Université des Sciences et de la Technologie d'Oran Mohamed BOUDIAF Faculté des Mathématiques et Informatique

Département d'Informatique

Calulatries et téléphones portables sont stritement interdits

Examen Final du module Algèbre 1 (2023-2024) Durée: 1h30mn - 11/01/2024

Exercice 1: (04 points)

- **1.** Définir l'ensemble $3\mathbb{Z}$, $3\mathbb{Z}$ est-il un sous groupe de $(\mathbb{Z}, +)$? Justifier votre réponse.
- **2.** Ecrire la table de multiplication de $(\mathbb{Z}/4\mathbb{Z}, \times)$ et donner les éléments qui ne sont pas inversibles.
- **3.** $\mathbb{Z}/4\mathbb{Z}$ est-il un anneau intègre? Justifier votre réponse.

Exercice 2: (06 points)

Soit f l'application définie par: $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 4x - 3$.

- 1. f est-elle injective? surjevctive? bijective? Justifier votre réponse.
- **2.** Déterminer f([3,5]).
- **3**. Montrer que l'application $g: [-2, +\infty[\rightarrow [-7, +\infty[$ définie par g(x) = f(x) est bijective.

Exercice 3: (05 points)

On définit dans \mathbb{R} la relation \Re par:

$$\forall x, y \in \mathbb{R}, x\Re y \Leftrightarrow (x^2 - 1)^2 - (y^2 - 1)^2 = 2|x^2 - 1| - 2|y^2 - 1|$$

- **1.** Montrer que \Re est une relation d'équivalence sur \mathbb{R}
- 2. Vérifier que

$$xRy \Leftrightarrow (|x^2 - 1| - |y^2 - 1|)(|x^2 - 1| + |y^2 - 1| - 2) = 0$$

3. En utilisant la question 2 calculer la classe d'équivalence de 0 : cl(0)

Exercice 4: (05 points)

On munit $\mathbb{R} - \{-2\}$ de la loi de composition interne * définie par:

$$\forall x,y \in \mathbb{R} - \left\{-2\right\}, \quad x \ * \ y = x + y + \frac{xy}{2}$$

- 1. Montrer que * est une loi commutative.
- 2. Donner l'élément neutre ainsi que l'élément symétrique de *

Corrigé Examen final Algèbre 1 (2023-2024)

Exercice 1: (04 points)

1.

$$3\mathbb{Z} = \{3k/k \in \mathbb{Z}\} = \{..., -6, -3, 0, 3, 6, ...\}$$
 (0.5)

 $3\mathbb{Z}$ est un sous groupe de $(\mathbb{Z}, +)$, en effet:

- (i) $0_{\mathbb{Z}} = 0 = 3 \times 0 \in 3\mathbb{Z}$.
- (ii) Soient $x=3k,y=3k^{'}\in 3\mathbb{Z}$ avec $k,k^{'}\in \mathbb{Z}$

$$x + (-y) \in 3\mathbb{Z}? \tag{01}$$

On a:

$$x + (-y) = 3k - 3k' = 3(k - k') = 3k'' \in 3\mathbb{Z}, \text{ avec } k'' = k - k' \in \mathbb{Z}$$

Alors, $x + (-y) \in 3\mathbb{Z}$.

De (i) et (ii) on déduit que $3\mathbb{Z}$ est un sous groupe de $(\mathbb{Z}, +)$.

2. On a:

$$\mathbb{Z}/4\mathbb{Z} = \left\{\dot{0}, \dot{1}, \dot{2}, \dot{3}\right\}$$

	$\dot{3}$	$\dot{2}$	i	Ó	×
(01)	Ó	Ò	Ò	Ó	Ò
	3	$\dot{2}$	i	Ò	i
	$\dot{2}$	Ò	$\dot{2}$	Ó	$\dot{2}$
	İ	$\dot{2}$	$\dot{3}$	Ó	$\dot{3}$

Les éléments qui ne sont pas inversibles: 2 (0.5)

3. $\mathbb{Z}/4\mathbb{Z}$ n'est pas un anneau intègre, car 4 n'est pas premier $((2) \times (2) = 0)$ (01)

Exercice 2: (06 points)

Soit f l'application définie par: $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 4x - 3$

1. Surjective?

$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, y = f(x)$$
 (0.5)

Soit $y \in \mathbb{R}$, on cherche un élément x de \mathbb{R} s'il existe tel que y = f(x). On a:

$$y = f(x) \Leftrightarrow x^2 + 4x - 3 - y = 0$$

On a

$$\Delta = 4 \left(7 + y \right)$$

Pour y < -7. L'équation n'admet pas de solutions, par exemple y = -8. Donc l'élément y n'a pas d'antécédent. Alors, f n'est pas une application surjective. (01)

Injective?

$$\forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$
 (0.5)

Soient $x_1, x_2 \in \mathbb{R}$

$$f(x_1) = f(x_2) \Rightarrow (x_1^2 - x_2^2) + 4(x_1 - x_2) = 0$$

$$\Rightarrow (x_1 - x_2)(x_1 + x_2 + 4) = 0.$$

$$\Rightarrow x_1 - x_2 = 0 \quad \text{ou } x_1 + x_2 + 4 \neq 0$$
(01)

Donc, on peut trouver deux éléments différents ont même image. Par exemple pour $x_1 = 0$ et $x_2 = -4$, on a: $f(x_1) = f(x_2) = -3$.

