## 1.7 Spanning vector spaces

**Definition 1.7.1.** Let  $\mathcal{F} = \{v_1, v_2, ..., v_n\}$  be a family of vectors in an  $\mathbb{F}$ -vector space E. The vector subspace spanned by  $\mathcal{F}$ , denoted as  $vect(\mathcal{F})$  (or  $span(\mathcal{F})$ ), is defined as the set of all linear combinations of elements in  $\mathcal{F}$ , and we have

$$u \in vect(\mathcal{F}) \iff \exists \alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{F}: u = \alpha_1 v_1 + \alpha_2 v_2 + ... + \alpha_n v_n.$$

**Proposition 1.7.2.** Let  $\mathcal{G}$  be a family of vectors in E, and F be a vector subspace of E. The following properties are equivalent:

- 1. F is the smallest vector subspace containing G.
- 2. F is the intersection of all vector subspaces containing  $\mathcal{G}$ .
- 3. F is the set of all linear combinations of vectors in  $\mathcal{G}$ , i.e.,  $F = vect(\mathcal{G})$ .

**Example 1.7.3.** 1. In  $\mathbb{R}^3$ , let  $u_1 = (1,0,0)$  and  $u_2 = (0,1,0)$ , then  $vect(u_1, u_2) = \{(x,y,0), x,y \in \mathbb{R}\}.$ 

2. Let  $E_1 = \{(x, y, z) \in \mathbb{R}^3, x + y - z = 0\}$ , we have

$$E_1 = \{x(1,0,1) + y(0,1,1), x, y \in \mathbb{R}\} = vect((1,0,1), (0,1,1)).$$

Which means that  $E_1$  is a subspace of  $\mathbb{R}^3$  generated by (1,0,1),(0,1,1).

## 1.8 Linearly independent, dependents and generating sets, bases

**Definition 1.8.1.** Let E be an  $\mathbb{F}$ -vector space and  $\mathcal{B} = (u_1, u_2, ..., v_n)$  a family of vectors of E.

1. The family  $\mathcal{B}$  is said to be linearly dependent if there exists scalars  $\lambda_1, \lambda_2, ..., \lambda_n$  not all zeros, in  $\mathbb{F}$  satisfying  $\lambda_1 u_1 + \lambda_2 u_2 + ... + \lambda_n u_n = 0$ .

2. The family  $\mathcal{B}$  is said to be linearly independent if

$$\lambda_1 u_1 + \lambda_2 u_2 + ... + \lambda_n u_n = 0 \implies \lambda_i = 0, i = 1, ..., n.$$

- **Example 1.8.2.** 1. Let the family  $\mathcal{B} = \{1, i\}$  in  $\mathbb{R}$ -vector space  $\mathbb{C}$ ,  $\mathcal{B}$  is a linearly independent family, since  $\forall \alpha, \beta \in \mathbb{R}$ ,  $\alpha(1) + i\beta = 0$  implies  $\alpha = \beta = 0$ .
  - 2. Let the family  $\mathcal{B} = \{1, X, X^2\}$  in  $\mathbb{R}$ -vector space  $\mathbb{R}_2[X]$  (the set of polynomials of degree less or equal to 2).

Let  $\alpha, \beta, \gamma \in \mathbb{R}$ ,  $\alpha(1) + \beta(X) + \gamma(X^2) = 0$  implies  $\alpha = \beta = \gamma = 0$ . Which means  $\mathcal{B}$  is a linearly independent set in  $\mathbb{R}_2[X]$ .

- 3. The set  $\mathcal{B} = \{(1,2,-1),(3,0,1),(0,-6,4)\}$  is linearly dependent in  $\mathbb{R}^3$ . Since  $\alpha(1,2,-1) + \beta(3,0,1) + \gamma(0,-6,4) = 0_{\mathbb{R}^3}$ , implies  $\alpha = 3$ ,  $\beta = -1$  and  $\gamma = 1$ .
- **Definition 1.8.3.** Let E be an  $\mathbb{F}$ -vector space and  $\mathcal{B}$  a family of vectors in E,  $\mathcal{B}$  is said generating family or span of E if  $E = span(\mathcal{B})$ . In other words, any vector of E can be written as a linear combination of vectors in E.
- **Examples 1.8.4.** 1. Let in  $\mathbb{R}^3$ , the family of vectors  $\mathcal{B} = \{e_1(1,0,0), e_2(0,1,0), e_3(0,0,1)\}$ . Then,  $\mathbb{R}^3 = span\{\mathcal{B}\}$ , since  $\forall u(x,y,z) \in \mathbb{R}^3$ :  $u = xe_1 + ye_2 + ze_3$ .
  - 2. Let in  $\mathbb{R}^n$ , the family of vectors  $\mathcal{B} = \{e_1(1,0,...,0), e_2(0,1,...,0), ..., e_n(0,...,0,1)\}$ . Hence,  $\mathbb{R}^n = span\{\mathcal{B}\}$ .

