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Chapter 1

Vector spaces

1.1 External operation

Given a field F. We call an external operation on a non empty set E with coefficients

in IF, every application e from F x E to F
o . FxFEF —FE
(,z) +—aex
Example 1.1.1. The application e from Rx C to C, defined by ez = vz , is an external

composition law on C with coefficients in the field R.

Example 1.1.2. The application ® from R x R™ to R™, defined by o ® (1,23, ...,x,) =

(axy, axs, ..., axy,) , is an external composition law on R™ with coefficients in the field R.

1.2 Structure of Vector Space

Definition 1.2.1. Let F be a commutative field. A vector space over F (or F-vector space)
15 any non-empty set E equipped with two operations, an internal one denoted by + and

an external one denoted by e, with coefficients in ¥, satisfying:
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1. (E,+) is an abelian group.
2. Foral a,f €F, u,v € E:

e ae(utv)=aeu+aeun.
o (+p)eu=aeu+ eu.
o (af)eu=ae(feu).

o 1eu=u, where 1 is the identity element of .

The elements of E are called vectors, and the elements of K are called scalars. In all
the examples that follow, the verification of axioms is straightforward and is left to the
students. Only the neutral element values of the internal operation and the symmetric of

an element will be indicated in each case.

Example 1.2.2. Let’s set F = R and E = R?. By the definition of the Cartesian
product, we have if (z,y) and (z',y') are elements of R? and o € R, then addition and

scalar multiplication are defined as follows:

(z,y) + () = (z+ 2"y +y),

ae(r,y) = (ar,ay).
The neutral element of the internal law is the zero vector (0,0). The inverse of (x,y) is

(—x,—y), also denoted as —(x,y)

Example 1.2.3. Let n be an integer greater than or equal to 1. Set F =R and F =R". If
(21, T2, ...y ) and (y1,Y2, ..., Yn) are elements of R™ and a € R, then addition and scalar

multiplication are defined as follows:

(.771,{172, "'7‘1;71) + (y17y27 7y'rl) = (xl + Y1, T2 + Y2, .-y T + yn)7
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ae(ry,Te, ..., T,) = (T, Ao, ..., ATy).

The neutral element of the internal law is the zero vector (0,0,...,0). The inverse of

(‘Tth? '-~7xn) is (_x17 —T2, ..., _xn)-

Example 1.2.4. The set of functions f : R — R is denoted as F(R,R). It is endowed
with the structure of an R-vector space as follows: Let f and g be elements of F(R,R),
and let o be a real number. Let x € R, the internal operation + and the external operation

e are defined by the given expressions,
(f+9)(x) = f(z) + g(z),

(ae f)(x)=axf(z)
The neutral element for addition is the zero function f(x) = 0, for all x in R. The

additive inverse of the element f in F(R,R) is the function —f € F(R,R).

Theorem 1.2.5. Let E be an F-vecor space, then for all u,v € E and o, 5 € F, we have
1. Opex =05 =ae0pg,
2. ae(—u)=—aeu=(—«a)eu,
3. ae(u—v)=ceu—aevand (a—f)eu=ceu— Feu,

4. If ceu =0g then a = 0p or u = 0g.

1.3 Linear combination

Definition 1.3.1. Let n be an integer greater or equal to 1, and let vy, vy, ..., v, be vectors
in a vector space E. Any vector of the form u = ajvy + asvs + ... + a,v,, where a; € F, is
called a linear combination of the vectors vy, vs, ..., v,. The scalars ai,as, ..., a, are called

coefficients of the linear combination.
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Remark 1.3.2. In the case of n =1, then u = av, and u is said to be colinear with v.

Example 1.3.3. In the R-vector space R3, (3,3,1) is a linear combination of the vectors

(1,1,0) and (1,1,1) because we have the equality

(3,3,1) =2(1,1,0) + (1,1,1).

1.4 Vector Subspace

A subset F of a F-vector space E is called a vector subspace if it is non-empty and
itself forms a F-vector space with the operations restricted to F: internal addition (+)

and external scalar multiplication (e).

Proposition 1.4.1. A subset F' of vector space E is a vector subspace if and only if:
1. F contains the zero element Og.
2. ForallaeF and allx,ye Fx—y€eF and aex € F.