Alors, f n'est pas une application injective.

Bijective?

Comme l'application f n'est ni surjective, ni injective, alors f n'est pas bijective. (0.5)

2. Par définition, on a:

$$f([3,5]) = \{ f(x) \in \mathbb{R} / x \in [3,5] \}$$

On a:

$$f(x) = x^2 + 4x - 3 = (x+2)^2 - 7,$$

 $3 < x < 5 \Leftrightarrow 5 < x + 2 < 7$

donc,

$$\Leftrightarrow 25 - 7 \le (x+2)^2 - 7 \le 49 - 7$$
 (01)

$$\Leftrightarrow 18 \le f(x) \le 42$$

alors,

$$f\left([3,5]\right)=[18,42]$$

3. Montrer que l'application $g:[-2,+\infty[\to [-7,+\infty[$ définie par $g\left(x\right)=f\left(x\right)$ est bijective.

$$\forall y \in [-7, +\infty[\,, \exists! x \in [-2, +\infty[\,, y = g\,(x)]$$
 (0.5)

Soit $y \in [-7, +\infty[$, on cherche un élément x de $[-2, +\infty[$ s'il existe tel que y = g(x).

On a:

$$y = g(x) \Leftrightarrow x^2 + 4x - 3 - y = 0$$

On a

$$\Delta = 4(7+y) \ge 0.$$

Pour y = -7, on a $\Delta = 0$, donc x = -2.

Pour y > -7, on a $\Delta > 0$, donc l'équation admet deux solutions

$$x_1 = -2 - \sqrt{7 + y} \notin [-2, +\infty[$$

$$x_2 = -2 + \sqrt{7 + y} \in [-2, +\infty[$$

Alors, l'équation admet une seule solution dans $[-2, +\infty[$. Ce qui montre que l'application g est bijective.

Ou bien, on peut utiliser le théorème de la bijection.

Exercice 3: (05 points)

On définit dans \mathbb{R} la relation \Re par:

$$\forall x, y \in \mathbb{R}, x\Re y \Leftrightarrow (x^2 - 1)^2 - (y^2 - 1)^2 = 2|x^2 - 1| - 2|y^2 - 1|$$

- 1. Montrer que \Re est une relation d'équivalence sur \mathbb{R}
- (i) Réfléxive: $\forall x \in \mathbb{R}, x \Re x$

Soit $x \in \mathbb{R}$, on a:

$$(x^2 - 1)^2 - (x^2 - 1)^2 = 0 = 2|x^2 - 1| - 2|x^2 - 1| \Rightarrow x\Re x$$
 (0.5)

Alors, R est réflexive.

(ii) Symétrique: $\forall x, y \in \mathbb{R}, x \Re y \Rightarrow y \Re x$

Soient $x, y \in \mathbb{R}$, on a:

$$x\Re y \Rightarrow (x^2 - 1)^2 - (y^2 - 1)^2 = 2|x^2 - 1| - 2|y^2 - 1|$$

$$\Rightarrow (y^2 - 1)^2 - (x^2 - 1)^2 = 2|y^2 - 1| - 2|x^2 - 1|$$

$$\Rightarrow y\Re x$$

$$(0.5)$$

Alors, \Re est symétrique.

(iii) **Transitive:** $\forall x, y, z \in \mathbb{R}, (x\Re y \text{ et } y\Re z) \Rightarrow x\Re z$

Soient $x, y, z \in \mathbb{R}$, on a:

$$(x\Re y \text{ et } y\Re z) \Rightarrow \begin{cases} (x^2 - 1)^2 - (y^2 - 1)^2 = 2|x^2 - 1| - 2|y^2 - 1| \\ (y^2 - 1)^2 - (z^2 - 1)^2 = 2|y^2 - 1| - 2|z^2 - 1| \end{cases}$$

$$\Rightarrow (x^2 - 1)^2 - (y^2 - 1)^2 + (y^2 - 1)^2 - (z^2 - 1)^2 = 2|x^2 - 1| - 2|y^2 - 1|$$

$$+2|y^2 - 1| - 2|z^2 - 1|$$

$$\Rightarrow (x^2 - 1)^2 - (z^2 - 1)^2 = 2|x^2 - 1| - 2|z^2 - 1|$$

$$\Rightarrow x\Re z$$

$$(0.5)$$

Alors, \Re est transitive.

