Corrigé de fiche TD 2 (ALG I)

INF-L1 (2023-2024)

Exercice 1

1. On peut écrire

$$(a) - a \in E$$
 $(c) - \{a\} \subset E$ $(e) - \emptyset \subset E$.

- $(a) a \in E$ vraie, car a est un élément de l'ensemble E.
- $(b) a \subset E$ n'a pas de sens puisque a n'est pas un ensemble.
- $(c) \{a\} \subset E$ vraie, car $\{a\}$ est un sous ensemble de E.
- $(d)-\varnothing\in E,$ n'a pas de sens puisque l'ensemble vide n'est pas un élément de E.
 - $(e) \emptyset \subset E$ vraie, l'ensemble vide est inclu dans tous les ensembles.
- $(f)-\{\varnothing\}\subset E$ n'a pas de sens puisque l'ensemble vide n'est pas un élément de E.
- **2. Décrire les ensembles** $A\cap B, A\cup B, A\times B, B\times A, A\cap C, (A\times B)\cap (B\times A)$, et P(A)

$$A = \{1, 2\}, \quad B = \{2, 3\}, \quad C = \{3, 6, 9\}$$

• $A \cap B$: Par définition, on a

$$A \cap B = \{x/ \ x \in A \quad et \quad x \in B\} = \{2\}.$$

• $A \cup B$: Par définition, on a

$$A \cup B = \{x \mid x \in A \quad ou \quad x \in B\} = \{1, 2, 3\}.$$

• $A \times B$: Par définition, on a

$$A \times B = \{(x,y) / x \in A \text{ et } y \in B\}$$

= $\{(1,2), (1,3), (2,2), (2,3)\}.$

B × A

$$B \times A = \{(x, y) / x \in B \ et \ y \in A\}$$

= $\{(2, 1), (2, 2), (3, 1), (3, 2)\}.$

 \bullet $A \cap C$

$$A \cap C = \{x \mid x \in A \text{ } et \text{ } x \in C\} = \varnothing.$$

•
$$(A \times B) \cap (B \times A)$$

 $(A \times B) \cap (B \times A) = \{(a,b) / (a,b) \in A \times B \text{ et } (a,b) \in B \times A\}$
 $= \{(2,2)\}.$

•
$$P(A)$$

 $P(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$

Exercice 2 Soient A, B et C trois parties d'un ensemble E: Montrer que:

•
$$C_E^{A \cap B} = C_E^A \cup C_E^B$$

Soit $x \in C_E (A \cap B)$.
 $x \in C_E (A \cap B) \Rightarrow (x \in E \text{ et } x \notin A \cap B)$
 $\Rightarrow (x \in E) \text{ et } (x \notin A \text{ ou } x \notin B)$
 $\Rightarrow (x \in E \text{ et } x \notin A) \text{ ou } (x \in E \text{ et } x \notin B)$
 $\Rightarrow (x \in C_E A) \text{ ou } (x \in C_E B)$
 $\Rightarrow x \in C_E A \cup C_E B$,

d'où l'inclusion

$$C_E(A \cap B) \subset C_E A \cup C_E B$$
.

Réciproquement, Soit $x \in C_E A \cup C_E B$.

Si $x \in C_E A$, alors $x \notin A$ donc $x \notin A \cap B$, et par suite $x \in C_E (A \cap B)$.

De même si $x \in C_E B$, alors $x \notin B$ donc $x \notin A \cap B$, et par suite $x \in C_E (A \cap B)$.

Dans les deux cas

$$x \in C_E (A \cap B)$$
.

D'où l'inclusion

$$C_E A \cup C_E B \subset C_E (A \cap B)$$
.

La première égalité est donc démontrée.

