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Preface

The response of students and teachers to the first four editions of Linear Algebra and Its
Applications has been most gratifying. This Fifth Edition provides substantial support
both for teaching and for using technology in the course. As before, the text provides
a modern elementary introduction to linear algebra and a broad selection of interest-
ing applications. The material is accessible to students with the maturity that should
come from successful completion of two semesters of college-level mathematics, usu-
ally calculus.

The main goal of the text is to help students master the basic concepts and skills they
will use later in their careers. The topics here follow the recommendations of the Linear
Algebra Curriculum Study Group, which were based on a careful investigation of the
real needs of the students and a consensus among professionals in many disciplines that
use linear algebra. We hope this course will be one of the most useful and interesting
mathematics classes taken by undergraduates.

WHAT'S NEW IN THIS EDITION

viii

The main goals of this revision were to update the exercises, take advantage of improve-
ments in technology, and provide more support for conceptual learning.

1. Support for the Fifth Edition is offered through MyMathLab. MyMathLab, from
Pearson, is the world’s leading online resource in mathematics, integrating interac-
tive homework, assessment, and media in a flexible, easy-to-use format. Students
submit homework online for instantaneous feedback, support, and assessment. This
system works particularly well for computation-based skills. Many additional re-
sources are also provided through the MyMathLab web site.

2. The Fifth Edition of the text is available in an interactive electronic format. Using
the CDF player, a free Mathematica player available from Wolfram, students can
interact with figures and experiment with matrices by looking at numerous examples
with just the click of a button. The geometry of linear algebra comes alive through
these interactive figures. Students are encouraged to develop conjectures through
experimentation and then verify that their observations are correct by examining the
relevant theorems and their proofs. The resources in the interactive version of the
text give students the opportunity to play with mathematical objects and ideas much
as we do with our own research. Files for Wolfram CDF Player are also available for
classroom presentations.

3. The Fifth Edition includes additional support for concept- and proof-based learning.
Conceptual Practice Problems and their solutions have been added so that most sec-
tions now have a proof- or concept-based example for students to review. Additional
guidance has also been added to some of the proofs of theorems in the body of the
textbook.
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4. More than 25 percent of the exercises are new or updated, especially the computa-
tional exercises. The exercise sets remain one of the most important features of this
book, and these new exercises follow the same high standard of the exercise sets from
the past four editions. They are crafted in a way that reflects the substance of each
of the sections they follow, developing the students’ confidence while challenging
them to practice and generalize the new ideas they have encountered.

DISTINCTIVE FEATURES

Early Introduction of Key Concepts

Many fundamental ideas of linear algebra are introduced within the first seven lectures,
in the concrete setting of R”, and then gradually examined from different points of view.
Later generalizations of these concepts appear as natural extensions of familiar ideas,
visualized through the geometric intuition developed in Chapter 1. A major achievement
of this text is that the level of difficulty is fairly even throughout the course.

A Modern View of Matrix Multiplication

Good notation is crucial, and the text reflects the way scientists and engineers actually
use linear algebra in practice. The definitions and proofs focus on the columns of a ma-
trix rather than on the matrix entries. A central theme is to view a matrix—vector product
AX as a linear combination of the columns of A. This modern approach simplifies many
arguments, and it ties vector space ideas into the study of linear systems.

Linear Transformations

Linear transformations form a “thread” that is woven into the fabric of the text. Their
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear transfor-
mations provide a dynamic and graphical view of matrix—vector multiplication.

Eigenvalues and Dynamical Systems

Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material
is spread over several weeks, students have more time than usual to absorb and review
these critical concepts. Eigenvalues are motivated by and applied to discrete and con-
tinuous dynamical systems, which appear in Sections 1.10, 4.8, and 4.9, and in five
sections of Chapter 5. Some courses reach Chapter 5 after about five weeks by covering
Sections 2.8 and 2.9 instead of Chapter 4. These two optional sections present all the
vector space concepts from Chapter 4 needed for Chapter 5.

Orthogonality and Least-Squares Problems

These topics receive a more comprehensive treatment than is commonly found in begin-
ning texts. The Linear Algebra Curriculum Study Group has emphasized the need for
a substantial unit on orthogonality and least-squares problems, because orthogonality
plays such an important role in computer calculations and numerical linear algebra and
because inconsistent linear systems arise so often in practical work.
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PEDAGOGICAL FEATURES

Applications

A broad selection of applications illustrates the power of linear algebra to explain fun-
damental principles and simplify calculations in engineering, computer science, mathe-
matics, physics, biology, economics, and statistics. Some applications appear in separate
sections; others are treated in examples and exercises. In addition, each chapter opens
with an introductory vignette that sets the stage for some application of linear algebra
and provides a motivation for developing the mathematics that follows. Later, the text
returns to that application in a section near the end of the chapter.

A Strong Geometric Emphasis

Every major concept in the course is given a geometric interpretation, because many
students learn better when they can visualize an idea. There are substantially more
drawings here than usual, and some of the figures have never before appeared in a linear
algebra text. Interactive versions of these figures, and more, appear in the electronic
version of the textbook.

Examples

This text devotes a larger proportion of its expository material to examples than do most
linear algebra texts. There are more examples than an instructor would ordinarily present
in class. But because the examples are written carefully, with lots of detail, students can
read them on their own.

Theorems and Proofs

Important results are stated as theorems. Other useful facts are displayed in tinted boxes,
for easy reference. Most of the theorems have formal proofs, written with the beginner
student in mind. In a few cases, the essential calculations of a proof are exhibited in a
carefully chosen example. Some routine verifications are saved for exercises, when they
will benefit students.

Practice Problems

A few carefully selected Practice Problems appear just before each exercise set. Com-
plete solutions follow the exercise set. These problems either focus on potential trouble
spots in the exercise set or provide a “warm-up” for the exercises, and the solutions
often contain helpful hints or warnings about the homework.

Exercises

The abundant supply of exercises ranges from routine computations to conceptual ques-
tions that require more thought. A good number of innovative questions pinpoint con-
ceptual difficulties that we have found on student papers over the years. Each exercise
set is carefully arranged in the same general order as the text; homework assignments
are readily available when only part of a section is discussed. A notable feature of the
exercises is their numerical simplicity. Problems “unfold” quickly, so students spend
little time on numerical calculations. The exercises concentrate on teaching understand-
ing rather than mechanical calculations. The exercises in the Fifth Edition maintain the
integrity of the exercises from previous editions, while providing fresh problems for
students and instructors.

Exercises marked with the symbol [M] are designed to be worked with the aid of a
“Matrix program” (a computer program, such as MATLAB®, Maple™ , Mathematica®
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MathCad®, or Derive™, or a programmable calculator with matrix capabilities, such as
those manufactured by Texas Instruments).

True/False Questions

To encourage students to read all of the text and to think critically, we have devel-
oped 300 simple true/false questions that appear in 33 sections of the text, just after
the computational problems. They can be answered directly from the text, and they
prepare students for the conceptual problems that follow. Students appreciate these
questions —after they get used to the importance of reading the text carefully. Based
on class testing and discussions with students, we decided not to put the answers in the
text. (The Study Guide tells the students where to find the answers to the odd-numbered
questions.) An additional 150 true/false questions (mostly at the ends of chapters) test
understanding of the material. The text does provide simple T/F answers to most of
these questions, but it omits the justifications for the answers (which usually require
some thought).

Writing Exercises

An ability to write coherent mathematical statements in English is essential for all stu-
dents of linear algebra, not just those who may go to graduate school in mathematics.
The text includes many exercises for which a written justification is part of the answer.
Conceptual exercises that require a short proof usually contain hints that help a student
get started. For all odd-numbered writing exercises, either a solution is included at the
back of the text or a hint is provided and the solution is given in the Study Guide,
described below.

Computational Topics

The text stresses the impact of the computer on both the development and practice of
linear algebra in science and engineering. Frequent Numerical Notes draw attention
to issues in computing and distinguish between theoretical concepts, such as matrix
inversion, and computer implementations, such as LU factorizations.

MyMathLab—Online Homework and Resources

Support for the Fifth Edition is offered through MyMathLab (www.mymathlab.com).
MyMathLab from Pearson is the world’s leading online resource in mathematics, inte-
grating interactive homework, assessment, and media in a flexible, easy-to-use format.
MyMathLab contains hundreds of algorithmically generated exercises that mirror those
in the textbook. Students submit homework online for instantaneous feedback, support,
and assessment. This system works particularly well for supporting computation-based
skills. Many additional resources are also provided through the MyMathLab web site.

Interactive Textbook

The Fifth Edition of the text is available in an interactive electronic format within
MyMathLab. Using Wolfram CDF Player, a free Mathematica player available from
Wolfram (www.wolfram.com/player), students can interact with figures and experiment
with matrices by looking at numerous examples. The geometry of linear algebra comes
alive through these interactive figures. Students are encouraged to develop conjectures
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through experimentation, then verify that their observations are correct by examining
the relevant theorems and their proofs. The resources in the interactive version of the
text give students the opportunity to interact with mathematical objects and ideas much
as we do with our own research.

This web site at www.pearsonhighered.com/lay contains all of the support material
referenced below. These materials are also available within MyMathLab.

Review Material

Review sheets and practice exams (with solutions) cover the main topics in the text.
They come directly from courses we have taught in the past years. Each review sheet
identifies key definitions, theorems, and skills from a specified portion of the text.

Applications by Chapters

The web site contains seven Case Studies, which expand topics introduced at the begin-
ning of each chapter, adding real-world data and opportunities for further exploration. In
addition, more than 20 Application Projects either extend topics in the text or introduce
new applications, such as cubic splines, airline flight routes, dominance matrices in
sports competition, and error-correcting codes. Some mathematical applications are
integration techniques, polynomial root location, conic sections, quadric surfaces, and
extrema for functions of two variables. Numerical linear algebra topics, such as con-
dition numbers, matrix factorizations, and the QR method for finding eigenvalues, are
also included. Woven into each discussion are exercises that may involve large data sets
(and thus require technology for their solution).

Getting Started with Technology

If your course includes some work with MATLAB, Maple, Mathematica, or TI calcula-
tors, the Getting Started guides provide a “quick start guide” for students.

Technology-specific projects are also available to introduce students to software
and calculators. They are available on www.pearsonhighered.com/lay and within
MyMathLab. Finally, the Study Guide provides introductory material for first-time
technology users.

Data Files

Hundreds of files contain data for about 900 numerical exercises in the text, Case
Studies, and Application Projects. The data are available in a variety of formats—for
MATLAB, Maple, Mathematica, and the Texas Instruments graphing calculators. By
allowing students to access matrices and vectors for a particular problem with only a few
keystrokes, the data files eliminate data entry errors and save time on homework. These
data files are available for download at www.pearsonhighered.com/lay and MyMathLab.