De (i), (ii) et (iii) on déduit que \Re est une relation d'équivalence.

2. Vérifier que

$$xRy \Leftrightarrow (|x^2 - 1| - |y^2 - 1|)(|x^2 - 1| + |y^2 - 1| - 2) = 0$$

Soient $x, y \in \mathbb{R}$, on a:

$$xRy \Leftrightarrow (x^2 - 1)^2 - (y^2 - 1)^2 = 2|x^2 - 1| - 2|y^2 - 1|$$

$$\Leftrightarrow |x^2 - 1|^2 - |y^2 - 1|^2 - 2(|x^2 - 1| - |y^2 - 1|) = 0$$

$$\Leftrightarrow (|x^2 - 1| - |y^2 - 1|)((|x^2 - 1| + |y^2 - 1|) - 2(|x^2 - 1| - |y^2 - 1|)) = 0$$

$$\Leftrightarrow (|x^2 - 1| - |y^2 - 1|)(|x^2 - 1| + |y^2 - 1| - 2) = 0$$

3. En utilisant la question 2 calculer la classe d'équivalence de 0 : $\operatorname{cl}(0)$

On a:

$$Cl(0) = \{ y \in \mathbb{R} / 0\Re y \}$$
 (0.5)

$$= \{ y \in \mathbb{R} \ / \ 1 - (y^2 - 1)^2 = 2 - 2|y^2 - 1| \}.$$

D'après (2), on a

$$Cl(0) = \{ y \in \mathbb{R} / (1 - |y^2 - 1|) (1 + |y^2 - 1| - 2) = 0 \}$$

$$= \{ y \in \mathbb{R} / (1 - |y^2 - 1|) (|y^2 - 1| - 1) = 0 \}$$

$$= \{ y \in \mathbb{R} / |y^2 - 1| = 1 \}$$

$$|y^2 - 1| = 1 \Leftrightarrow \begin{cases} y^2 - 1 = 1 & \text{si } y \in]-\infty, -1] \cup [1, +\infty[\\ -y^2 + 1 = 1 & \text{si } y \in [-1, 1] \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \pm \sqrt{2} \\ y = 0 \end{cases}$$

donc,

$$Cl(0) = \{-\sqrt{2}, 0, \sqrt{2}\}$$

Exercice 4: (05 points)

On munit $\mathbb{R} - \{-2\}$ de la loi de composition interne * définie par:

$$\forall x, y \in \mathbb{R} - \{-2\}, \ x * y = x + y + \frac{xy}{2}$$

1. Montrer que * est une loi commutative.

$$\forall x, y \in \mathbb{R} - \{-2\}, \quad x * y = y * x$$
 Soient $x, y \in \mathbb{R} - \{-2\}$, on a:
$$x * y = x + y + \frac{xy}{2} = y + x + \frac{yx}{2} = y * x,$$
 (01)

donc, * est commutative.

2. La loi * est admet un élément neutre si

$$\exists e \in \mathbb{R} - \{-2\}, \forall x \in \mathbb{R} - \{-2\}, \ x * e = e * x = x.$$
 (0.5)

Soit $x \in \mathbb{R} - \{-2\}$, on a

$$x * e = x \Leftrightarrow x + e + \frac{xe}{2} = x$$

$$\Leftrightarrow e \left(1 + \frac{x}{2}\right) = 0$$

$$\Leftrightarrow e = 0 \quad \text{car} \quad x \neq -2$$
(01.5)

et comme la loi * est commutative, alors * admet un élément neutre e = 0. L'élément x de $\mathbb{R} - \{-2\}$ admet un symétrique dans $\mathbb{R} - \{-2\}$ si

$$\exists x' \in \mathbb{R} - \{-2\}, x * x' = x' * x = e.$$
 (0.5)

Soit $x \in \mathbb{R} - \{-2\}$, on cherche un élément x' dans $\mathbb{R} - \{-2\}$ tel que x * x' = x' * x = e.

On a:

$$x * x' = e \Leftrightarrow x + x' + \frac{xx'}{2} = 0$$

$$\Leftrightarrow x' \left(1 + \frac{x}{2} \right) = -x$$

$$\Leftrightarrow x' = -\frac{2x}{2+x}, \quad \text{car } x \neq -2$$

$$x' = -\frac{2x}{2+x} \in \mathbb{R} - \{-2\}?$$
Supposons $x' = -2$

$$\Leftrightarrow -2x = -4 - 2x \Leftrightarrow 0 = -4$$

$$(01.5)$$

Ce qui donne une contradiction, alors d'apres le raisonnement par l'absurde, on déduit que

$$x' \neq -2$$

et comme la loi * est commutative, alors l'élément $x \in \mathbb{R} - \{-2\}$ admet un symétrique $x' = -\frac{2x}{2+x}$ dans $\mathbb{R} - \{-2\}$.