 $\bullet \ C_E^{A \cup B} = C_E^A \cap C_E^B$

Pour la deuxième égalité, en posant $A_1=C_EA$, $B_1=C_EB$ et en utilisant $C_E\left(C_EA\right)=A$. Donc

$$C_E^{A_1} \cup C_E^{B_1} = C_E^{A_1 \cap B_1} \Leftrightarrow A \cup B = C_E^{A_1 \cap B_1}$$
$$\Leftrightarrow C_E^{A \cup B} = A_1 \cap B_1$$
$$\Leftrightarrow C_E^{A \cup B} = C_E A \cap C_E B$$

•
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

Soit $x \in A \cap (B \cup C)$
 $x \in A \cap (B \cup C) \Leftrightarrow (x \in A) \wedge (x \in B \cup C)$
 $\Leftrightarrow (x \in A) \wedge ((x \in B) \vee (x \in C))$
 $\Leftrightarrow (x \in A) \wedge ((x \in B) \vee (x \in C))$
 $\Leftrightarrow (x \in A \cup B) \wedge (x \in A \cup C)$
 $\Leftrightarrow (x \in A \cup B) \cap (A \cup C)$
D'où $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
• $A \cap B = A \cup B \Leftrightarrow A = B$
 (\Rightarrow) Supposons que $A \cap B = A \cup B$.
Soit $x \in A$
 $x \in A \Rightarrow x \in A \cup B$
 $\Rightarrow x \in A \cap B \quad (\text{car } A \cap B = A \cup B)$
 $\Rightarrow x \in B$
d'où $A \subset B$
Soit $x \in B$
 $x \in B \Rightarrow x \in A \cup B$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in B \cap A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$
 $x \in A \cap B \cap (A \cap B) \cap (A \cap C)$

 $\Rightarrow x \in A$

 $\Rightarrow x \in A \cap C \quad (\text{car } A \cup B = A \cap C)$

d'où

$$B\subset A$$

Soit $x \in A$

$$x \in A \Rightarrow x \in A \cup B$$

$$\Rightarrow x \in A \cap C \quad (\text{ car } A \cup B = A \cap C)$$

$$\Rightarrow x \in C$$

d'où

$$A \subset C$$

 (\Leftarrow) Supposons que $B\subset A\subset C$ Donc

$$A \cup B = A = A \cap C$$

•
$$\underbrace{A \subset B}_{(1)} \Leftrightarrow \underbrace{C_E^B \subset C_E^A}_{(2)} \Leftrightarrow \underbrace{A \cup B = B}_{(3)} \Leftrightarrow \underbrace{A \cap B = A}_{(4)}$$

$$(1) \Leftrightarrow (2)$$

$$A \subset B \Leftrightarrow \forall a, a \in A \Rightarrow a \in B$$

$$\Leftrightarrow \forall a, a \notin B \Rightarrow a \notin A$$

$$\Leftrightarrow \forall a, a \in C_E B \Rightarrow a \in C_E A$$

$$\Leftrightarrow C_E B \subset C_E A$$

$$(1) \Leftrightarrow (3)$$

$$(A \subset B) \Leftrightarrow (A \cup B = B)$$

$$(1)\Leftrightarrow (4)$$

$$(A \subset B) \Leftrightarrow (A \cap B = A)$$

On peut montrer que

$$(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$$

et

$$(4) \Rightarrow (1)$$

•
$$(A \cup B) \times C = (A \times C) \cup (B \times C)$$

Soit $(x,y) \in (A \cup B) \times C$.

$$(x,y) \in (A \cup B) \times C \Leftrightarrow (x \in A \cup B \ et \ y \in C)$$

$$\Leftrightarrow (x \in A \ ou \ x \in B \) \ et \ (y \in C)$$

$$\Leftrightarrow (x \in A \ et \ y \in C) \ ou \ (x \in B \ et \ y \in C)$$

$$\Leftrightarrow ((x,y) \in A \times C) \ ou \ ((x,y) \in B \times C)$$

$$\Leftrightarrow (x,y) \in (A \times C) \cup (B \times C),$$
d'où

Exercice 3

Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ deux applications définies par

