashed-ellipses (e.g.

Surname, FirstName and SecondName).

Room
(nr)

Time

(dh)

Activity
(name)

20 Mon 9am VM class
20 Tue 2pm VM class
33 Tue 2pm AQ demo
33 Wed 3pm VM class
33 Fri 5pm Party

... at ... is used for ...

Facility
(code)

provides requires

10 PA
20 DP
33 DP
33 INT
33 PA

DP VM class
DP AQ demo
INT AQ demo

is in

FacilityNamehas refers to

DP Data projection unit
INT Internet access
PA Public Address system

Data modeling in UML and ORM: a comparison 10

Figure 5 Subset constraints in ORM

UML is capable of diagramming only basic subset constraints between binary

associations, e.g. in Figure 6, a person who chairs a committee must be a member of it.

UML omits a notation for diagramming subset constraints between parts of associations

(as in Figure 5), and this inability to project on the relevant roles invites modeling errors

(e.g. [0], p. 68). However, as the right half of Figure 6 illustrates, it is possible to capture

ORM subset constraints in UML by adding a textual constraint or sometimes by applying

a model transformation (e.g. remodel a ternary using an association class)

Figure 6 Specifying subset constraints in UML directly or by other means

The dotted arrow in Figure 4 expressed the following join-subset constraint: if a Room

at a Time is used for an Activity that requires a Facility then that Room provides that

Facility. If we need to record the title and sex of each employee, we should also include a

populated relationship type indicating which titles determine which sex (e.g. “Mrs” ,

“Miss” , “Ms” and “Lady” apply only to the female sex). In ORM this is easily visualized

as a join-subset constraint (see Figure 7) and verbalized (if Person1 has a Title that

determines Sex1 then Person1 is of Sex1). If we instead model title and sex as attributes,

this rule cannot be diagrammed. In ORM a value constraint restricts the population of a

value type, and is indicated in braces. In UML, such constraints may be declared as

enumerations or as textual constraints (e.g. see the Sexcode constraint in Figure 7).

Student
(nr)

Surname

FirstName

SecondName

Course
(code)

Test

(nr)

... on ... passed ...

has

has

has

enrolled in

Person

personName {P}

Committee

cteeName {P}

Member-of

*

* *
{subset}

Chair-of1

Student

studentNr {P}

surname
firstName [0..1]
secondName [0..1]

Course

courseCode {P}* *

Enrollment

testNr {P}

TestPassed �

* *

{Student.firstName is not null
 or
 Student.secondName is null}

Data modeling in UML and ORM: a comparison 11

Figure 7 ORM makes it easy to capture the constraint between title and sex

ORM allows exclusion constraints over a set of compatible role-sequences, by

connecting “ ⊗ ” by dotted lines to the relevant role-sequences. For example, given the

associations Person wrote Paper and Person reviewed Paper, consider the two exclusion

constraints: no person wrote and reviewed; no person wrote and reviewed the same

paper. ORM distinguishes these cases by noting the precise arguments of the constraint. If

a set of roles is both exclusive and disjunctively mandatory, ORM specifies this by

combining an exclusion and disjunctive-mandatory constraint. This “ exclusive or” case is

captured in UML by connecting “ {xor}” to the relevant associations by dashed lines to

indicate exactly one is played. UML has no graphic notation for simple exclusion between

roles, role-sequences, attributes, or between attributes and associations. As a convenience,

ORM also includes equality constraints as an abbreviation for subset constraints in both

directions.

UML uses qualified associations in many cases where ORM uses an external

uniqueness constraint for co-referencing. Figure 8 is based on an example from the UML

standard [24], along with the ORM counterpart. Qualified associations are shown as

named, smaller rectangles attached to a class. ORM uses a circled “u” to denote an

external uniqueness constraint (the bank name and account number uniquely define the

account). The UML notation is less clear, and less adaptable. For example, if we now want

to record something about the account (e.g. its balance) we need to introduce an Account

class, and the connection to accountNr is unclear. The problem can be solved in UML by

using an association class instead, though this is not always natural.