Projects

Exploratory projects for Mathematica,™ Maple, and MATLAB invite students to dis-
cover basic mathematical and numerical issues in linear algebra. Written by experi-
enced faculty members, these projects are referenced by the icon at appropriate
points in the text. The projects explore fundamental concepts such as the column space,
diagonalization, and orthogonal projections; several projects focus on numerical issues
such as flops, iterative methods, and the SVD; and a few projects explore applications
such as Lagrange interpolation and Markov chains.
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Study Guide

A printed version of the Study Guide is available at low cost. It is also available electron-
ically within MyMathLab. The Guide is designed to be an integral part of the course. The
icon[ se |in the text directs students to special subsections of the Guide that suggest how
to master key concepts of the course. The Guide supplies a detailed solution to every
third odd-numbered exercise, which allows students to check their work. A complete
explanation is provided whenever an odd-numbered writing exercise has only a “Hint”
in the answers. Frequent “Warnings” identify common errors and show how to prevent
them. MATLAB boxes introduce commands as they are needed. Appendixes in the Study
Guide provide comparable information about Maple, Mathematica, and TI graphing
calculators (ISBN: 0-321-98257-6).

Instructor’s Edition

For the convenience of instructors, this special edition includes brief answers to all
exercises. A Note to the Instructor at the beginning of the text provides a commentary
on the design and organization of the text, to help instructors plan their courses. It also
describes other support available for instructors (ISBN: 0-321-98261-4).

Instructor’s Technology Manuals

Each manual provides detailed guidance for integrating a specific software package or
graphing calculator throughout the course, written by faculty who have already used
the technology with this text. The following manuals are available to qualified instruc-
tors through the Pearson Instructor Resource Center, www.pearsonhighered.com/irc and
MyMathLab: MATLAB (ISBN: 0-321-98985-6), Maple (ISBN: 0-134-04726-5),
Mathematica (ISBN: 0-321-98975-9), and TI-83+/89 (ISBN: 0-321-98984-8).

Instructor’s Solutions Manual

The Instructor’s Solutions Manual (ISBN 0-321-98259-2) contains detailed solutions
for all exercises, along with teaching notes for many sections. The manual is available
electronically for download in the Instructor Resource Center (www.pearsonhighered.
com/lay) and MyMathLab.

PowerPoint® Slides and Other Teaching Tools

A brisk pace at the beginning of the course helps to set the tone for the term. To get
quickly through the first two sections in fewer than two lectures, consider using
PowerPoint® slides (ISBN 0-321-98264-9). They permit you to focus on the process
of row reduction rather than to write many numbers on the board. Students can receive
a condensed version of the notes, with occasional blanks to fill in during the lecture.
(Many students respond favorably to this gesture.) The PowerPoint slides are available
for 25 core sections of the text. In addition, about 75 color figures from the text are
available as PowerPoint slides. The PowerPoint slides are available for download at
www.pearsonhighered.com/irc. Interactive figures are available as Wolfram CDF Player
files for classroom demonstrations. These files provide the instructor with the oppor-
tunity to bring the geometry alive and to encourage students to make conjectures by
looking at numerous examples. The files are available exclusively within MyMathLab.
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TestGen

TestGen (www.pearsonhighered.com/testgen) enables instructors to build, edit, print,
and administer tests using a computized bank of questions developed to cover all the
objectives of the text. TestGen is algorithmically based, allowing instructors to create
multiple, but equivalent, versions of the same question or test with the click of a but-
ton. Instructors can also modify test bank questions or add new questions. The soft-
ware and test bank are available for download from Pearson Education’s online catalog.

(ISBN: 0-321-98260-6)
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A Note to Students

This course is potentially the most interesting and worthwhile undergraduate mathe-
matics course you will complete. In fact, some students have written or spoken to us
after graduation and said that they still use this text occasionally as a reference in their
careers at major corporations and engineering graduate schools. The following remarks
offer some practical advice and information to help you master the material and enjoy
the course.

In linear algebra, the concepts are as important as the computations. The simple
numerical exercises that begin each exercise set only help you check your understanding
of basic procedures. Later in your career, computers will do the calculations, but you
will have to choose the calculations, know how to interpret the results, and then explain
the results to other people. For this reason, many exercises in the text ask you to explain
or justify your calculations. A written explanation is often required as part of the answer.
For odd-numbered exercises, you will find either the desired explanation or at least a
good hint. You must avoid the temptation to look at such answers before you have tried
to write out the solution yourself. Otherwise, you are likely to think you understand
something when in fact you do not.

To master the concepts of linear algebra, you will have to read and reread the text
carefully. New terms are in boldface type, sometimes enclosed in a definition box. A
glossary of terms is included at the end of the text. Important facts are stated as theorems
or are enclosed in tinted boxes, for easy reference. We encourage you to read the first
five pages of the Preface to learn more about the structure of this text. This will give
you a framework for understanding how the course may proceed.

In a practical sense, linear algebra is a language. You must learn this language the
same way you would a foreign language —with daily work. Material presented in one
section is not easily understood unless you have thoroughly studied the text and worked
the exercises for the preceding sections. Keeping up with the course will save you lots
of time and distress!

Numerical Notes

We hope you read the Numerical Notes in the text, even if you are not using a computer
or graphing calculator with the text. In real life, most applications of linear algebra
involve numerical computations that are subject to some numerical error, even though
that error may be extremely small. The Numerical Notes will warn you of potential
difficulties in using linear algebra later in your career, and if you study the notes now,
you are more likely to remember them later.

If you enjoy reading the Numerical Notes, you may want to take a course later in
numerical linear algebra. Because of the high demand for increased computing power,
computer scientists and mathematicians work in numerical linear algebra to develop
faster and more reliable algorithms for computations, and electrical engineers design
faster and smaller computers to run the algorithms. This is an exciting field, and your
first course in linear algebra will help you prepare for it.

XV
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A Note to Students

Study Guide

To help you succeed in this course, we suggest that you purchase the Study
Guide (www.mypearsonstore.com; 0-321-98257-6). It is available electronically within
MyMathLab. Not only will it help you learn linear algebra, it also will show you how to
study mathematics. At strategic points in your textbook, the icon [ se_| will direct you to
special subsections in the Study Guide entitled “Mastering Linear Algebra Concepts.”
There you will find suggestions for constructing effective review sheets of key concepts.
The act of preparing the sheets is one of the secrets to success in the course, because
you will construct links between ideas. These links are the “glue” that enables you to
build a solid foundation for learning and remembering the main concepts in the course.

The Study Guide contains a detailed solution to every third odd-numbered exercise,
plus solutions to all odd-numbered writing exercises for which only a hint is given in the
Answers section of this book. The Guide is separate from the text because you must learn
to write solutions by yourself, without much help. (We know from years of experience
that easy access to solutions in the back of the text slows the mathematical development
of most students.) The Guide also provides warnings of common errors and helpful hints
that call attention to key exercises and potential exam questions.

If you have access to technology —MATLAB, Maple, Mathematica, or a TT graph-
ing calculator—you can save many hours of homework time. The Study Guide is
your “lab manual” that explains how to use each of these matrix utilities. It intro-
duces new commands when they are needed. You can download from the web site
www.pearsonhighered.com/lay the data for more than 850 exercises in the text. (With
a few keystrokes, you can display any numerical homework problem on your screen.)
Special matrix commands will perform the computations for you!

What you do in your first few weeks of studying this course will set your pattern
for the term and determine how well you finish the course. Please read “How to Study
Linear Algebra” in the Study Guide as soon as possible. Many students have found the
strategies there very helpful, and we hope you will, too.


http://www.mypearsonstore.com
http://www.pearsonhighered.com/lay

Linear Equations in

Linear Algebra

INTRODUCTORY EXAMPLE

Linear Models in Economics
and Engineering

It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched cards
into the university’s Mark II computer. The cards contained
information about the U.S. economy and represented a
summary of more than 250,000 pieces of information
produced by the U.S. Bureau of Labor Statistics after two
years of intensive work. Leontief had divided the U.S.
economy into 500 “sectors,” such as the coal industry,
the automotive industry, communications, and so on.
For each sector, he had written a linear equation that
described how the sector distributed its output to the other
sectors of the economy. Because the Mark II, one of the
largest computers of its day, could not handle the resulting
system of 500 equations in 500 unknowns, Leontief had
distilled the problem into a system of 42 equations in
42 unknowns.

Programming the Mark II computer for Leontief’s 42
equations had required several months of effort, and he
was anxious to see how long the computer would take to
solve the problem. The Mark IT hummed and blinked for 56
hours before finally producing a solution. We will discuss
the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts

at Harvard in 1949 marked one of the first significant
uses of computers to analyze what was then a large-
scale mathematical model. Since that time, researchers
in many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and
software triggering a demand for even greater capabilities.
Computer science is thus intricately linked with linear
algebra through the explosive growth of parallel processing
and large-scale computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

e Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day.
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The seismic data for the equations are obtained
from underwater shock waves created by explosions
from air guns. The waves bounce off subsurface
rocks and are measured by geophones attached to
mile-long cables behind the ship.

e Linear programming. Many important management
decisions today are made on the basis of linear
programming models that use hundreds of variables.
The airline industry, for instance, employs linear

programs that schedule flight crews, monitor the
locations of aircraft, or plan the varied schedules of
support services such as maintenance and terminal
operations.

e Electrical networks. Engineers use simulation
software to design electrical circuits and microchips
involving millions of transistors. Such software
relies on linear algebra techniques and systems of
linear equations.

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them
to introduce some of the central concepts of linear algebra in a simple and concrete
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear
equations. This algorithm will be used for computations throughout the text. Sections 1.3
and 1.4 show how a system of linear equations is equivalent to a vector equation and to a
matrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 | SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables x, ..., x, is an equation that can be written in the
form
a\ Xy +axxy + -+ ayx, =b (1)

where b and the coefficients «a, ..., a, are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations

4x; —5x,+2=x; and xp = 2(\/6—)(1) + X3
are both linear because they can be rearranged algebraically as in equation (1):
3x1 —5x, =—2 and 2x;+ X, —x3 = 26
The equations
4x) —5x, = x1x and xp =2./x] —6

are not linear because of the presence of x; x; in the first equation and ,/x; in the second.
A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, xi, ..., x,. An example is

2x1—xp + 1.5x3 = 8
X1 — 4X3=—7

2
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A solution of the system is a list (sy, 52, ..., 5,) of numbers that makes each equation a
true statement when the values sy, . . ., 5, are substituted for x, . . ., x,,, respectively. For
instance, (5, 6.5, 3) is a solution of system (2) because, when these values are substituted
in (2) for xy, x2, x3, respectively, the equations simplify to 8 = 8 and —7 = —7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

X1 —2)(?2 = -1
—Xx1+3x= 3

The graphs of these equations are lines, which we denote by £; and £,. A pair of numbers
(x1, xp) satisfies both equations in the system if and only if the point (x1, x3) lies on both
£, and £ . In the system above, the solution is the single point (3,2), as you can easily
verify. See Figure 1.