$$f(x) = 2x + 3$$
 et $g(x) = x^2 - 5$

 $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

A-t-on: $f \circ g = g \circ f$

• $f \circ g : \mathbb{R} \to \mathbb{R}$ Soit $x \in \mathbb{R}$, on a:

$$(f \circ g)(x) = f(g(x)) = 2g(x) + 3 = 2x^2 - 7$$

• $g \circ f : \mathbb{R} \to \mathbb{R}$ Soit $x \in \mathbb{R}$, on a:

$$(g \circ f)(x) = g(f(x)) = (f(x))^2 - 5 = 4x^2 + 12x + 4.$$

Pour x = 0, on a

$$(f \circ q)(0) = -7$$
 et $(q \circ f)(0) = 4$,

donc, $\exists x = 0 \in \mathbb{R}$ tel que $(f \circ g)(0) \neq (g \circ f)(0)$, alors $f \circ g \neq g \circ f$.

Exercice 4

Les applications suivantes sont-elles surjectives? injectives? bijectives?

1. $f_1: \mathbb{N} \to \mathbb{N}$ avec $f_1(n) = n(n+1)$

Surjective?

Soit $y \in \mathbb{N}$, on cherche un élément x de \mathbb{N} s'il existe tel que $y = f_1(x)$. On a:

$$y = f_1(x) \Leftrightarrow y = x(x+1) \Leftrightarrow x^2 + x - y = 0$$

On a

$$\Delta = 1 + 4y > 0$$

Pour y = 1. L'équation admet deux solutions

$$x_1 = \frac{-1 - \sqrt{1 + 4y}}{2} \notin \mathbb{N}$$

$$x_2 = \frac{-1 + \sqrt{1 + 4y}}{2} \notin \mathbb{N}$$

Donc, l'élément y = 1 n'a pas d'antécédent.

Alors, f_1 n'est pas une application surjective.

Injective?

Soient $x_1, x_2 \in \mathbb{N}$

$$f_{1}(x_{1}) = f_{1}(x_{2}) \Rightarrow x_{1}(x_{1} + 1) = x_{2}(x_{2} + 1)$$

$$\Rightarrow (x_{1}^{2} - x_{2}^{2}) + (x_{1} - x_{2}) = 0$$

$$\Rightarrow (x_{1} - x_{2})(x_{1} + x_{2} + 1) = 0.$$

$$\Rightarrow x_{1} - x_{2} = 0 \quad (\operatorname{car} x_{1} + x_{2} + 1 \neq 0)$$

$$\Rightarrow x_{1} = x_{2}$$

Alors, f_1 est une application injective.

Bijective?

Comme l'application f_1 n'est pas surjective, alors f_1 n'est pas bijective.

2.
$$f_2: \mathbb{R} \to \mathbb{R}$$
 avec $f_2(x) = x^2 + 2x + 3$

Surjective?

Soit $y \in \mathbb{R}$, on cherche un élément x de \mathbb{R} s'il existe tel que $y = f_2(x)$. On a:

$$y = f_2(x) \Leftrightarrow x^2 + 2x - y + 3 = 0$$

On a

$$\Delta = 4y - 8$$

Cette équation n'admet pas des solutions pour $y\in]-\infty, -2[$. Donc l'élément y n'a pas d'antécédent. Alors, f_2 n'est pas une application surjective.

Injective?

Soient $x_1, x_2 \in \mathbb{R}$

$$f_2(x_1) = f_2(x_2) \Rightarrow x_1^2 + 2x_1 + 3 = x_2^2 + 2x_2 + 3$$
$$\Rightarrow (x_1^2 - x_2^2) + 2(x_1 - x_2) = 0$$
$$\Rightarrow (x_1 - x_2)(x_1 + x_2 + 2) = 0.$$

Donc, on peut trouver deux éléments différents ont même image. Par exemple pour $x_1 = 0$ et $x_2 = -2$, on a: $f_2(x_1) = f_2(x_2) = 3$.