Employee
(empNr)

Sex
(code)

Title

{'M','F'}
determines

has
is
of

Lady F
Mr M

Mrs F
Ms F
... ...

Employee

empNr {P}
title
sex: Sexcode

«enumeration»
 Sexcode

m
f

Data modeling in UML and ORM: a comparison 12

Figure 8 Qualified association in UML, and co-referenced object type in ORM

Both UML and ORM provide support for subtyping, including multiple inheritance.

Both show subtypes outside, connected by arrows to their supertype(s), and both allow

declaration of constraints between subtypes such as exclusion and totality. UML provides

only weak support for defining subtypes: a discriminator label may be attached to

subtype arrows to indicate the basis for the classification (e.g. a “ sex” discriminator might

specialize Man and Woman from Person). This does not guarantee that instances

populating these subtypes have the correct values for a sex attribute that might apply to

Person. Moreover, more complicated subtype definitions are sometimes required. Finally,

subtype constraints such as exclusion and totality are typically implied by subtype

definitions in conjunction with existing constraints on the supertypes; these implications

are captured in ORM but are ignored in UML, leading to the possibility of inconsistent

UML models. For further discussion on these issues see [12, 16].

ORM includes a number of other graphic constraints with no counterpart in UML. For

example, ring constraints such as irreflexivity, asymmetry, intransitivity and acyclicity,

may be specified over a pair of roles played by the same object type (e.g. Person is parent

of Person is acyclic and deontically intransitive). Such constraints can be specified as

comments in UML. UML treats aggregation as a special kind of whole/ part association,

attaching a small diamond to the role at the “whole” end of the association. In ORM this is

shown as an m:n association Whole contains Part. UML treats composition as a stronger

form of aggregation in which each part belongs to at most one whole (in ORM the

“ contains” predicate becomes 1:n). Whole and Part are not necessarily disjoint types, so

ring constraints may apply (e.g. Part contains Part). UML aggregation also has behavioral

semantics concerned with implementation at the code level (e.g. copy and access

semantics), but these are not conceptual issues and have no counterpart in ORM.

UML allows collection types to be specified as annotations. For example, if we wish to

record the order in which authors are listed for any given paper, the UML diagram in

Figure 1 can have its author role annotated by “ {ordered}” . This denotes an ordered set

(sequence with unique members). ORM has two approaches to handle this. One way

Bank

Person

*

Bank
(name)

Account u

AccountNr

Person

(custnr)

is in

has

is used

by

uses

UML

ORM

0..1

accountNr

Data modeling in UML and ORM: a comparison 13

keeps base predicates elementary, annotating them with the appropriate constructor as an

implementation instruction. In this example, we use the ternary fact type Person wrote Paper in

Position, place uniqueness constraints over Person-Paper and Paper-Position, and annotate

the predicate with “ {seq}” to indicate mapping the positional information as a unique

sequence. Sets, sequences and bags may be treated similarly. This method is

recommended, partly because elementarity allows individual instantiation and simplifies

the semantics. The other way allows complex object types in the base model by applying

constructors directly to them (e.g. [21]).

Both ORM and UML include object cardinality constraints for limiting the cardinality

of a type’s population. For example, the number of senators may be capped at 50 in ORM

by writing “#≤50” beside the object type Senator, and in UML by writing “50” at the top

right hand corner of the Senator class. In UML, attributes may be assigned default values,

and restrictions placed on their changeability (e.g. “ frozen”). Although not supported in

ORM, such features could easily be added to ORM as role properties. More sophisticated

proposals to extend ORM to handle default information have also been made [18].

ORM includes various sub-conceptual notations that allow a pure conceptual model

to be annotated with implementation detail (e.g. indexes, subtype mapping choices,

constructors). UML includes a vast set of such annotations for class diagrams, providing

intricate detail for implementation in object-oriented code (e.g. navigation directions

across associations, attribute visibility (public, protected, private), etc.). These are

irrelevant to conceptual modeling and are hence ignored in this paper.