**Definition 1.8.5.** We say that a family  $\mathcal{B} = \{u_1, ..., u_n\}$  of a vector space, basis of E if any vector of E can be written uniquely as linear combination of vectors in  $\mathcal{B}$ . In other words,

$$\forall u \in E, \exists! \alpha_1, ..., \alpha_n \in \mathbb{F}, \text{ such that } u = \alpha_1 u_1 + ... + \alpha_n u_n.$$

**Proposition 1.8.6.** Let E be a vector space, and  $\mathcal{B}$  a family of vectors in E. We say that  $\mathcal{B}$  is a basis for E if and only if, it is linearly independent and generating family of E. On note dimE, the dimension of the vector space E and we have dim $(E) = \operatorname{card}(\mathcal{B})$ , where  $\mathcal{B}$  is a basis for E.

- **Examples 1.8.7.** 1. Let in  $\mathbb{R}^3$ , the subspace  $S = span\{(1, -4, -3)^t, (-3, 6, 7)^t, (-4, -2, 6)^t\}$ , the basis of S is  $\{(1, -4, -3)^t, (-3, 6, 7)^t\}$ , since it is a linearly independent and a generating set for S.
  - 2. Let in  $\mathbb{R}^3$ , the subspace  $S = \{(x, y, z) \in \mathbb{R}^3, x + 2y z = 0\}$ . We have for any  $u(x, y, z) \in S$ , z = x + 2y, which means

$$(x, y, z) = (x, y, x + 2y) = x(1, 0, 1) + y(0, 1, 2), x, y \in \mathbb{R}.$$

Then,  $S = span\{(1,0,1), (0,1,2)\}$  and since (1,0,1), (0,1,2) are linearly independent, then  $\{(1,0,1), (0,1,2)\}$  is a basis for S, dim(S) = 2.

**Theorem 1.8.8.** Let  $\mathcal{B} = \{u_1, ..., u_n\}$  be a finite subset of a  $\mathbb{F}$ -vector space E. Then the following statements are equivalent:

- 1.  $\mathcal{B}$  is a basis of E.
- 2.  $\mathcal{B}$  is a maximal linearly independent set in E.
- 3.  $\mathcal{B}$  is a minimal spanning set for E.
- 4. Every  $u \in E$  can be uniquely written as  $u = \alpha_1 u_1 + ... + \alpha_n u_n$ , with  $\alpha_1, ..., \alpha_n \in \mathbb{F}$ .

Corollary 1.8.9. Let  $E_1$  and  $E_2$  be two finite sets of an  $\mathbb{F}$ -vector space E such that  $E_1$  is linearly independent, and  $E_2$  is a generating set, and  $E_1 \subset E_2$ . Then, there exists a basis A of E such that  $E_1 \subset A \subset E_2$ .

Corollary 1.8.10. (Theorem of incomplete basis). If E is an  $\mathbb{F}$ -vector space of finite dimension and  $E_1$  is a linearly independent family of vectors of E, then there exists a basis A of E, such that  $E_1 \subset A$ .

**Examples 1.8.11.** 1.  $dim_{\mathbb{R}}\mathbb{C} = 2$ , since  $\{1, i\}$  is a basis of  $\mathbb{C}$  as a vector space over  $\mathbb{R}$ .

$$\forall z \in \mathbb{C}, \ z = x(1) + y(i), \ x, y \in \mathbb{R}.$$

2.  $dim_{\mathbb{C}}\mathbb{C}=1$ , since  $\{1\}$  is a basis of  $\mathbb{C}$  as a vector space over  $\mathbb{C}$ .

$$\forall z \in \mathbb{C}, \ z = z(1).$$

3.  $dim_{\mathbb{B}}\mathbb{R}^n = n$ , since  $\{e_1, e_2, ..., e_n\}$  is a basis of  $\mathbb{R}^n$  as a vector space over  $\mathbb{R}$ .

**Example 1.8.12.** Let  $E = span\{u = (1, -4, -3)^t, v = (-3, 6, 7)^t, w = (-4, -2, 6)^t\}$ , find a basis for E.

Let  $\mathcal{B} = \{(1, -4, -3)^t, (-3, 6, 7)^t, (-4, -2, 6)^t\}$ ,  $\mathcal{B}$  is generating. However, the vectors are linearly dependents, since, there exists  $\alpha, \beta, \gamma \in \mathbb{R}$ , such that  $\alpha u + \beta v + \gamma w = 0_{\mathbb{R}^3}$ . Choose  $\alpha = -5$ ,  $\beta = -3$  and  $\gamma = 1$ .

Consider  $\mathcal{B}' = \{u = (1, -4, -3)^t, v = (-3, 6, 7)^t\}$ ,  $\mathcal{B}'$  is linearly independent and generating family for E, then  $\mathcal{B}'$  is a basis of E and dimE = 2.

**Exercise 1.8.13.** Consider the subspace E of  $\mathbb{R}^3$  defined by:

$$E = \{(x, y, z) \in \mathbb{R}^3, \ x + y - 2z = 0 \land x - 3z = 0\}.$$

- 1. Determine a basis of E and precise its dimension.
- 2. Determine dim F, where F is a subspace of  $\mathbb{R}^3$  spanned by the vectors

$$u_1(1,2,2), u_2(0,6,-2), u_3(1,5,1).$$

- 3. Determine  $E \cap F$ .
- 4. Is  $\mathbb{R}^3 = E \oplus F$ ? justify.