Alors, f_2 n'est pas une application injective.

Bijective?

Comme l'application f n'est pas injective et n'est pas surjective, alors f n'est pas bijective.

3.
$$f_3:]1, +\infty[\to \mathbb{R}_+^* \text{ avec } f_3(x) = \ln(x)$$

Surjective?

Soit $y \in \mathbb{R}_+^*$, on cherche un élément x de]1, $+\infty$ [s'il existe tel que $y = f_3(x)$. On a:

$$y = f_3(x) \Leftrightarrow y = \ln(x) \Leftrightarrow x = e^y \in]1, +\infty[.$$

Alors, pour tout $y \in \mathbb{R}_+^*$, il existe au moins un réel $x \in]1, +\infty[$ tel que $y = f_3(x)$. D'où l'application f_3 est surjective.

Injective?

Soient $x_1, x_2 \in]1, +\infty[$

$$f_3(x_1) = f_3(x_2) \Rightarrow \ln(x_1) = \ln(x_2) \Rightarrow x_1 = x_2.$$

Alors, pour tout $x_1, x_2 \in]1, +\infty[$ on a: $f_3(x_1) = f_3(x_2) \Rightarrow x_1 = x_2$. D'où f_3 est une application injective.

Bijective?

Comme l'application f_3 est surjective et injective, alors f est bijective.

Exercice 5

Soit $f: \mathbb{R} \to \mathbb{R}$ l'application définie par

$$f(x) = \ln\left(|x| + \frac{1}{e}\right).$$

f est-elle surjectives?

Soit $y \in \mathbb{R}$, on cherche un réel x s'il existe tel que y = f(x). On a:

$$y = f(x) \Leftrightarrow y = \ln\left(|x| + \frac{1}{e}\right) \Leftrightarrow |x| = e^y - \frac{1}{e}$$

Pour y = -2, l'équation y = f(x) n'admet pas de solutions. Donc f n'est pas une application surjective. f est-elle injectives?

Soient $x_1, x_2 \in \mathbb{R}$

$$f(x_1) = f(x_2) \Rightarrow \ln\left(|x_1| + \frac{1}{e}\right) = \ln\left(|x_2| + \frac{1}{e}\right)$$
$$\Rightarrow |x_1| + \frac{1}{e} = |x_2| + \frac{1}{e}$$
$$\Rightarrow |x_1| = |x_2|.$$

Pour $x_1 = 1$ et $x_2 = -1$, on a:

$$f(x_1) = f(x_2) = \ln(1 + \frac{1}{e}).$$

Alors, f n'est pas une application injective.

Montrer que la restriction g de f est une bijection

$$g: [0, +\infty[\to [-1, +\infty[, g(x) = f(x)].$$

(a)- Soit $y \in [-1, +\infty[$, on cherche un réel $x \in [0, +\infty[$ s'il existe tel que y = f(x).

On a:

$$y = g(x) \Leftrightarrow y = \ln\left(|x| + \frac{1}{e}\right)$$
$$\Leftrightarrow |x| + \frac{1}{e} = e^{y}$$
$$\Leftrightarrow |x| = e^{y} - \frac{1}{e} \ge 0$$

Donc, $\forall y \in [-1, +\infty[$, $\exists x = e^y - \frac{1}{e} \in [0, +\infty[$ tel que y = g(x), alors g est une application surjective.

(b)- Soient $x_1, x_2 \in [0, +\infty[$

$$g(x_1) = g(x_2) \Rightarrow \ln\left(|x_1| + \frac{1}{e}\right) = \ln\left(|x_2| + \frac{1}{e}\right)$$
$$\Rightarrow |x_1| + \frac{1}{e} = |x_2| + \frac{1}{e}$$
$$\Rightarrow |x_1| = |x_2|$$
$$\Rightarrow x_1 = x_2.$$

donc, g est injective.

