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Chapter 5

Polynomials ring

This chapter is depicted to the feild of polynomials, essential tools in various math-
ematical computations and applications. We’ll explore the nature of polynomials, their

degrees, roots, and properties within the context of polynomial rings.

5.1 Construction of polynomials ring

A polynomial with coefficients in K (ring) is defined as a finite sequence (ay, ..., a,) of

elements from K. We denote this polynomial as ZanX " where X is referred to as the
n>0
indeterminate. We denote K[X] as the set of polynomials with coefficients in K.

We define the following operations on K[X]: If P(X) = ZanX" and Q(X) = anX”
n>0 n>0
(where the sequences (a,,) and (b,) are zero from a certain rank), then we have:

(P+@Q)(X) = (an+by) X",

n>0

and

(PQ)(X) = chX”, where ¢, = Zakbn_k.
k=0

n>0
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These two operations make K[X]| into a ring. Let A and B be in K[X], with B = Z b, X"

. Then, the composition of A by B in the polynomial ring K[X] is given as:

N
BoA:anA".

n=0

5.2 Polynomial squares, degree and multiplicity

If P= ano a, X™ is not zero, there exists a larger index n € N such that a,, # 0. This
integer is called the degree of P, denoted deg(P). The corresponding coefficient is called
the leading coefficient of P. By convention, if P is zero, its degree is —oo. A polynomial
with a leading coefficient equal to 1 is called unitary (monic).

For all non-zero polynomials P, @ € K[X], where K is an integral domain, we have

deg(P + Q) < max(deg(P), deg(Q)),

deg(PQ) < deg(P) + deg(Q),

Example 5.2.1. P(z) = 32? + 4x — 2 is a degree two polynomial in the ring Z4|x],
Q(x) = x® — 2z + 3 1s of a degree three polynomial in the ring R[z].

Example 5.2.2. Consider P(x) = 2z = 1 and Q(x) = 2z, P and Q are of degree 1
polynomials in the ring Z4|x],

deg(PQ) = deg(2x(2x + 1)) = deg(2x) = 1, and deg(P) + deg(Q) = 2.

Let K represents the field R or C.

Derivation: ForP = Z%X "k, P = 2@1 na, X" !, called the derivative polynomial
n>0

of P. If deg(P) > 1, then deg(P’') = deg(P) — 1.
Leibniz’s Formula: ForP,Q € K[X] and n € N, we have

(PQ)™ = zn: (Z) PRk

k=0
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Taylor’s Formula: Let P be in K[X] and @ € K. Then

(n)(a)
P(X)=> P (X —a)".

n!

Divisibility, Euclidean Division: Let A, B € K[X]| with B nonzero polynomial. We
say that B divides A if there exists @ € K[X] such that A = BQ. We also say that B is
a divisor of A or that A is a multiple of B.

Two nonzero polynomials A and B in K[X] are said to be associated if A divides B and

B divides A. This is equivalent to saying that there exists A € K* such that A = \B.

Theorem 5.2.3. (Euclidean Division of Polynomials). Let A, B be in K[X] with B
nonzero polynomial. There exists a unique pair (Q, R) € K[X] such that

A = BQ + R and deg(R) < deg(B).

Example 5.2.4. The quotient and remainder on dividing f(X) = X°— X242 by g(X) =
X2 +1 in the following case are:

QX)=X3—X—1and R(X)=X +3.

N
Remark 5.2.5. e A polynomial P = ZanX” € K[X] defines a polynomial function

n=0
N
P:K =K as ﬁ(z) = Zanz". Often, we identify a polynomial with a polynomial
n=0

function.

e We say that a is a root of P if P(a) =0. This is equivalent to saying that (X — a)
divides P.

e In general, the rest of the Fucledian division of a polynomial P(X) by (X — a) is
P(a).

Proposition 5.2.6. If ay,...,a, are distinct roots of P, then (X —ay), ..., (X —a,) divide

P. A polynomial of degree n has at most n roots.

Proposition 5.2.7. Let P be in K[ X], let a € K, and let m € N. We say that a is a root
of multiplicity m if P(a) = P'(a) = ... = P Y(a) = 0 and P™(a) # 0.
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Theorem 5.2.8. Let P € K[X], let a € K, and let m € N. The following statements are

equivalent:
1. a is a root of P with multiplicity m.
2. (X —a),....(X —a)™ divide P, and (X — a)™™ does not divide P.

Definition 5.2.9. A polynomial P(x) of degree N is said to be factored if it can be

expressed as follows:

5.3 Arithmetics of polynomials

In terms of polynomial arithmetic, if A and B are non-zero polynomials in K[X], each
common divisor of A and B of maximal degree is called the GCD of A and B.
We say that A and B are coprime if AA B = 1.

Theorem 5.3.1. (Bezout theorem) Let A, B € K[X] be non-zero. Then ANB =1 if and
only if there exist U,V € K[X| such that AU + BV = 1.

Lemma 5.3.2. (Gauss lemma) Let A, B,C € K[X]| be non-zero. We assume AN B = 1.
Then if A|BC, we have A|C.

Remark 5.3.3. Let A, B be non-zero elements in K[X]| . Any common multiple of A and
B with minimal degree is called the least common multiple (LCM) of A and B. All LCMs
of A and B are associated. In particular, only one is unitary, sometimes referred to as

the LCM of A and B. It’s denoted as AV B.

5.3.1 Irreducible Polynomials

Theorem 5.3.4. d’Alembert-Gauss’s Theorem: Every non-constant polynomial in C[X]

has a root in C.
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Therefore, every non-constant polynomial in C[X] is factorable.
A polynomial P € K[X] is irreducible if it’s of degree greater than or equal to 1, and if
all its divisors are constant polynomials or polynomials associated with P (meaning the

polynomials of the form AP where A € K).

5.3.2 Decomposition into irreducible factors over C[X]

The irreducible polynomials of C[X] are polynomials of degree 1.
Every non-zero polynomial is a product of its leading coefficient and unitary irreducible
polynomials. This decomposition is unique up to the order of terms.
In particular, every non-constant polynomial P in C[X] factors into:

r

P(z) = ay [J(X = xx)

k=1

where x1, T9, ..., x, are the distinct roots of P in C with respective multiplicities vy, vs, ..., V..

Corollary 5.3.5. Let A, B € K[X] with B non-zero. Then B divides A if and only if all
the roots of B are roots of A, and their multiplicity as roots of A is greater than or equal
to their multiplicity as roots of B.

In particular, two non-zero polynomials in C[X] are coprime if and only if they have no

common roots.