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(@) x; —2x, =-—1 (b) x; —2x, =-—1

—X1+2x, = 3 —X1 4+ 2x, = 1
X X
2'/ 2+

: A ] Y
// 1 3 / 3
& 3 0,

(@) (b)

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.
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A system of linear equations has

1. no solution, or
2. exactly one solution, or
3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation

The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

X1 —2x24+ x3= 0

2x; —8x3 = 8 3)
5)61 — 5)63 =10
with the coefficients of each variable aligned in columns, the matrix
1 -2 1
0 2 =8
5 0 =5

is called the coefficient matrix (or matrix of coefficients) of the system (3), and

12 1 0
0 2 -8 8 @)
5 0 =5 10

is called the augmented matrix of the system. (The second row here contains a zero
because the second equation could be writtenas 0 - x| + 2x; — 8x3 = 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the right sides of the equations.

The size of a matrix tells how many rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 x 4 (read “3 by 4”) matrix. If m and
n are positive integers, an m x n matrix is a rectangular array of numbers with m rows
and n columns. (The number of rows always comes first.) Matrix notation will simplify
the calculations in the examples that follow.

Solving a Linear System

This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is fo replace one system with an equivalent system
(i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x; term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x, term in the second equation to eliminate
the x, terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.
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EXAMPLE 1 Solve system (3).

SOLUTION The elimination procedure is shown here with and without matrix notation,
and the results are placed side by side for comparison:

X1 —2x2+ x3= 0 1 =2 1 0
2x, —8x3 = 8 0 2 -8 8
5 0 -5 10

le —5X3 =10

Keep x1 in the first equation and eliminate it from the other equations. To do so, add —5
times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

—5 - [equation 1] —5x1 + 10x, — 5x3= 0
+ [equation 3] 5x1 — 5x3=10
[new equation 3] 10x, — 10x3 = 10

The result of this calculation is written in place of the original third equation:

Xi— 2x2+ x3= 0 1 =2 1 0
2X2 — 8X3 = 8 0 2 -8 8
10x; — 10x3 = 10 0 10 —10 10

Now, multiply equation 2 by % in order to obtain 1 as the coefficient for x,. (This
calculation will simplify the arithmetic in the next step.)

X1— 2x24+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4 4
10x, — 10x3 = 10 0 10 =10 10

Use the x; in equation 2 to eliminate the 10x, in equation 3. The “mental”” computation
is

—10 - [equation 2] —10x, + 40x3 = —40
+ [equation 3] 10x, — 10x3 = 10
[new equation 3] 30x3 = —30

The result of this calculation is written in place of the previous third equation (row):

X1—2x2+ x3= 0 1 =2 1 0
X2 — 4X3 = 4 0 1 —4 4
3om——30 L0 0 30 —30

Now, multiply equation 3 by 31—0 in order to obtain 1 as the coefficient for x3. (This
calculation will simplify the arithmetic in the next step.)

X1 —2x24+ x3= 0 1 =2 1 0
Xy — 4X3 = 4 0 1 —4 4
0 0 1 -1

X3=—1

The new system has a triangular form (the intuitive term triangular will be replaced by
a precise term in the next section):

X1 —2x2+ x3= 0 1 -2 1 0
Xy — 4X3 = 4 0 1 —4
0O 0 1 -1

)C3=—1
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Each of the original equations
determines a plane in
three-dimensional space. The
point (1,0, —1) lies in all three
planes.

Eventually, you want to eliminate the —2x, term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the —4x3 and + x5 terms in equations 2 and 1.
The two “mental” calculations are

4 - [equation 3] 4x3 = —4 —1 - [equation 3] —x3=1
+ [equation 2] X —4dxz3 = 4 + [equation 1] X1 —2x+x3=0
[new equation 2] X2 = 0 [new equation 1] x| — 2x; =1

It is convenient to combine the results of these two operations:

X1 —2xy =1 1 =2 0 1
X2 = 0 0 1 0 0
x;3 = —1 0O O 1 —1

Now, having cleaned out the column above the x5 in equation 3, move back to the x; in
equation 2 and use it to eliminate the —2x; above it. Because of the previous work with
X3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation 1
and obtain the system:

Xy = 1 1 0 0 1
X2 = 0 0 1 O O
x3 = —1 0O 0 1 -1

The work is essentially done. It shows that the only solution of the original system is
(1,0, —1). However, since there are so many calculations involved, it is a good practice
to check the work. To verify that (1,0, —1) is a solution, substitute these values into the
left side of the original system, and compute:

1) =20)+1(=)=1-0—1= 0
2000 —8(=1)= O0+8= 8
5(1) —5-1)=5 +5=10

The results agree with the right side of the original system, so (1,0, —1) is a solution of
the system. [ |

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.!

2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there
is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a

' A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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row is scaled by a nonzero constant ¢, then multiplying the new row by 1/¢ produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that ¢ times row 1 is added to row 2 to produce a new row
2.To “reverse” this operation, add —c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 29-32 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.
By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy to
perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions

Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM
1. Is the system consistent; that is, does at least one solution exist?

2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on
the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:

X1 —2x4+ x3= 0
2)62 — 8)63 = 8
5X1 — 5X3 =10

SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

X1 —2x+ x3= 0 1 -2 1 0
Xy — 4X3 = 4 0 1 —4 4
0O 0 1 —1

)C3=—1
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//// //‘ Xy
y —u

The system is inconsistent because
there is no point that lies on all
three planes.

At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x, and hence could determine x; from equation 1. So a solution exists;
the system is consistent. (In fact, x, is uniquely determined by equation 2 since x3 has
only one possible value, and x; is therefore uniquely determined by equation 1. So the
solution is unique.) [ |

EXAMPLE 3 Determine if the following system is consistent:

Xy — 4)(73 =38
2x1 —3x2 4+ 2x3 =1 4)
4)C1 — 8X2 + 12X3 =1

SOLUTION The augmented matrix is

0o 1 —4 8
2 -3 2 1
4 -8 12 1

To obtain an x; in the first equation, interchange rows 1 and 2:

2 3 2 1
0o 1 —4 8
4 -8 12 1

To eliminate the 4x, term in the third equation, add —2 times row 1 to row 3:

2 -3 2 1
0 1 -4 8 (6)
0 -2 8 -1

Next, use the x, term in the second equation to eliminate the —2x, term from the third
equation. Add 2 times row 2 to row 3:

2 =3 2 1
0o 1 —4 8 @)
0 0 0 15

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:
2x1 —3x2 +2x3= 1
X, —4x3= 8 (8)
0 =15

The equation 0 = 15 is a short form of Ox; + 0x, 4+ Ox3 = 15. This system in trian-
gular form obviously has a built-in contradiction. There are no values of x1, x,, x3 that
satisfy (8) because the equation 0 = 15 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (i.e., has no solution). [ |

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.
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— NUMERICAL NOTE

In real-world problems, systems of linear equations are solved by a computer.
For a square coefficient matrix, computer programs nearly always use the elim-
ination algorithm given here and in Section 1.2, modified slightly for improved
accuracy.

The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals &.d; - --d, x 10", where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated)
to the number of digits stored. “Roundoff error” is also introduced when a
number such as 1/3 is entered into the computer, since its decimal representation
must be approximated by a finite number of digits. Fortunately, inaccuracies in
floating point arithmetic seldom cause problems. The numerical notes in this
book will occasionally warn of issues that you may need to consider later in your
career.

PRACTICE PROBLEMS

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.

1. State in words the next elementary row operation that should be performed on the
system in order to solve it. [More than one answer is possible in (a).]

a. x| +4xy —2x3 + 8x4 = 12 b. x{ —3x3 +5x3 —2x4= 0
Xy — Tx3 + 2x4 = —4 X3 + 8x3 =4

S5x3 — x4= 7 2x3 - 3

x3 + 3x4 = =5 = 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.

I 5 2 -6
0 4 -7 2
0o 0 5 0

3. Is (3,4, —2) a solution of the following system?
5x1 — Xo+2x3= 7
—2X1 + 6X2 + 9X3 =
—7x1 + 5xp — 3x3 = -7
4. For what values of & and k is the following system consistent?
2)61 — Xy = h
—6x1 +3x2 =k
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1.1 EXERCISES

Solve each system in Exercises 1-4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. X + 5X2 = 7
—2.)C1 — 7)C2 =-5

2. 2.X] =+ 4X2 = —4
le + 7X2 =11

3. Find the point (xi, x,) that lies on the line x; + 5x, = 7 and
on the line x; — 2x, = —2. See the figure.

X2 X1 —2x,=-2
Xi+5x,=17

X

4. Find the point of intersection of the lines x; —5x, = 1 and
3x 1— 7X2 =5.
Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

1 -4 5 0 7

s [0 13 0 6

"o 0o 1 0 2
0 0 0 1 —5]
(1 -6 4 0 —17

6 |0 2 -7 0 4

“lo 0o 1 2 -3
0 0 3 1 6|

In Exercises 7-10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

17 3 —4 L4 9 o
0 1 -1 3
7. 8 17 0
0 0 01 0 0 2 0
0 0 1 -2
[1 -1 0 0 —47]
o |0 1 3 0 7
"o 0o 1 =3 -1
L0 0 0 2 4]
1 -2 0 3 =2
0 1 0 —4 7
-9 0 1 0 6
L0 0 0 1 3]

Solve the systems in Exercises 11-14.
11. Xy +4x3 = -5
-2

6

X1+ 3X2 + 5X3

3x; + Txs + Tx3

12 x —3x 445 =—4
3)C1 — 7X2 + 7X3 =-8

—4X1 4+ 6X2 — X3 = 7

13. X1 — 3){3 = 8
2x1 +2x, + x5 = 7
Xy + 5x3 = -2

14. X1 —3X2 =5
—X1 —+ X2+5X3=2
Xy + X3:0

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.

15. x; + 3x3 = 2
Xo —3x;,= 3
—2xy +3x3+2x4 = 1
3x, + 7x4 = =5
16. X1 —2x4 = =3
2x7 + 2Xx3 = 0
X3+ 3x,= 1

—2x1 + 3XZ + 2.X3 + x4 = 5

17. Do the three lines x; —4x, =1, 2x; —x, = —3, and
—x; —3x, =4 have a common point of intersection?
Explain.

18. Do the three planes x; + 2x, + x3 = 4, x, —x3 = 1, and
X1 + 3x, = 0 have at least one common point of intersec-
tion? Explain.

In Exercises 19-22, determine the value(s) of / such that the
matrix is the augmented matrix of a consistent linear system.

