University of science and technology Oran M-B

Academic year 2023/2024 Algebra 2

Department of Mathematics

Exercise series $N^{\circ}01$

Exercise 01:

Let $\mathbb{R}[X]_{\leq n}$ the set of polynomials of degree less or equal to n with real coefficients, and the operations, addition "+" of polynomials, and scalar multiplication of polynomials by real number, noted "•".

- 1. Show that $(\mathbb{R}[X]_{\leq n}, +, \bullet)$ is an \mathbb{R} -vector apace.
- 2. What happen if we consider $\mathbb{R}[X]_{=n}$?
- 3. The set of functions $f : \mathbb{R} \longrightarrow \mathbb{R}$, noted $\mathcal{F}(\mathbb{R}, \mathbb{R})$ with the operation:
 - Internal operation "+": let $f, g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$, then $\forall x \in \mathbb{R}$, (f+g)(x) = f(x) + g(x).
 - External operation "•": Let $\alpha \in \mathbb{R}$, and let $f \in \mathcal{F}(\mathbb{R},\mathbb{R})$, then $\forall x \in \mathbb{R}$, $(\alpha \bullet f)(x) = \alpha \bullet f(x)$. Show that $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\bullet)$ is an \mathbb{R} -vector space.

Exercise 02:

Let $E = \mathbb{R}^2$ with the operations, an internal operation + and an external one noted • defined by

$$\forall (x,y), (x',y') \in \mathbb{R}^2, \forall \alpha \in \mathbb{R}: \ (x,y) + (x',y') = (x+x',y+y'), \ \alpha \bullet (x,y) = (\alpha x,0)$$

Is $(E, +, \bullet)$ an \mathbb{R} -vector space? Justify.

Exercise 03:

Say whether the following sets are vector-subspaces of E or not.

1. $E_1 = \{(x, y, z) \in \mathbb{R}^3, x + 2y - z = 0\}, E = \mathbb{R}^3.$

2.
$$E_2 = \{(x, y) \in \mathbb{R}^2, xy = 0\}, E = \mathbb{R}^2.$$

3. $E_3 = \{P \in \mathbb{R}_2[X], P + P' = 0\}, E = \mathbb{R}_2[X].$

4. $E_4 = \{(x, y, z) \in \mathbb{R}^3, x + 2y - z = 0\} \cap \{(x, y, z) \in \mathbb{R}^3, x - y + z = 0\}, E = \mathbb{R}^3.$

Exercise 04:

• In the following cases, is the vector U a linear combination of the vectors U_i :

1. $E = \mathbb{R}^2$, $U = (1,2)^t$, $U_1 = (1,-2)^t$, $U_2 = (2,3)^t$. 2. $E = \mathbb{R}^2$, $U = (1,2)^t$, $U_1 = (1,-2)^t$, $U_2 = (2,3)^t$, $U_3 = (-4,5)^t$. 3. $E = \mathbb{R}^3$, $U = (2,5,3)^t$, $U_1 = (1,3,2)^t$, $U_2 = (1,-1,4)^t$.

• In the vector space $\mathcal{F}(\mathbb{R},\mathbb{R})$, are the function $x \mapsto e^x$ and $x \mapsto sin(x)$ linear combinations of the functions $x \mapsto cos(x)$ and $x \mapsto sin(x)$

Exercise 05:

Let $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ the vector space of functions from \mathbb{R} to \mathbb{R} , we consider F the vector subspace of the even functions, and G the subspaces of the odd functions. Prove that $E = F \oplus G$. Exercise 06:

1. Are the following vectors form a linearly independent, generating family in \mathbb{R}^3 ?

$$B_1 = \{(-1,1,2)^t, (4,2,5)^t\}, B_2 = \{(1,2,0)^t, (2,0,0)^t, (0,1,0)^t, (1,1,1)^t\}, B_3 = \{(1,1,0)^t, (4,1,4)^t, (2,-1,4)^t\}.$$

2. Let in \mathbb{R}^4 , the following vectors $U = (1, 2, 3, 4)^t$ and $V = (1, -2, 3, -4)^t$. Can you find α and β such that $(\alpha, 1, \beta, 1)^t \in Vect\{U, V\}$, and $(\alpha, 1, 1, \beta)^t \in Vect\{U, V\}$.

Exercise 07:

Prove that the vectors $U = (0, 1, 1)^t$, $V = (1, 0, 1)^t$ and $W = (1, 1, 0)^t$ form a basis for \mathbb{R}^3 . Find the coordinates of the vector $(1, 1, 1)^t$ in this basis.

Exercise 08:

1. Consider F be a subset of \mathbb{R}^3 defined by

$$F = \{(x, y, z) \in \mathbb{R}^3, z = -2x\}$$

Prove that F is a vector-subspace of \mathbb{R}^3 and determine dim F.

- 2. Let $U = (-1, 0, 2)^t$, $V = (1, 2, 0)^t$ and $W = (2, 2, -2)^t$ Determine the vector-subspace G generated by $\{U, V, W\}$, as well as its dimension.
- 3. Determine $F \cap G$ and its dimension.
- 4. Is $\mathbb{R}^3 = F \oplus G$? Justify.

Exercise 09:

Determine the rank of the family F in \mathbb{R}^3 , where $F = \{U_1, U_2, U_3, U_4\}$, and $U_1 = (1, 0, 2)^t$, $U_2 = (2, 1, 1)^t$, $U_3 = (-1, -2, 4)^t$ and $U_4 = (2, -1, 7)^t$.

Supplementary Exercises

Exercise 10:

Let $E = \{(x, y, z, t) \in \mathbb{R}^4, x - t = 0 \text{ and } y + z = 0\}$ and $F = \langle \{U, V, W\} \rangle$, where $U = (1, -1, 1, 1)^t$, $V = (1, 1, -1, 1)^t$, $W = (1, 1, 1, -1)^t$.

- 1. Prove that E is a vector subspace of \mathbb{R}^4 .
- 2. Determine the subspace E + F, is this summation direct.

Exercise 11: Let $E = \{P \in \mathbb{R}_2[X], P(1) = 0\}$

- 1. Prove that E is a vector-subspace of $\mathbb{R}_2[X]$.
- 2. Determine a basis for E, and conclude its dimension.

Exercise 12:

In the vector space \mathbb{R}^3 , we consider the following vector-subspaces:

 $F = \{(x, y, z) \in \mathbb{R}^3, \ x + y + z = 0\}, \ G = \{(x, y, z) \in \mathbb{R}^3, \ x = y = z\} \ and \ H = \{(x, y, z) \in \mathbb{R}^3, \ x = y = 0\}.$

1. Find a basis for each of the previous vector-subspace.

2. Is $\mathbb{R}^3 = F \oplus G$? Is $\mathbb{R}^3 = F \oplus H$? What do you conclude?