Textual languages for constraints, derivation and queries

Graphical languages are convenient for expressing common constraints. However, their

simplicity comes at the cost of expressive power. The common solution is to add textual

constraint annotations to the notation. UML allows informal, semi-formal, and formal

constraints. As an extension, UML includes OCL (Object Constraint Language) as a formal

textual constraint language. OCL was part of a submission by IBM and ObjecTime

Limited to the OMG. OCL was developed by Jos Warmer and is based on the Syntropy

method of Steve Cook and John Daniels. Constraint languages tend to be either algebraic

(e.g. OBJ) or model based (e.g. Z and VDM). OCL is a model based constraint language.

Constraints define the set of legal models. For example, a stack pop operation could be

specified as:

Stack::pop() : Element
pre: elements->notEmpty
post: elements@pre = elements->append(result)

This means that before a pop operation, the list of elements must be nonempty, and

after a pop operation the list of elements before the pop equals the list after the pop with

the result appended. By contrast, in an algebraic language we would use axioms like the

Data modeling in UML and ORM: a comparison 14

following (meaning that if we push an element e onto a stack, then a pop operation will

return e):

∀ s:Stack; e:Element •
s.push(e).pop() = e

Any practical constraint language must deal with undefined values. For example, the

following specification declares an operation to calculate the result of dividing a real

number by denom. Note: if denom is zero (and hence the result undefined) then the

result is zero.

Real::safeDiv(denom:Real) : Real
post: self@pre = self and

denom = 0.0 implies result = 0.0 and

denom <> 0.0 implies result = value@pre / denom

In OCL, expressions containing undefined expressions are themselves undefined. To

stop the entire expression above becoming undefined, logical operators follow Kripke’s

strong three valued logic (K3). In K3, a implies b is true exactly when a is false or a and b

are true; thus the above specification is defined for denom = 0.0. In practice, much more

careful handling of undefined expressions is required [3]. For example, using K3 instead

of classical logic means that theorems from standard mathematics cannot be used for

proofs. Having to redevelop standard results is error prone and greatly increases the

effort required to prove results.

UML attributes and associations may be derived (e.g. / count). OCL can be used to

express the derivation rules through constraints. For example, the following invariant

expresses a derivation rule for / count.

Stack
count = elements->size

Various textual languages have been defined to express constraints, derivation rules

and queries in ORM (e.g. RIDL [23], PSM [20] and ConQuer [4, 5]). Of these, only

ConQuer has been implemented in a conceptual query tool. ConQuer is essentially

classical logic with set theory. Unlike OCL, ConQuer is based on standard mathematics

and thus can use all the theorems of standard mathematics. Also unlike OCL, ConQuer is

designed to take advantage of modern user interfaces. Derivation rules are expressible in

ConQuer using set comprehension, since an ORM fact table is essentially a set of tuples. In

ConQuer, the derived fact: ‘Product has gross margin of MoneyAmount.’ is expressible as:

 Product has cost of MoneyAmount as Cost

 └─ has wholesale price of MoneyAmount as Price

 └─ � Price - Cost

Or mathematically, as: { p:Product; m:MoneyAmount | ∃ c: MoneyAmount; w:

MoneyAmount • p has cost of c ∧ p has wholesale price of w ∧ m = w – c }

Data modeling in UML and ORM: a comparison 15

Similarly, the constraint: ‘No product may have a gross margin under 30%.’ is

expressible as:

for no Product

Product has cost of MoneyAmount as Cost

 └─ has wholesale price of MoneyAmount as Price

 └─ Price / Cost < 1.3

Or mathematically, as: ¬ ∃ p:Product • ∃ c: MoneyAmount; w: MoneyAmount •
p has cost of c ∧ p has wholesale price of w ∧ w / c < 1.3

By using a ‘.’ notation, OCL is able to express mathematical expressions more

succinctly than ConQuer. However, since ORM already supports named roles, ConQuer

could be extended to support expressions like:

� Product

 └─ � Product.Price - Product.Cost

A disadvantage of the dot notation is its reliance on functional attributes. Constraint

changes and schema additions might require attributes to be remodeled, making the

expression obsolete. ConQuer’s predicate-based notation is immune to such changes.