1 h 4 1 h =3
o[t 0w h )

1 3 -2 2 =3 h

21, [_4 ] 8} 2. [_6 ; 5}

In Exercises 23 and 24, key statements from this section are
either quoted directly, restated slightly (but still true), or altered
in some way that makes them false in some cases. Mark each
statement True or False, and justify your answer. (If true, give the
approximate location where a similar statement appears, or refer
to a definition or theorem. If false, give the location of a statement
that has been quoted or used incorrectly, or cite an example that
shows the statement is not true in all cases.) Similar true/false
questions will appear in many sections of the text.



23. a.

b. A5 x 6 matrix has six rows.

Every elementary row operation is reversible.

c. The solution set of a linear system involving variables

X1,...,X,isalistof numbers (sy, ..., s,) that makes each
equation in the system a true statement when the values
S, ...,8, are substituted for xi, ..., x,, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Elementary row operations on an augmented matrix never

change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same
number of rows.

c. An inconsistent system has more than one solution.

d. Two linear systems are equivalent if they have the same
solution set.

25. Find an equation involving g, &, and k that makes this
augmented matrix correspond to a consistent system:

1 —4 7 g
0 3 -5 h
-2 5 -9 k

26. Construct three different augmented matrices for linear sys-
tems whose solution setis x; = —2,x, = 1,x3 = 0.

27. Suppose the system below is consistent for all possible values
of f and g. What can you say about the coefficients ¢ and d ?
Justify your answer.

xi+ 3x = f
cx; +dx, = g
28. Suppose a, b, ¢, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, c,and d?
Justify your answer.
ax; + bx, = f
cxy; +dx, = g
In Exercises 29-32, find the elementary row operation that trans-

forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.
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[0 2 5] [1 4 -7
2. [1 4 7], |0 2 5
3 -1 6] [3 -1 6
(1 3 =47 [1 3 —4
3. o 2 6].,|]0 1 -3
[0 =5 9] [0 =5 9
12 1 o] [1 -2 1 o0
3.0 5 2 8|, |0 5 —2 8
4 -1 3 —6] |0 7 -1 -6
12 -5 0] [1 2 -5 0
2. /0 1 -3 2[,]0 1 =3 =2
0 3 9 5|0 0o o -1

An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the
temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam,
with negligible heat flow in the direction perpendicular to the
plate. Let 71, ..., Ty denote the temperatures at the four interior
nodes of the mesh in the figure. The temperature at a node is
approximately equal to the average of the four nearest nodes—
to the left, above, to the right, and below.? For instance,

T1=(10+20+T2+T4)/4, or 4T|—T2—T4=30

20°  20°
10° ! 2 40°
4
10° 3 40°
30°  30°

33. Write a system of four equations whose solution gives esti-
mates for the temperatures 71, ..., Tj.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

2See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145-149.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1/5. Or, replace equation 4 by
its sum with —1/5 times row 3. (In any case, do not use the x, in equation 2 to
eliminate the 4.x, in equation 1. Wait until a triangular form has been reached and
the x3 terms and x4 terms have been eliminated from the first two equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
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Since (3, 4, —2) satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since (3, 4, —2) does not
satisfy all three equations, it does
not lie on all three planes.

step now is to add 2 times equation 4 to equation 1. (After that, move to equa-
tion 3, multiply it by 1/2, and then use the equation to eliminate the x3 terms
above it.)

2. The system corresponding to the augmented matrix is

X1 + 5X2 +2X3 =—6
4X2 —7)(73 = 2

5)63 =

The third equation makes x3 = 0, which is certainly an allowable value for x3. After
eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x; and x;. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

3. Itis easy to check if a specific list of numbers is a solution. Set x; = 3, x, = 4, and
x3 = —2, and find that

53)— () +2(-2)= 15— 4— 4=7
—2(3) +6(4) +9(-2)= —6+24—18=0
—~7(3) +5(@) —3(=2) =21 +20+ 6=5

Although the first two equations are satisfied, the third is not, so (3,4, —2) is not a
solution of the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2X1—X2:h
0=4k+3h

If k 4 3h is nonzero, the system has no solution. The system is consistent for any
values of & and k that make k + 34 = 0.

1.2 ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.! By using only the first part of
the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an arbi-
trary rectangular matrix and begins by introducing two important classes of matrices that
include the “triangular” matrices of Section 1.1. In the definitions that follow, a nonzero
row or column in a matrix means a row or column that contains at least one nonzero
entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

!'"The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination

method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. All nonzero rows are above any rows of all zeros.

2. Each leading entry of a row is in a column to the right of the leading entry of
the row above it.

3. All entries in a column below a leading entry are zeros.

If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):

4. The leading entry in each nonzero row is 1.

5. Each leading 1 is the only nonzero entry in its column.

An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as

2 =3 2 1 I 0 0 29
0o 1 —4 8 and 0O 1 0 16
0 0 0 5/2 0 0 1 3

are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries ()
may have any nonzero value; the starred entries (x) may have any value (including zero).

- N N N 0 ] * * * * * * * *

0 . s N 0 0 0 " x * * * * *
0O 0 0 O % * * * *

0 O 0 0

0O 0 0 0 o O 0 0 O I * % *
o 0 O 0 0 0 0 0 " %

The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.

| 0 % % 0 1 *x 0 0 0 x x 0 =x
0 | N N 0O 0 0 1 0O 0 = * 0 =%
, o o0 O o0 1 0 =« * 0 %

o 0 0 O
0O 0 0 0 o 0 O O O 1 =* =x 0 =«
o 0 O O O O o o0 1 =«

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique. The
following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.
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If a matrix A is row equivalent to an echelon matrix U, we call U an echelon form
(or row echelon form) of A; if U is in reduced echelon form, we call U the reduced
echelon form of A. [Most matrix programs and calculators with matrix capabilities
use the abbreviation RREF for reduced (row) echelon form. Some use REF for (row)
echelon form.]

Pivot Positions

When row operations on a matrix produce an echelon form, further row operations to
obtain the reduced echelon form do not change the positions of the leading entries. Since
the reduced echelon form is unique, the leading entries are always in the same positions
in any echelon form obtained from a given matrix. These leading entries correspond to
leading 1’s in the reduced echelon form.

A pivot position in a matrix A is a location in A that corresponds to a leading 1
in the reduced echelon form of A. A pivot column is a column of A that contains
a pivot position.

In Example 1, the squares (m) identify the pivot positions. Many fundamental con-
cepts in the first four chapters will be connected in one way or another with pivot
positions in a matrix.

EXAMPLE 2 Row reduce the matrix 4 below to echelon form, and locate the pivot
columns of A.
0 -3 -6 4 9
-1 -2 -1 3 1
-2 -3 0 3 -1
1 4 5 -9 -7

A=

SOLUTION Use the same basic strategy as in Section 1.1. The top of the leftmost
nonzero column is the first pivot position. A nonzero entry, or pivot, must be placed
in this position. A good choice is to interchange rows 1 and 4 (because the mental
computations in the next step will not involve fractions).

Pivot
1 ﬂ 5 -9 -7
-1 -2 -1 3 1
-2 -3 0 3 -1
0 -3 -6 4 9
L Pivot column

Create zeros below the pivot, 1, by adding multiples of the first row to the rows below,
and obtain matrix (1) below. The pivot position in the second row must be as far left as
possible—namely, in the second column. Choose the 2 in this position as the next pivot.

Pivot
4 5 -9 -7
2 4 —6 -6

5 10 =15 —-15
-3 -6 4 9

ey

S o o

t Next pivot column
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Add —5/2 times row 2 to row 3, and add 3/2 times row 2 to row 4.

1 4 5 -9 -7
0 2 4 -6 —6
0O o0 0 0 O 2)

0 0 0 -5 0

The matrix in (2) is different from any encountered in Section 1.1. There is no way to
create a leading entry in column 3! (We can’t use row 1 or 2 because doing so would
destroy the echelon arrangement of the leading entries already produced.) However, if
we interchange rows 3 and 4, we can produce a leading entry in column 4.

Pivot

1 4 5 -9 |-7 % * * *
0 2 4 -6 -6 General form: 0 = % x %
0 0 0 —5<0 creriiont g0 0 m ox
O 0 O 0 o0 o o0 O 0 O
t 4 4 Pivot columns

The matrix is in echelon form and thus reveals that columns 1, 2, and 4 of A are pivot

columns.
Pivot positions
OJ—3J—6 419

-1 —2<-1 3|1
A= -2 -3 0 3<-1 )

1 4 5 -9 -7

t t t Pivot columns |

A pivot, as illustrated in Example 2, is a nonzero number in a pivot position that is
used as needed to create zeros via row operations. The pivots in Example 2 were 1, 2,
and —5. Notice that these numbers are not the same as the actual elements of A in the
highlighted pivot positions shown in (3).

With Example 2 as a guide, we are ready to describe an efficient procedure for
transforming a matrix into an echelon or reduced echelon matrix. Careful study and
mastery of this procedure now will pay rich dividends later in the course.

The Row Reduction Algorithm

The algorithm that follows consists of four steps, and it produces a matrix in echelon
form. A fifth step produces a matrix in reduced echelon form. We illustrate the algorithm
by an example.

EXAMPLE 3 Apply elementary row operations to transform the following matrix
first into echelon form and then into reduced echelon form:

O 3 -6 6 4 -5

3 -7 8 -5 8 9

3 -9 12 -9 6 15

SOLUTION

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot
position is at the top.
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0o 3 -6 6 4 =5
3 -7 8§ -5 8 9
3 -9 12 -9 6 15
t Pivot column

STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange
rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

Pivot
3<Jj9 12 -9 6 15

3 -7 8§ =5 8 9
0 3 -6 6 4 =5

STEP 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3. But with two 3’s in
column 1, it is just as easy to add —1 times row 1 to row 2.

Pivot
3<Jj9 12 -9 6 15
0 2

—4 4 2 -6
0 3 -6 6 4 -5

STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any,
above it. Apply steps 1-3 to the submatrix that remains. Repeat the process until
there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2,
select as a pivot the “top” entry in that column.

Pivot
3 -9 12 -9 6 15
0 2« —4 4 2 —6
0 3 -6 6 4 =5

t New pivot column

For step 3, we could insert an optional step of dividing the “top” row of the submatrix by
the pivot, 2. Instead, we add —3/2 times the “top” row to the row below. This produces

3 -9 12 -9 6 15
0o 2 -4 4 2 -6
0 0 0o o0 1 4
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When we cover the row containing the second pivot position for step 4, we are left with
a new submatrix having only one row:

3 -9 12 -9 6 15
0 2 4 4 2 —6
0

0 0 0 1 4
1 Pivot

Steps 1-3 require no work for this submatrix, and we have reached an echelon form of
the full matrix. If we want the reduced echelon form, we perform one more step.

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create
zeros above each pivot. If a pivot is not 1, make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row
3torows 2 and 1.