Alors, g est une application bijective.

Calculer g^{-1} :

$$g^{-1}: [-1, +\infty[\to [0, +\infty[$$

$$x \mapsto e^x - \frac{1}{e}$$

Exercice 6

Dans chacun des cas suivants, déterminer f(I) puis vérifier que f réalise une bijection de I sur J=f(I) puis préciser f^{-1}

1. $f(x) = \frac{2x}{x^2+1}$, $I =]-\infty, -1] \cup [1, +\infty[$ Comme la fonction $f: x \mapsto \frac{2x}{x^2+1}$ est continue sur I et strictement décroissante (car $f'(x) = \frac{2-2x^2}{(x+2)^2} \le 0$), alors f réalise une bijection de I sur $J = f(I) = [-1, 0[\cup]0, 1]$. **Préciser** f^{-1}

Soit $y \in J = f(I) = [-1,0[\,\cup\,]0,1]$ et $x \in]-\infty,-1] \cup [1,+\infty[$ tel que y = f(x)

$$y = f(x) \Leftrightarrow y = \frac{2x}{x^2 + 1}$$

$$\Leftrightarrow yx^2 + y = 2x$$

$$\Leftrightarrow yx^2 - 2x + y = 0$$

On a:

$$\Delta' = (-1)^2 - (y)(y) = 1 - y^2,$$

et comme $y \in [-1,0[\,\cup\,]0,1]$, alors l'équation $yx^2-2x+y=0$ possède deux solutions:

$$x_1 = \frac{1 - \sqrt{1 - y^2}}{y}, \ x_2 = \frac{1 + \sqrt{1 - y^2}}{y}.$$

On a:

$$x_1 = \frac{1 - \sqrt{1 - y^2}}{y} = \frac{\left(1 - \sqrt{1 - y^2}\right)\left(1 + \sqrt{1 - y^2}\right)}{y\left(1 + \sqrt{1 - y^2}\right)} = \frac{y}{1 + \sqrt{1 - y^2}},$$

et

$$x_2 = \frac{1+\sqrt{1-y^2}}{y} = \frac{\left(1+\sqrt{1-y^2}\right)\left(1-\sqrt{1-y^2}\right)}{y\left(1-\sqrt{1-y^2}\right)} = \frac{y}{1-\sqrt{1-y^2}},$$

comme $y \in [-1,0] \cup [0,1]$, donc on prend $x_2 \in]-\infty,-1] \cup [1,+\infty[$ et on rejette x_1 car $x_1 \notin]-\infty, -1] \cup [1, +\infty[$.

Donc, l'application f^{-1} est définie par

$$f^{-1}: [-1, 0[\cup]0, 1] \to]-\infty, -1] \cup [1, +\infty[$$

$$y \mapsto \frac{1+\sqrt{1-y^2}}{r},$$

2. $f(x) = \frac{x}{1+|x|}$, $I = \mathbb{R}$ on a

$$f(x) = \begin{cases} \frac{x}{1+x} = 1 - \frac{1}{1+x} & si \quad x \ge 0\\ \frac{x}{1-x} = -1 + \frac{1}{1-x} & si \quad x \le 0 \end{cases}$$

Pour $x \ge 0$, on a

$$1 = \frac{x+1}{x+1} > \frac{x}{x+1} = f(x) \ge 0$$

D'où

$$f\left([0,+\infty[\right)\subset[0,1[$$

Pour $x \leq 0$, on a

$$0 \ge \frac{x}{x+1} = f(x) > \frac{x-1}{1-x} = -1$$

D'où

$$f(]-\infty,0])\subset]-1,0]$$

Alors,

$$f(\mathbb{R}) \subset]-1,1[$$

Vérifions que f réalise une bijection de \mathbb{R} sur]-1,1[. Soit $y \in [0,1[$ et $x \in \mathbb{R}$