Nevertheless, some features may reliably remain functional (e.g. birthdate), and for

mathematical operations functional notation is certainly convenient.

For common data modeling constraints, such as subset constraints, ORM’s graphical

notation is more clear and less error prone than UML’s textual notation. As well, ORM’s

graphical constraints can be automatically mapped to efficient SQL. By contrast, code

generated from UML’s OCL constraints is unlikely to be as efficient as hand crafted SQL.

UML constraints could be expressed in SQL but at the cost of both being error prone and

less clear. However, OCL’s rich constraint language does allow a wide variety of

constraints to be expressed succinctly. For example, OCL has a rich language for dealing

with collections and associations. The constraint “Every student must take at least two

foreign language courses.” , applied to Figure 6, can be expressed in OCL as:

Student
courses->select(c | courseCode.substring(1, 2) = ‘FL’)->size >= 2

Debate rages over how desirable it is for textual constraint languages to be efficiently

translatable into code. The prospect of automatically generating code from constraints is

attractive, but this must be weighed against reduced expressive power. OCL strikes a

good balance since OCL constraints are easily mapped into procedural code yet the

language has many powerful constructs.

Data modeling in UML and ORM: a comparison 16

Conclusion

This paper identified the following principles for evaluating modeling languages and

applied them in evaluating UML and ORM for conceptual data modeling: expressibility;

clarity; semantic stability; semantic relevance; validation mechanisms; abstraction

mechanisms; formal foundations. Although ORM’s richer constraint notation makes it

more expressive graphically, both methods extend expressibility through the use of

textual languages. ORM scores higher on clarity, because its structures may be directly

verbalized as sentences, it is based on fewer, more orthogonal constructs, and it reveals

semantic connections across domains. Being attribute-free, ORM is more stable for both

modeling and queries. ORM is easier to validate (through verbalization and multiple

instantiation). Both methods are amenable to similar abstraction mechanisms, and have

adequate formal foundations. UML class diagrams are often more compact, and can be

adorned with a vast array of implementation detail for engineering to and from object-

oriented programming code. Moreover, UML includes mechanisms for modeling

behavior, and its acceptance as an OMG standard is helping it gain wide support in

industry, especially for the design of object-oriented software.

Thus both methods have their own advantages. For data modeling purposes, it seems

worthwhile to provide tool support that would allow users to gain the advantages of

performing conceptual modeling in ORM, while still allowing them to work with UML.

Visio Enterprise already supports transformations between ORM, ER, Relational and

Object-Relational models, as well as fully supporting UML. Research is currently under

way to add transformations between ORM and UML. Once this support is widely

available, empirical studies are planned to study why and how practitioners choose

and/ or integrate modeling methods in practice.

References

1. Barros, A., ter Hofstede, A. & Proper, H. 1997. ‘Towards real-scale business transaction workflow

modelling’, Proc. CAiSE'97 (Barcelona, Spain, June), A. Olive, J. Pastor eds, Springer Verlag, Berlin, 437-

450.

2. Blaha, M. & Premerlani, W. 1998, Object-Oriented Modeling and Design for Database Applications, Prentice

Hall, New Jersey.

3. Bloesch, A. 1995, ‘The Standard Ergo Theories’, Technical Report 95-43, Software Verification Research

Centre, The University of Queensland, Brisbane, Australia (Oct.).

4. Bloesch, A. & Halpin, T. 1996, ‘ConQuer: a conceptual query language’, Proc. 15th International

Conference on Conceptual Modeling ER'96 (Cottbus, Germany), B. Thalheim ed., Springer LNCS 1157

(Oct.) 121-133.

5. Bloesch, A. & Halpin, T. 1997, ‘Conceptual queries using ConQuer-II’, Proc. 16th Int. Conf. on Conceptual

Modeling ER'97 (Los Angeles), D. Embley, R. Goldstein eds, Springer LNCS 1331 (Nov.) 113-126.