[3 =9 12 =9 0 -9 <«~— Row 1 + (—6) -tow 3
0O 2 —4 4 0 -—14 <« Row 2 + (=2) - row 3
|00 0 0 1 4

The next pivot is in row 2. Scale this row, dividing by the pivot.

[3 =9 12 =9 0 -9
o 1 -2 2 0 -7 < Row scaled by 1
o 0 0O o 1 4

Create a zero in column 2 by adding 9 times row 2 to row 1.

3 0-6 9 0 =72 <« Row 1 + (9) - row 2
o 1 -2 2 0 -7
o 0O o0 o0 1 4

1 0 -2 3 0 -24 <~ Row scaled by 1

This is the reduced echelon form of the original matrix. [ |

The combination of steps 1-4 is called the forward phase of the row reduction
algorithm. Step 5, which produces the unique reduced echelon form, is called the back-
ward phase.

r— NUMERICAL NOTE

In step 2 above, a computer program usually selects as a pivot the entry in a
column having the largest absolute value. This strategy, called partial pivoting,
is used because it reduces roundoff errors in the calculations.
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Solutions of Linear Systems

The row reduction algorithm leads directly to an explicit description of the solution set
of a linear system when the algorithm is applied to the augmented matrix of the system.

Suppose, for example, that the augmented matrix of a linear system has been
changed into the equivalent reduced echelon form

I 0 =5 1
o 1 1 4
0 0 0 0

There are three variables because the augmented matrix has four columns. The
associated system of equations is

X1 —5X3=1
X2+ x3=4 4)
0 =0

The variables x; and x, corresponding to pivot columns in the matrix are called basic
variables.? The other variable, x3, is called a free variable.

Whenever a system is consistent, as in (4), the solution set can be described
explicitly by solving the reduced system of equations for the basic variables in terms of
the free variables. This operation is possible because the reduced echelon form places
each basic variable in one and only one equation. In (4), solve the first equation for x;
and the second for x;. (Ignore the third equation; it offers no restriction on the variables.)

X1 =14 5x3
Xy = 4 — X3 (5)
X3 is free

The statement “x3 is free” means that you are free to choose any value for x3. Once
that is done, the formulas in (5) determine the values for x; and x,. For instance, when
x3 = 0, the solution is (1,4, 0); when x3 = 1, the solution is (6, 3, 1). Each different
choice of x3 determines a (different) solution of the system, and every solution of the
system is determined by a choice of x3.

EXAMPLE 4 Find the general solution of the linear system whose augmented ma-
trix has been reduced to

1 6 2 -5 -2 —4

o 0 2 -8 -1 3

o o0 o o 1 7

SOLUTION The matrix is in echelon form, but we want the reduced echelon form
before solving for the basic variables. The row reduction is completed next. The symbol
~ before a matrix indicates that the matrix is row equivalent to the preceding matrix.

1 6 2 -5 =2 —47] 1 6 2 -5 0 10
0 0 2 -8 -1 3|~|l0 0 2 -8 0 10
o o 0o 0 1 7/ |0 0o 0 0 1 }
1 6 2 -5 o0 10] [T 6 0 3 0 O]
~ 0 1 -4 0 5|~ 0 1 -4 0 5
o o 0o 0o 1 7] |0 0 0 O 1 7]

2 Some texts use the term leading variables because they correspond to the columns containing leading
entries.
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There are five variables because the augmented matrix has six columns. The associated
system now is

X1 + 6x7 + 3x4 =0
X3 — 4X4 =5 (6)
X5 = 7

The pivot columns of the matrix are 1,3, and 5, so the basic variables are x|, x3, and xs.
The remaining variables, x, and x4, must be free. Solve for the basic variables to obtain
the general solution:

X1 = —6)(72 — 3)(74

X 1s free

X3 =5+ 4x, (7N

X4 1s free

X5 = 7

Note that the value of x5 is already fixed by the third equation in system (6). [ |

Parametric Descriptions of Solution Sets

The descriptions in (5) and (7) are parametric descriptions of solution sets in which
the free variables act as parameters. Solving a system amounts to finding a parametric
description of the solution set or determining that the solution set is empty.

Whenever a system is consistent and has free variables, the solution set has many
parametric descriptions. For instance, in system (4), we may add 5 times equation 2 to
equation 1 and obtain the equivalent system

X1 + 5x» =21
X2+X3= 4

We could treat x, as a parameter and solve for x; and x3 in terms of x;, and we would
have an accurate description of the solution set. However, to be consistent, we make the
(arbitrary) convention of always using the free variables as the parameters for describing
a solution set. (The answer section at the end of the text also reflects this convention.)

Whenever a system is inconsistent, the solution set is empty, even when the system
has free variables. In this case, the solution set has no parametric representation.

Back-Substitution

Consider the following system, whose augmented matrix is in echelon form but is not
in reduced echelon form:

X; — Txy + 2x3 — 5x4 + 8x5 = 10
Xy —3x3 +3x4 + x5 =-5
X4 — X5 = 4

A computer program would solve this system by back-substitution, rather than by com-
puting the reduced echelon form. That is, the program would solve equation 3 for x4 in
terms of x5 and substitute the expression for x4 into equation 2, solve equation 2 for x»,
and then substitute the expressions for x, and x4 into equation 1 and solve for x;.

Our matrix format for the backward phase of row reduction, which produces the re-
duced echelon form, has the same number of arithmetic operations as back-substitution.
But the discipline of the matrix format substantially reduces the likelihood of errors



20 CHAPTER 1 Linear Equations in Linear Algebra

during hand computations. The best strategy is to use only the reduced echelon form
to solve a system! The Study Guide that accompanies this text offers several helpful
suggestions for performing row operations accurately and rapidly.

— NUMERICAL NOTE

In general, the forward phase of row reduction takes much longer than the
backward phase. An algorithm for solving a system is usually measured in flops
(or floating point operations). A flop is one arithmetic operation (4, —, *, /)
on two real floating point numbers.> For an n x (n + 1) matrix, the reduction
to echelon form can take 2n°/3 + n%/2 — 7n/6 flops (which is approximately
2n3/3 flops when n is moderately large—say, n > 30). In contrast, further
reduction to reduced echelon form needs at most n? flops.

Existence and Uniqueness Questions

Although a nonreduced echelon form is a poor tool for solving a system, this form is
just the right device for answering two fundamental questions posed in Section 1.1.

EXAMPLE 5 Determine the existence and uniqueness of the solutions to the system

3x, — 6x3 4+ 6x4 + 4x5 = —5
3x1 — 7xy + 8x3 — 5x4 + 8x5 9
3x1 — 9% + 12x3 — 9x4 + 6x5 15

SOLUTION The augmented matrix of this system was row reduced in Example 3 to

3 -9 12 -9 6 15
0 2 —4 4 2 —6 ®)
0 0 0 0 1 4

The basic variables are x;, x,, and xs; the free variables are x3 and x4. There is no
equation such as 0 = 1 that would indicate an inconsistent system, so we could use
back-substitution to find a solution. But the existence of a solution is already clear in
(8). Also, the solution is not unique because there are free variables. Each different
choice of x3 and x4 determines a different solution. Thus the system has infinitely many
solutions. [ |

When a system is in echelon form and contains no equation of the form 0 = b, with
b nonzero, every nonzero equation contains a basic variable with a nonzero coefficient.
Either the basic variables are completely determined (with no free variables) or at least
one of the basic variables may be expressed in terms of one or more free variables. In
the former case, there is a unique solution; in the latter case, there are infinitely many
solutions (one for each choice of values for the free variables).

These remarks justify the following theorem.

3 Traditionally, a flop was only a multiplication or division, because addition and subtraction took much less
time and could be ignored. The definition of flop given here is preferred now, as a result of advances in
computer architecture. See Golub and Van Loan, Matrix Computations, 2nd ed. (Baltimore: The Johns
Hopkins Press, 1989), pp. 19-20.
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THEOREM 2 Existence and Uniqueness Theorem

A linear system is consistent if and only if the rightmost column of the augmented
matrix is not a pivot column—that is, if and only if an echelon form of the
augmented matrix has no row of the form

[0 --- 0 b] with b nonzero

If a linear system is consistent, then the solution set contains either (i) a unique
solution, when there are no free variables, or (ii) infinitely many solutions, when
there is at least one free variable.

The following procedure outlines how to find and describe all solutions of a linear
system.

USING ROW REDUCTION TO SOLVE A LINEAR SYSTEM
1. Write the augmented matrix of the system.

2. Use the row reduction algorithm to obtain an equivalent augmented matrix in
echelon form. Decide whether the system is consistent. If there is no solution,
stop; otherwise, go to the next step.

3. Continue row reduction to obtain the reduced echelon form.
4. Write the system of equations corresponding to the matrix obtained in step 3.

5. Rewrite each nonzero equation from step 4 so that its one basic variable is
expressed in terms of any free variables appearing in the equation.

PRACTICE PROBLEMS

1. Find the general solution of the linear system whose augmented matrix is

I -3 =5 0
0o 1 -1 -1

2. Find the general solution of the system

X1 —2x, — x3+3x4=0
—2x1 + 4x, + 5x3 — 5x4 =3
3x1 — 6)62 — 6X3 + 8)C4 =2

3. Suppose a 4 x 7 coefficient matrix for a system of equations has 4 pivots. Is the
system consistent? If the system is consistent, how many solutions are there?

1.2 EXERCISES

In Exercises 1 and 2, determine which matrices are in reduced
echelon form and which others are only in echelon form.

1 0 0 0 1 1 0 1 1

1 0 0 O 1 0 1 O 0 1 ) o 2 0 2 2
1.a.|0O 1 0 O b.|0 1 I 0 “lo o o o d. o o0 o 3 3
0 0 1 1 0 0 0 1 0 0 0 1 o o0 o o0 4
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11 0 1 1 1 0 0
22010 o 1 1| blo 1 1 o0
(0 0 0 0] 0 0 1
10 0 0]
1 1 0 0
“lo 1 1 o0
o 0o 1 1]
o 11 1 1
L]0 0 2 2 2
‘1o 0o o o 3
(0 0 0 0 0

Row reduce the matrices in Exercises 3 and 4 to reduced echelon
form. Circle the pivot positions in the final matrix and in the
original matrix, and list the pivot columns.

1 2 3 4 1 3 5 7
3. |4 5 6 7 4. |3 5 7 9
6 7 8 9 5 7 9 1

5. Describe the possible echelon forms of a nonzero 2 x 2
matrix. Use the symbols ®m, %, and 0, as in the first part of
Example 1.

6. Repeat Exercise 5 for a nonzero 3 x 2 matrix.

Find the general solutions of the systems whose augmented ma-
trices are given in Exercises 7-14.