$$y = f(x) \Leftrightarrow y = \frac{x}{1+x} \Leftrightarrow x = \frac{y}{1-y}$$

Donc,

$$\forall y \in [0,1[\,,\exists!x \in \mathbb{R} \ / \ y = f(x)]$$

Soit $y \in [-1, 0]$ et $x \in \mathbb{R}$

$$y = f(x) \Leftrightarrow y = \frac{x}{1-x} \Leftrightarrow x = \frac{y}{1+y}$$

Donc,

$$\forall y \in [-1, 0], \exists ! x \in \mathbb{R} / y = f(x)$$

Finalement,

$$\forall y \in]-1,1[\,,\exists!x \in \mathbb{R} \ / \ y=f(x)$$

Préciser f^{-1}

L'application f^{-1} est définie par

$$f^{-1}:]-1,1[\to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{x}{1-x} & \text{si } x \in [0,1[\\ \frac{x}{1+x} & \text{si } x \in]-1,0] \end{cases}$$

$$f^{-1}(x) = \frac{x}{1-|x|}$$

Exercice 7

Soit $f: \mathbb{R} \to \mathbb{R}$ une application définie par

$$f(x) = \frac{2x}{1+x^2}.$$

1. Déterminer l'ensemble $f(\{-1,0,\frac{1}{2},2\})$ et $f^{-1}(\{1,2\})$

Par définition, on a:

$$\begin{split} f\left(\left\{-1,0,\frac{1}{2},2\right\}\right) &= \left\{f\left(x\right) \in \mathbb{R}/ \ \ \, x \in \left\{-1,0,\frac{1}{2},2\right\}\right\} \\ &= \left\{f\left(-1\right),f\left(0\right),f\left(\frac{1}{2}\right),f\left(2\right)\right\} \\ &= \left\{-1,0,\frac{4}{5}\right\} \end{split}$$

Par définition, on a:

$$f^{-1}(\{1,2\}) = \{x \in \mathbb{R} / f(x) \in \{1,2\}\}$$

On résout les équations suivantes: f(x) = 1 et f(x) = 2. On a:

$$f(x) = 1 \Leftrightarrow x^2 - 2x + 1 = 0 \Leftrightarrow (x - 1)^2 = 0 \Leftrightarrow x = 1.$$

Et

$$f(x) = 2 \Leftrightarrow x^2 - x + 1 = 0.$$

On a

$$\Delta = (-1)^2 - 4(1)(1) = -3,$$

donc, l'équation n'admet pas de solution. Alors

$$f^{-1}(\{1,2\}) = \{1\}.$$

2. L'application f est - elle surjective?

L'équation f(x) = 2 n'admet pas des solutions. Donc l'élément y = 2 n'a pas d'antécédent. Alors, f n'est pas une application surjective.

L'application f est - elle injective?

On peut trouver deux éléments différents ont même image. Par exemple pour $x_1 = \frac{1}{2}$ et $x_2 = 2$,on a: $f(x_1) = f(x_2) = \frac{4}{5}$. Alors, f n'est pas une application injective.

3. Montrer que l'équation f(x) = y a des solutions si et seulement si $y \in [-1, 1]$.

On résout l'équation f(x) = y

Pour $x \in \mathbb{R}$, on a

$$f(x) = y \Leftrightarrow yx^2 - 2x + y = 0.$$

On a

$$\Delta = (-2)^2 - 4(y)(y) = 4(1 - y^2),$$

donc l'équation admet des solutions si et seulement si

$$\Delta > 0 \Leftrightarrow 1 - y^2 > 0 \Leftrightarrow y \in [-1, 1]$$
.

Ainsi, on a exactement

$$f(\mathbb{R}) = \{y = f(x) / x \in \mathbb{R}\} = [-1, 1].$$

4. Montrer que la restriction $g:[-1,1] \to [-1,1], \ g(x)=f(x)$ est une bijection.

Soit $y \in [-1, 1]$, on cherche un réel $x \in [-1, 1]$ s'il existe tel que y = g(x). On a:

$$y = g(x) \Leftrightarrow yx^2 - 2x + y = 0.$$

On a

$$\Delta = (-2)^2 - 4(y)(y) = 4(1 - y^2) \ge 0,$$

Pour y = 1, la seule solution de l'équation g(x) = 0 est x = 1.