Proof:

a) Suppose F'is a vector subspace of F under the restricted operations. The external
operation of F induces an external operation on F, so for all « € F and all x € F,
we have a - x € F. Regarding internal addition (+), (F,+) is a subgroup of E,

hence O € F, and for all x and y in F', we have z — y € F.

b) Suppose F' satisfies assertions 1) and 2). Then, (F,+) is a subgroup of the commu-
tative group (E, +). Assertion 2) shows that the external scalar multiplication of F
induces an external scalar multiplication on F', and the fact that (£ -) is a subgroup
ensures assertion 2) of definition 1.2.1. Consequently, F is a vector space under the

restricted operations of F, i.e., a vector subspace of E.
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Corollary 1.4.2. A subset F' of E is a vector subspace of the F-vector space E if and

only if:
1. F contains the zero element Og.
2. Foralla,f€F and all z,y € F, ax + By € F.
Examples 1.4.3. 1. F'={(z,y,2) € R3:2x +y— 32 =0} is a subspace of R3.

2. F={(x,y,2) € R®:y—22—2 =0} is not a subspace of R3. Indeed, (0,0,0) is not
n F.

3. F={(x,y) e R?: z+y =0} is a subspace of R.

1.5 Direct Sums

Theorem 1.5.1. The finite sum of subspaces of a F-vector space E is a subspace of E.

In other words, if F1, Fs, ..., F, is a finite family of subspaces of a F-vector space E, then
n

ZE is a subspace of E.

=1

Proof:

1. For every i € {1,2,...,n}, we have O € F};,; s0 0Op =0 +0g + ... + 0 € ZE (n
i=1
times).

2. Ifa,b e ZE and o, § € F, then a = Zai and b = Zbi’ with a;, b; € F;. We have

i=1 i=1 i=1
n

OAOCH-BO():ONZCM-FB'Z(% = Z(aoai—i—ﬁobi). Then, cea+ [ ebc ZE
i=1

i=1 i=1 =1

Consequently, ZE is a subspace of F.
i=1
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Definition 1.5.2. A sum F' = F\ + ...+ F,, is said to be direct sum, if every vector u in
F can be uniquely expressed as u = uy + ...+ u,, where u; € F; fort=1,2,... ,n. It s

denoted as F = F1 © ... D F,.
Example 1.5.3. Let F} and F, be subspaces of R® defined by
Py ={(z,y,2) €eR® |z +y+ 2z =0}
Fy={(z,y,2)R® | 2 — 2 = 0}.

The sum Fy + F5 is not direct since we have the following inequalily

1 1 0 -1 2
ol =|-2f+|4|=]2|+]0
1 1 0 -1 2

1 0 -1 2

We have | —2 | € Fy and | 4 | € Fy, we also have | 92 | € Fy and | o | F5.

1 0 -1 2
The decomposition of an element of F| + Fy as summation of an element in Fy and an

element in Fy is not unique. Then, the sum is not direct.

Definition 1.5.4. The vector space E is said to be the direct sum of subspaces FEy and Es,
or that the subspaces are complementary in E, when Ey + Ey = E and E1 N Ey = {0g}.

In this case, it is denoted as E = E1 @ Fs.
Example 1.5.5. Let E = R? and Fy, F, be subspaces of R? defined by
By =R x {0} = {(z,0) e R* | 2 € R}

and

Fy = {0} xR = {(0,y) € R* | y € R}.

It is evident that E = Fy + Fy, and the intersection is {Og2}, so E = F} @ Fy.
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1.6 Intersection of Vector Subspaces

Proposition 1.6.1. Let F,G be vector subspaces of a vector space E over field F. The
intersection ' G is a vector subspace of E. More generally, if (F;)icr is a family of

vector subspaces of E, then the set NF; is a subspace of E.

Example 1.6.2. The following sets Fy, Fy defined below are vector subspaces of R3
Fi={0} xRxR={(0,y,2) € R®y,z € R},
F, =R x {0} x R={(z,0,2) € R® z, 2, € R}.

Fy N F; is a vector subspace of R3.

Remark 1.6.3. [t should be noted that the union of vector subspaces of E is not neces-
sarily a vector subspace of E. For example, consider the two subspaces Ey and Fs of the

product space R? defined by
E; =R x {0}, E;={0} xR

The set Ey U Ey is not a subspace of R* since (1,0) € Ey and (0,1) € Fy. However,

(1,0) + (0,1) = (1,1) ¢ E, U E,.