; 1T 3 4 7 g (1 4 0 7
13 9 7 6 "2 7 0 10
0 1 -6 5 [1 —2 -1 3
2. 12 7 —6] 10. 3 -6 —2 2]
3 —4 2 0 1 -7 0 6 5
1. | -9 12 -6 0 12. 0 0 1 -2 =3
| —6 8 —4 0 -1 7 -4 2 7
1 =3 0 -1 0 =27
0 1 0 0 —4 1
13. 0 0 0 1 9 4
(0 0 0 0 0 O]
1 2 -5 -6 0 =57
0 1 -6 =3 0 2
14. 0 0 0 0 1 0
(0 0 0 0 0 O]

Exercises 15 and 16 use the notation of Example 1 for matrices
in echelon form. Suppose each matrix represents the augmented
matrix for a system of linear equations. In each case, determine if
the system is consistent. If the system is consistent, determine if
the solution is unique.

% * *
15. a. 0 u * *
0 0 ] 0

0 ] * * *

b. 0 0 ] * *

0 o0 0 0 ]

] * *
16. a 0 L] *
0 0 0

] * * * *

b. 0 0 u * *

0 0 0 u *

In Exercises 17 and 18, determine the value(s) of /& such that the
matrix is the augmented matrix of a consistent linear system.

2 3 h 1 -3 -2
7. [4 : 7} 18. [5 ; _7}
In Exercises 19 and 20, choose % and k such that the system has

(a) no solution, (b) a unique solution, and (c) many solutions. Give
separate answers for each part.

19. x| + I’lXZ =2 20.
4X1 + 8X2 =k

X1+ 3x, =2
3x; + hx, =k

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.*

21. a. In some cases, a matrix may be row reduced to more
than one matrix in reduced echelon form, using different

sequences of row operations.

b. The row reduction algorithm applies only to augmented
matrices for a linear system.

c. A basic variable in a linear system is a variable that
corresponds to a pivot column in the coefficient matrix.

d. Finding a parametric description of the solution set of a
linear system is the same as solving the system.

e. If one row in an echelon form of an augmented matrix
is[0 0 0 5 0], then the associated linear system is
inconsistent.

22. a.

b. The pivot positions in a matrix depend on whether row
interchanges are used in the row reduction process.

The echelon form of a matrix is unique.

c. Reducing a matrix to echelon form is called the forward
phase of the row reduction process.

d. Whenever a system has free variables, the solution set
contains many solutions.

e. A general solution of a system is an explicit description
of all solutions of the system.

23. Suppose a 3 x5 coefficient matrix for a system has three
pivot columns. Is the system consistent? Why or why not?

24. Suppose a system of linear equations has a 3 x 5 augmented
matrix whose fifth column is a pivot column. Is the system
consistent? Why (or why not)?

4 True/false questions of this type will appear in many sections. Methods

for justifying your answers were described before Exercises 23 and 24 in
Section 1.1.



25. Suppose the coefficient matrix of a system of linear equations
has a pivot position in every row. Explain why the system is
consistent.

26. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot in each column.
Explain why the system has a unique solution.

27. Restate the last sentence in Theorem 2 using the concept
of pivot columns: “If a linear system is consistent, then the
solution is unique if and only if ”

28. What would you have to know about the pivot columns in an
augmented matrix in order to know that the linear system is
consistent and has a unique solution?

29. A system of linear equations with fewer equations than
unknowns is sometimes called an underdetermined system.
Suppose that such a system happens to be consistent. Explain
why there must be an infinite number of solutions.

30. Give an example of an inconsistent underdetermined system
of two equations in three unknowns.

31. A system of linear equations with more equations than un-
knowns is sometimes called an overdetermined system. Can
such a system be consistent? Illustrate your answer with a
specific system of three equations in two unknowns.

32. Suppose an n x (n + 1) matrix is row reduced to reduced
echelon form. Approximately what fraction of the total num-
ber of operations (flops) is involved in the backward phase of
the reduction when n = 30? when n = 300?

Suppose experimental data are represented by a set of points
in the plane. An interpolating polynomial for the data is a
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polynomial whose graph passes through every point. In scientific
work, such a polynomial can be used, for example, to estimate
values between the known data points. Another use is to create
curves for graphical images on a computer screen. One method for
finding an interpolating polynomial is to solve a system of linear
equations.

33. Find the interpolating polynomial p(t) = ag + at + a»t>
for the data (1, 12), (2, 15), (3, 16). That is, find a,, a;, and
a, such that
ap + ai(1) + ax(1)* = 12
ap + a1(2) + a2(2)* = 15
ao + a1(3) + a,(3)* = 16

34. [M] In a wind tunnel experiment, the force on a projectile
due to air resistance was measured at different velocities:
Velocity (100 ft/sec) 0o 2 4 6 8 10
Force (100 1b) 0 290 148 39.6 743 119
Find an interpolating polynomial for these data and estimate
the force on the projectile when the projectile is travel-
ing at 750 ft/sec. Use p(1) = ag + at + a,t> + ast® + aystt
+ ast®. What happens if you try to use a polynomial of degree
less than 5? (Try a cubic polynomial, for instance.)’

3 Exercises marked with the symbol [M] are designed to be worked
with the aid of a “Matrix program” (a computer program, such as
MATLAB, Maple, Mathematica, MathCad, or Derive, or a
programmable calculator with matrix capabilities, such as those
manufactured by Texas Instruments or Hewlett-Packard).

SOLUTIONS TO PRACTICE PROBLEMS

are

I 0
0 1

The general solution of the
system of equations is the line of
intersection of the two planes.

-8
-1

1. The reduced echelon form of the augmented matrix and the corresponding system

-3

X3=—1

— 8.X3

-3 X1
_1] and

Xy —

The basic variables are x; and x,, and the general solution is

X1 = —3 4 8x3
X, =—1+4 x3
X3 is free

Note: It is essential that the general solution describe each variable, with any param-

eters clearly identified. The following statement does not describe the solution:

X1 = -3+ 8X3
X, = —14 x3
x3 = 1+ xp Incorrect solution

This description implies that x, and x3 are both free, which certainly is not the case.
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2. Row reduce the system’s augmented matrix:

1 =2 -1 3 0 1 =2 -1 3 0
-2 4 5 -5 3|~]0 0 3 1 3
3 -6 -6 8 2 (0 0 -3 -1 2|
1 =2 —=1 3 0]

~10 o 1 3

(0 0 0 0 5]

This echelon matrix shows that the system is inconsistent, because its rightmost
column is a pivot column; the third row corresponds to the equation 0 = 5. There
is no need to perform any more row operations. Note that the presence of the free
variables in this problem is irrelevant because the system is inconsistent.

3. Since the coefficient matrix has four pivots, there is a pivot in every row of the
coefficient matrix. This means that when the coefficient matrix is row reduced, it
will not have a row of zeros, thus the corresponding row reduced augmented matrix
can never have a row of the form [0 O --- 0 b], where b is a nonzero number. By
Theorem 2, the system is consistent. Moreover, since there are seven columns in
the coefficient matrix and only four pivot columns, there will be three free variables
resulting in infinitely many solutions.

1.3 VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation
of vectors. This section connects equations involving vectors to ordinary systems of
equations. The term vector appears in a variety of mathematical and physical contexts,
which we will discuss in Chapter 4, “Vector Spaces.” Until then, vector will mean an
ordered list of numbers. This simple idea enables us to get to interesting and important
applications as quickly as possible.

Vectors in R2

A matrix with only one column is called a column vector, or simply a vector. Examples
of vectors with two entries are

o I R Y R )

where w; and w, are any real numbers. The set of all vectors with two entries is denoted
by R? (read “r-two”). The R stands for the real numbers that appear as entries in the
vectors, and the exponent 2 indicates that each vector contains two entries.!

Two vectors in R? are equal if and only if their corresponding entries are equal.

Thus [;‘} and [Z] are not equal, because vectors in R2 are ordered pairs of real

numbers.

I Most of the text concerns vectors and matrices that have only real entries. However, all definitions and
theorems in Chapters 1-5, and in most of the rest of the text, remain valid if the entries are complex
numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.
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Given two vectors u and v in R?, their sum is the vector u + v obtained by adding
corresponding entries of u and v. For example,

RINHNEN N

Given a vector u and a real number ¢, the scalar multiple of u by ¢ is the vector cu
obtained by multiplying each entry in u by c. For instance,

. 3 3 15
if u—[_l] and ¢ =5, then cu—5|:_1:|—|:_5i|

The number ¢ in cu is called a scalar; it is written in lightface type to distinguish it from
the boldface vector u.

The operations of scalar multiplication and vector addition can be combined, as in
the following example.

EXAMPLE 1 Givenu = [_H and v = [_g } find 4u, (—3)v, and 4u + (—3)v.

4u=[_g , (—3)V=|:_lg:|

4u+(—3)v=:_g}+[_lg]=|:_§] [ ]

Sometimes, for convenience (and also to save space), this text may write a column

SOLUTION

and

vector such as |:_? in the form (3, —1). In this case, the parentheses and the comma

distinguish the vector (3, —1) from the 1 x 2 row matrix [ 3 -1 ], written with brackets

and no comma. Thus
3
[2]4

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of R?

Consider a rectangular coordinate system in the plane. Because each point in the plane

is determined by an ordered pair of numbers, we can identify a geometric point (a,b)
. a o

with the column vector bl So we may regard R? as the set of all points in the plane.

See Figure 1.

P X

°(2.2) °(2,2)

X

X

1 1

2,-D) ‘G.-1) “2.-1) ‘G,-1)

FIGURE 1 Vectors as points. FIGURE 2 Vectors with arrows.



26 CHAPTER 1 Linear Equations in Linear Algebra

The geometric visualization of a vector such as |: | is often aided by including an

1
arrow (directed line segment) from the origin (0, 0) to the point (3, —1), as in Figure 2.
In this case, the individual points along the arrow itself have no special significance.?

The sum of two vectors has a useful geometric representation. The following rule
can be verified by analytic geometry.

Parallelogram Rule for Addition

If u and v in R? are represented as points in the plane, then u + v corresponds to
the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See
Figure 3.

X,

el +V

eV

0 N

FIGURE 3 The parallelogram rule.

EXAMPLE 2 Thevectorsu = [;],v = |:_6j|,andu +v= [_4] are displayed

1 3
in Figure 4.
)
u+v
[ 3+
-+ ol
ve T
1+ — X
) 2
FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed
nonzero vector is a line through the origin, (0, 0).

EXAMPLE 3 Letu = [ 3]. Display the vectors u, 2u, and —%u on a graph.

-1

SOLUTION See Figure 5, where u, 2u = 6i|, and —%u = [ 2i| are displayed.