Pour y = -1, la seule solution de l'équation g(x) = 0 est x = -1.

Pour y = 0, la seule solution de l'équation g(x) = 0 est x = 0.

Pour $y \in]-1,0[\cup]0,1[$, les solutions possibles de l'équation g(x)=0 sont $x=\frac{1-\sqrt{1-y^2}}{y}$ ou $x=\frac{1+\sqrt{1-y^2}}{y}$. la seule solution $x \in [-1,1]$ est $x=\frac{1-\sqrt{1-y^2}}{y} \in [-1,1]$.

Alors, pour tout $y \in [-1,1]$, il existe un seule élément $x \in [-1,1]$ tel que y = g(x). D'où g est une application bijective.

$$f^{-1}: [-1,1] \to [-1,1]$$

$$y \mapsto \begin{cases} \frac{1+\sqrt{1-y^2}}{y} & \text{si } y \in [-1,0[\,\cup\,]0,1] \\ \\ 0 & \text{si } y = 0 \end{cases}$$

Exercice 8

Soit $f: \mathbb{R} \to \mathbb{R}$ une application définie par

$$f(x) = x^2.$$

Soient A = [-2, 1] et B = [-1, 4].

1. Comparer $f(A \cap B)$ et $f(A) \cap f(B)$

On a:

$$A \cap B = \{x \mid x \in A \text{ et } x \in B\} = [-1, 1].$$

Par définition, on a:

$$f(A \cap B) = \{ f(x) / x \in A \cap B \}$$

$$= \{f(x) / x \in [-1, 1]\} = [0, 1].$$

$$f(A) = \{f(x) / x \in A\}$$

$$= \{f(x) / x \in [-2, 1]\} = [0, 4]$$

$$f(B) = \{f(x) / x \in B\}$$

$$= \{ f\left(x \right) \ / \ x \in [-1,4] \} = [0,16]$$

Donc,

$$f(A) \cap f(B) = [0, 4]$$

On remarque que

$$f\left(A\cap B\right)\subset f\left(A\right)\cap f\left(B\right)$$

2. Comparer $f(A \cup B)$ et $f(A) \cup f(B)$

Par définition, on a:

$$f\left(A\cup B\right)=\left\{ f\left(x\right)\ /\ x\in A\cup B\right\}$$

$$= \{ f(x) / x \in [-2, 4] \} = [0, 16]$$

et on a:

$$f(A) \cup f(B) = [0, 16]$$

On remarque que

$$f(A \cup B) = f(A) \cup f(B)$$

3. Déterminer $f\left(f^{-1}\left(A\right)\right)$ et $f^{-1}f\left(A\right)$

On a:

$$f\left(A\right) = \left[0, 4\right]$$

 et

$$f^{-1}(A) = \{x \in \mathbb{R} / f(x) \in A\}$$
$$= \{x \in \mathbb{R} / x^2 \in [-2, 1]\} = [-1, 1]$$

 donc

$$f(f^{-1}(A)) = \{f(x) / x \in f^{-1}(A)\}$$

$$=\left\{ f\left(x\right) \ /\ x\in \left[-1,1\right] \right\} =\left[0,1\right]$$

 et

$$f^{-1}f\left(A\right)=\left\{ x\in\mathbb{R}\ /\ f\left(x\right)\in f\left(A\right)\right\}$$

$$=\left\{ x\in\mathbb{R}\ /\ f\left(x\right)\in\left[0,4\right]\right\} =\left[-2,2\right]$$

On remarque que

$$f\left(f^{-1}\left(A\right)\right) \neq f^{-1}f\left(A\right)$$