6. Campbell, L., Halpin, T. & Proper, H. 1996, ‘Conceptual schemas with abstractions: making flat

conceptual schemas more comprehensible’, Data & Knowledge Engineering, 20, 1, 39-85.

7. De Troyer, O. & Meersman, R. 1995, ‘A logic framework for a semantics of object oriented data

modeling’, OOER’95: Object-Oriented and Entity-Relationship Modeling, Springer LNCS. 1021, (Dec.) 238-

49.

8. Embley, D. 1998, Object Database Management, Addison-Wesley.

Data modeling in UML and ORM: a comparison 17

9. Falkenberg, E. 1976, ‘Concepts for modelling information’, Modelling in Data Base Management Systems,

G. Nijssen ed., North-Holland, Amsterdam, pp. 95-109 (see esp. p. 104, where “properties” means

“attributes”).

10. Fowler, M. with Scott, K. 1997, UML Distilled, Addison-Wesley.

11. Halpin, T. 1993, ‘What is an elementary fact?’, Proc. First NIAM-ISDM Conf., G.Nijssen, J. Sharp eds,

Utrecht.

12. Halpin, T. 1995, Conceptual Schema and Relational Database Design, 2nd edn (revised 1999), WytLytPub,

Bellevue WA, USA.

13. Halpin, T. 1996, ‘Business rules and object-role modeling’, Database Prog. & Design, 9, 10, Miller

Freeman, 66-72.

14. Halpin, T. 1998, ‘Object Role Modeling: an overview’, white paper, www.orm.net.

15. Halpin, T. 1998, ‘Object Role Modeling (ORM/ NIAM)’, Handbook on Architectures of Information Systems,

P. Bernus, K. Mertins & G. Schmidt eds, Springer-Verlag, Berlin, pp. 81-101.

16. Halpin, T. & Proper, H. 1995, ‘Subtyping and polymorphism in object-role modelling’, Data &

Knowledge Engineering 15, 3 (June), 251-281.

17. Halpin, T. & Proper, H. 1995, ‘Database schema transformation and optimization’, OOER’95: Object-

Oriented and Entity-Relationship Modeling, Springer LNCS, 1021 (Dec.) 191-203.

18. Halpin, T. & Vermeir, D. 1997, ‘Default reasoning in information systems’, Database Application

Semantics, R. Meersman & L. Mark eds, Chapman & Hall, London, 423-442.

19. ter Hofstede, A.1993, Information Modelling in Data Intensive Domains, PhD thesis, University of

Nijmegen.

20. ter Hofstede, A., Proper, H. & van der Weide, T. 1993, ‘Formal definition of a conceptual language for

the description and manipulation of information models’, Information Systems 18, 7 (Oct.), 489-523.

21. ter Hofstede, A. & van der Weide, T. 1994, ‘Fact orientation in complex object role modelling

techniques’, Proc. First Int. Conf. on Object-Role Modelling (Magnetic Island, Australia, July), T. Halpin, R.

Meersman eds, 45-59.

22. ISO 1982, Concepts and Terminology for the Conceptual Schema and the Information Base, J. van Griethuysen

ed., ISO/ TC97/ SC5/ WG3-N695 Report, ANSI, New York.

23. Meersman, R. 1982, ‘The RIDL conceptual language’, Research report, Int. Centre for Information

Analysis Services, Control Data Belgium Inc., Brussels, Belgium.

24. OMG UML Revision Task Force, OMG Unified Modeling Language Specification,

http:/ / uml.systemhouse.mci.com/ .

25. Shoval, P. & Shiran, S. 1997, ‘Entity-relationship and object-oriented data modeling—an experimental

comparison of design quality’, Data & Knowledge Engineering, 21, 3 (Feb.) 297-315.

This paper is made available by Dr. Terry Halpin and is downloadable from www.orm.net.

	Student�	courses->select(c | courseCode.substring(1, 2) = ‘FL’)->size >= 2