-2 2/3
The arrow for 2u is twice as long as the arrow for u, and the arrows point in the same
direction. The arrow for —%u is two-thirds the length of the arrow for u, and the arrows
point in opposite directions. In general, the length of the arrow for cu is |¢| times the
length of the arrow for u. [Recall that the length of the line segment from (0, 0) to («a, b)

is +/a? 4+ b%. We shall discuss this further in Chapter 6.]

2 In physics, arrows can represent forces and usually are free to move about in space. This interpretation of
vectors will be discussed in Section 4.1.
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X

FIGURE 6
Scalar multiples.

2a

FIGURE 7

Vector subtraction.
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) X
2
-3u
Ou
X X
u u
2u
L]
Typical multiples of u The set of all multiples of u
FIGURE 5 [ |

Vectors in R3

Vectors in R? are 3 x 1 column matrices with three entries. They are represented ge-

ometrically by points in a three-dimensional coordinate space, with arrows from the
2

origin sometimes included for visual clarity. The vectorsa = | 3 | and 2a are displayed
4

in Figure 6.

Vectors in R”

If n is a positive integer, R" (read “r-n”") denotes the collection of all lists (or ordered
n-tuples) of n real numbers, usually written as n x 1 column matrices, such as

Ui
Us

Uy

The vector whose entries are all zero is called the zero vector and is denoted by 0.
(The number of entries in 0 will be clear from the context.)

Equality of vectors in R” and the operations of scalar multiplication and vector
addition in R” are defined entry by entry just as in R?. These operations on vectors
have the following properties, which can be verified directly from the corresponding
properties for real numbers. See Practice Problem 1 and Exercises 33 and 34 at the end
of this section.

Algebraic Properties of R”

For all u, v, w in R” and all scalars ¢ and d:

@ u+tv=v+u V) cu+vVv)=cu+cv
i) m+v)+w=u+ (v+w) vi) (c+d)u=cu+du
(i) u+0=0+u=u (vil) c(du) = (cd)u

iv) u+ (—u)=—-u+u=0, (viii) lu =u

where —u denotes (—1)u

For simplicity of notation, a vector such as u + (—1)v is often written as u — v.
Figure 7 shows u — v as the sum of u and —v.



28 CHAPTER 1 Linear Equations in Linear Algebra

FIGURE 9

Linear Combinations

Given vectors v, va, ..., V, in R" and given scalars ¢y, ¢s, .. ., ¢,, the vector y defined
by

Yy=cvi+- -+ cpv,
is called alinear combinationof v, ..., v, with weightsc, ..., ¢,.Property (ii) above
permits us to omit parentheses when forming such a linear combination. The weights in
a linear combination can be any real numbers, including zero. For example, some linear
combinations of vectors vy and v, are

V3V + Vo, %vl (= %V] 4+ 0v,), and 0 (= 0vy 4 0vy)

EXAMPLE 4 Figure 8 identifies selected linear combinations of v; = [_i :| and

2 . . .
L (Note that sets of parallel grid lines are drawn through integer multiples of
v, and v,.) Estimate the linear combinations of v; and v, that generate the vectors u and
w.

V) =

FIGURE 8 Linear combinations of v; and v,.

SOLUTION The parallelogram rule shows that u is the sum of 3v; and —2v;; that is,
u= 3V1 — 2V2

This expression for u can be interpreted as instructions for traveling from the origin to u
along two straight paths. First, travel 3 units in the v; direction to 3vy, and then travel —2
units in the v, direction (parallel to the line through v, and 0). Next, although the vector
w is not on a grid line, w appears to be about halfway between two pairs of grid lines,
at the vertex of a parallelogram determined by (5/2)v; and (—1/2)v,. (See Figure 9.)
Thus a reasonable estimate for w is

5 1
W =35V —5V2 |

The next example connects a problem about linear combinations to the fundamental
existence question studied in Sections 1.1 and 1.2.

1 2 7
EXAMPLE S5 leta=| -2 |,aa=|5|,andb = 4 |.Determine whether
-5 6 -3

b can be generated (or written) as a linear combination of a; and a,. That is, determine
whether weights x| and x; exist such that

xia; + xa, =b (D

If vector equation (1) has a solution, find it.
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SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite
the vector equation

1 2 7
Xi| 2 |+xf 5= 4
-5 6 -3
t t t
a; a b
which is the same as
X1 2X2 7
=2x1 |+ | 5x | = 4
—5)(1 6.X2 -3
and
X1+ 2xo 7
=2x14+5x, | = 4 (2)
—5x1 + 6Xx2 -3

The vectors on the left and right sides of (2) are equal if and only if their corresponding
entries are both equal. That is, x; and x, make the vector equation (1) true if and only
if x| and x; satisfy the system
X1+ 2x, = 7
=2x1 +5x, = 4 3)
—5x 1+ 6X2 =-3

To solve this system, row reduce the augmented matrix of the system as follows:?

1 2 7 1 2 7 1 2 7 1 0 3
-2 5 4|~]10 9 18| ~[0 I 2|~]0 1 2
-5 6 3 0 16 32 0 16 32 0 0 0

The solution of (3) is x; = 3 and x, = 2. Hence b is a linear combination of a; and a,,
with weights x; = 3 and x, = 2. That is,

1 2 7
3 2| +2(5 ]| = 4 [ |
-5 6 -3

Observe in Example 5 that the original vectors a;, a,, and b are the columns of the
augmented matrix that we row reduced:

1 2 7
2 5 4
-5 6 =3

bt
aj a b

For brevity, write this matrix in a way that identifies its columns —namely,
[a1 ay b] “)

It is clear how to write this augmented matrix immediately from vector equation (1),

without going through the intermediate steps of Example 5. Take the vectors in the

order in which they appear in (1) and put them into the columns of a matrix as in (4).
The discussion above is easily modified to establish the following fundamental fact.

3 The symbol ~ between matrices denotes row equivalence (Section 1.2).
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A vector equation
xja; +x2a, +---+x,a, =Db

has the same solution set as the linear system whose augmented matrix is
[aa a - a, b] ©)

In particular, b can be generated by a linear combination of ay, . . ., a, if and only
if there exists a solution to the linear system corresponding to the matrix (5).

One of the key ideas in linear algebra is to study the set of all vectors that can be
generated or written as a linear combination of a fixed set {vi,...,v,} of vectors.

If vi,...,v, are in R”, then the set of all linear combinations of vy,...,v,
is denoted by Span{vi,...,v,} and is called the subset of R" spanned (or
generated) by v,, ..., v,.Thatis,Span {vy, ..., v,} is the collection of all vectors
that can be written in the form

C1Vi + Vo + -+ CpVy

with ¢y, ..., c, scalars.

Asking whether a vector b is in Span{v,...,v,} amounts to asking whether the
vector equation

X1V +x2v2 + -+ x,V, =b

has a solution, or, equivalently, asking whether the linear system with augmented matrix

[vi -+ v, b]hasasolution.

Note that Span{vi,...,v,} contains every scalar multiple of v, (for exam-
ple), since ¢vi = cvy; + 0vy + -+ + Ov,. In particular, the zero vector must be in
Span{vi,...,v,}.

A Geometric Description of Span{v} and Span{u, v}

Let v be a nonzero vector in R, Then Span {v} is the set of all scalar multiples of v,
which is the set of points on the line in R? through v and 0. See Figure 10.

If u and v are nonzero vectors in R?, with v not a multiple of u, then Span {u, v} is
the plane in R? that contains u, v, and 0. In particular, Span {u, v} contains the line in
R3 through u and 0 and the line through v and 0. See Figure 11.

X3
X
3 Span{u, v}
Span{v}
v
%2
X
FIGURE 10 Span{v} asa FIGURE 11 Span{u,v}asa

line through the origin. plane through the origin.
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1 5 -3
EXAMPLEG6 Let a=|-2|, ap=|—-13]|, and b= 8 |. Then
3 -3 1

Span {a;, a,} is a plane through the origin in R3. Is b in that plane?

SOLUTION Does the equation xja; + x,a; = b have a solution? To answer this, row
reduce the augmented matrix [a; a, b]:

1 5 -3 1 5 =3 1 5 =3

-2 —-13 8|~|0 -3 2|1 ~10 =3 2

3 -3 1 0 —18 10 0 0 —2
The third equation is 0 = —2, which shows that the system has no solution. The vector
equation x;a; + x,a, = b has no solution, and so b is not in Span{a;, a,}. |

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when
a quantity such as “cost” is broken down into several categories. The basic principle for
the example concerns the cost of producing several units of an item when the cost per

unit is known:
number cost | _ | total
of units perunit| | cost

EXAMPLE 7 A company manufactures two products. For $1.00 worth of product
B, the company spends $.45 on materials, $.25 on labor, and $.15 on overhead. For $1.00
worth of product C, the company spends $.40 on materials, $.30 on labor, and $.15 on
overhead. Let

45 40
b= .25 and c¢=| .30
15 15

Then b and c represent the “costs per dollar of income” for the two products.

a. What economic interpretation can be given to the vector 100b?

b. Suppose the company wishes to manufacture x; dollars worth of product B and
x, dollars worth of product C. Give a vector that describes the various costs the
company will have (for materials, labor, and overhead).

SOLUTION
a. Compute
45 45
100b = 100| .25 | = | 25
15 15

The vector 100b lists the various costs for producing $100 worth of product B—
namely, $45 for materials, $25 for labor, and $15 for overhead.

b. The costs of manufacturing x; dollars worth of B are given by the vector x;b, and
the costs of manufacturing x, dollars worth of C are given by x,c. Hence the total
costs for both products are given by the vector x;b + x,c. [ ]
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PRACTICE PROBLEMS

1. Prove thatu + v = v + u for any u and v in R”.
2. For what value(s) of & will y be in Span{vy, v,, v3} if

1 5 -3 —4
vi=| -1, v, = | —4 |, V3 = 1|, and y= 3
-2 —7 0 h

3. Let wi, wp, w3, u, and v be vectors in R”. Suppose the vectors u and v are in Span
{w1, wy, w3}. Show that u + v is also in Span {w;, w,, w3}. [Hint: The solution to
Practice Problem 3 requires the use of the definition of the span of a set of vectors.
It is useful to review this definition on Page 30 before starting this exercise.]

1.3 EXERCISES

In Exercises 1 and 2, compute u + v and u — 2v. In Exercises 9 and 10, write a vector equation that is equivalent to
1 3 the given system of equations.
o[
2 -1 9, X, + 5X3 =0 10. 4.X1 + x + 3X3 = 9
3 2 4)C1+6X2—X3:0 X1—7X2—2X3: 2
2. u= ) V= 1
—x1 +3x;, —8x3=0 8x; + 6x; —5x3 =15

In Exercises 3 and 4, display the following vectors using arrows
on an xy-graph: u, v, —v, —2v,u +v,u—v,and u — 2v. Notice ~ In Exercises 11 and 12, determine if b is a linear combination of

that u — v is the vertex of a parallelogram whose other vertices are a1 32, and a3.

u,0,and —v. 1] o 5
3. uand v as in Exercise 1 4. wuand v as in Exercise 2 1. a, = _g sy =1 1 fay= _g b=~
In Exercises 5 and 6, write a system of equations that is equivalent - - -
to the given vector equation. o1 0 ) _5
6 -3 1 12. a = -2 ,a = 5 |,a; = 0|.b= 11
5. 0| -1 [+x| 4|=|-7 L 2] L5 L8 =1
5 0 -5
In Exercises 13 and 14, determine if b is a linear combination of
6. x, [ —§ j| n x2|: 2 :| n x3|: _é ] _ [ 8 ] the vectors formed from the columns of the matrix A.
1 -4 2 3
Use the accompanying figure to write each vector listed in Exer- 13. A= 0 3 5(.b=| -7
cises 7 and 8 as a linear combination of u and v. Is every vector |2 8 —4 -3
in R? a linear combination of u and v?
1 -2 —6 11
4. A=({0 3 7]|,b=]|-5
1 -2 5 9

In Exercises 15 and 16, list five vectors in Span {v;, v,}. For each
vector, show the weights on v, and v, used to generate the vector
and list the three entries of the vector. Do not make a sketch.

7 -5

15. vV, = 1 ,Vp = 3

| —6 0
7. Vectors a,b,c,and d 3 —2
16. vV, = 0 ,Vp = 0
8. Vectors w, x,y,and z 2 3



1 -2 4
17. Let a; = 4 (,a,=| =3 |,and b= | 1 |. For what
| —2 7 h
value(s) of / is b in the plane spanned by a; and a,?
M1 -3 h
18. Letv, = 01,v, = 1 [,andy = | —5 |.For what
| —2 8 -3

value(s) of % is y in the plane generated by v, and v,?

19. Give a geometric description of Span {v,, v,} for the vectors

8 12
v = 2 | andv, = 3
—6 -9

20. Give a geometric description of Span {v,, v,} for the vectors
in Exercise 16.

21. Let u=|:_?i| and V=|:fi|. Show that [Z] is in
Span {u, v} for all & and k.

22. Constructa 3 x 3 matrix A, with nonzero entries, and a vector
b in R3 such that b is not in the set spanned by the columns
of A.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. Another notation for the vector [ _i ] is[—4 3].

b. The points in the plane corresponding to [_g] and

[ _§:| lie on a line through the origin.

c. An example of a linear combination of vectors v; and v,
is the vector 1v;.

d. The solution set of the linear system whose augmented
matrix is [a; a, a3 b] is the same as the solution
set of the equation x;a; + x,a, + x3a; = b.

e. The set Span{u,v} is always visualized as a plane
through the origin.

24.

o

Any list of five real numbers is a vector in R,

b. The vector u results when a vector u — v is added to the
vector v.

c. The weights ¢;,...,c, in a linear combination
c1vy +--- + c,v, cannot all be zero.

d. When u and v are nonzero vectors, Span {u, v} contains
the line through u and the origin.

e. Asking whether the linear system corresponding to

an augmented matrix [a; a, a; b] has a solution
amounts to asking whether b is in Span {a;, a,, a;}.

1 0 —4 4
25. Let A = 0 3 =2 | and b= 1 |. Denote the
-2 6 3 —4

columns of A by a;, a,, a3, and let W = Span {a,, a,, a;}.

26.

27.

28.

29.
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a. Isbin{a,a,,a;}? How many vectors are in {a;, a5, a3}?
b. Is b in W? How many vectors are in W?

c. Show that a; is in W. [Hint: Row operations are unnec-

essary.]
2 0 6 10
Let A= | —1 8 5 |,letb= 3 |, and let W be
1 -2 1 3

the set of all linear combinations of the columns of A.

a. Isbin W?
b. Show that the third column of A is in W.

A mining company has two mines. One day’s operation at
mine #1 produces ore that contains 20 metric tons of cop-
per and 550 kilograms of silver, while one day’s operation
at mine #2 produces ore that contains 30 metric tons of

copper and 500 kilograms of silver. Let v; = [5?8] and

v, = [ 5(3)8 ] . Then v, and v, represent the “output per day”

of mine #1 and mine #2, respectively.

a. What physical interpretation can be given to the vector
5V1 ?

b. Suppose the company operates mine #1 for x; days and
mine #2 for x, days. Write a vector equation whose solu-
tion gives the number of days each mine should operate in
order to produce 150 tons of copper and 2825 kilograms
of silver. Do not solve the equation.

c. [M] Solve the equation in (b).

A steam plant burns two types of coal: anthracite (A) and
bituminous (B). For each ton of A burned, the plant produces
27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide,
and 250 g of particulate matter (solid-particle pollutants). For
each ton of B burned, the plant produces 30.2 million Btu,
6400 g of sulfur dioxide, and 360 g of particulate matter.

a. How much heat does the steam plant produce when it
burns x; tons of A and x, tons of B?

b. Suppose the output of the steam plant is described by
a vector that lists the amounts of heat, sulfur dioxide,
and particulate matter. Express this output as a linear
combination of two vectors, assuming that the plant burns
x; tons of A and x, tons of B.

c. [M] Over a certain time period, the steam plant produced
162 million Btu of heat, 23,610 g of sulfur dioxide, and
1623 g of particulate matter. Determine how many tons
of each type of coal the steam plant must have burned.
Include a vector equation as part of your solution.

Let vy,...,v; be points in R?® and suppose that for

j =1,...,k an object with mass m is located at point v;.

Physicists call such objects point masses. The total mass of

the system of point masses is

m=my + -+ my
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The center of gravity (or center of mass) of the system is a. Find the (x, y)-coordinates of the center of mass of the

plate. This “balance point” of the plate coincides with

V= ;[lel + e mve] the center of mass of a system consisting of three 1-gram

Compute the center of gravity of the system consisting of the

point masses located at the vertices of the plate.

following point masses (see the figure): b. Determine how to distribute an additional mass of 6 g

at the three vertices of the plate to move the balance

point of the plate to (2,2). [Hint: Let w;, w,, and w;

Point Mass denote the masses added at the three vertices, so that
vi=(5-4.3) 2g wy + wy + w3 = 6.]
v, = (4,3,-2) 5¢g
vy = (—4,-3,—1) 2g 32. Consider the vectors vy, v,, vs, and b in R?, shown in the
vy = (=9,8,6) lg figure. Does the equation x;v; 4+ x,v, + x3v3 = b have a
solution? Is the solution unique? Use the figure to explain
your answers.
X3
v, v,
V1 — ’
|
Vg X ob
X 2
1 J 2
\f)
30. Let v be the center of mass of a system of point 0 o
. . . Vi
masses located at vy,...,v, as in Exercise 29. Is v in
Span{vy, ..., v;}? Explain.
33. Use the vectors u = (uy,...,u,), v=(v1,...,0,), and
31. A thin triangular plate of uniform density and thickness has _ ( . ") . (Vs . ")
i . w = (wy,...,w,) to verify the following algebraic proper-
vertices at vi = (0, 1),v, = (8,1),and v; = (2, 4), as in the ties of R”
figure below, and the mass of the plate is 3 g. '
X a. (u+v)+w=u+(v+w)
A b. c(u+ v) = cu + cv for each scalar ¢
4 Y
34. Use the vectoru = (uy, ..., u,) to verify the following alge-
braic properties of R”.
Vl aVz
a. u+(—u)=(-u)+u=0
1 1 1 1 1 1 1 X
e bog ! b. ¢(du) = (cd)u for all scalars ¢ and d
SOLUTIONS TO PRACTICE PROBLEMS
1. Take arbitrary vectors u = (uy,...,u,) and v = (vy,...,v,) in R”, and compute
u+v=u +v,...,u, +v,) Definition of vector addition
=W +up,...,v, +uy) Commutativity of addition in R
=v+u Definition of vector addition
2. The vector y belongs to Span {vy, v,, v3} if and only if there exist scalars x, x5, x3

Span {vy, v,, v3}

—4
The points 3 | lie on a line that
h

intersects the plane when & = 5.

such that
1 5 -3 —4
x| =1 [ +x2f 4| +x3 1| = 3
-2 —7 0 h

This vector equation is equivalent to a system of three linear equations in three
unknowns. If you row reduce the augmented matrix for this system, you find that
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1 5 -3 —4 1 5 =3 —4 1 5 =3 —4
-1 -4 1 3|~|10 1 =2 —1 ~10 1 =2 -1
-2 -7 0 h 0 3 -6 h-8 0 0 0 h-5

The system is consistent if and only if there is no pivot in the fourth column. That
is,h — 5 must be 0. So y is in Span {vy, v, v3} if and only if # = 5.

Remember: The presence of a free variable in a system does not guarantee that the
system is consistent.

3. Since the vectors u and v are in Span {w1, W, w3}, there exist scalars ¢y, 3, ¢3 and
dy, d>, ds such that

U=c Wi +cawy+c3wy and v =d;w| + d,wy + d3 ws.
Notice

u-+v = C1Wq +6‘2W2+C3W3+d1W1 +d2W2+d3W3
= (i1 +d)wi+ (c2+dry)wy + (c3+d3) w3

Since ¢y + dy, ¢, + da, and ¢3 + d5 are also scalars, the vector u 4 v is in Span
W1, wa, Wil

THE MATRIX EQUATION Ax=b

A fundamental idea in linear algebra is to view a linear combination of vectors as the
product of a matrix and a vector. The following definition permits us to rephrase some
of the concepts of Section 1.3 in new ways.

If A is an m X n matrix, with columns a;,...,a,, and if x is in R”, then the
product of A and x, denoted by Ax, is the linear combination of the columns
of A using the corresponding entries in x as weights; that is,

X1
Ax=[a; a - a,|| | =xja + x84+ + x,a,

Xn

Note that Ax is defined only if the number of columns of A equals the number of entries
in X.

JoE DR
(8] [d[-[

2 -3 4 2 -3 8 21 —13
b &8 0 |:7i| =4 8|+7] 0|= 32|+ 0= 32 ]
-5 2 -5 2 -20 14 —6

EXAMPLE 2 Forvy, vy, vsin R”, write the linear combination 3v; — 5v, + 7vs as
a matrix times a vector.
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THEOREM 3

SOLUTION Place vy, vy, v3 into the columns of a matrix A and place the weights 3, —5,
and 7 into a vector x. That is,

3
3vi —5vy, + Tvz = [V1 A\ V3] -5 | = Ax |
7

Section 1.3 showed how to write a system of linear equations as a vector equation
involving a linear combination of vectors. For example, the system

X1+ 2x — X3 4
—5X2 + 3)63 = l

Llelef)] e

As in Example 2, the linear combination on the left side is a matrix times a vector, so

that (2) becomes
X1
1 2 -1 4
[0 =5 3} o :[1] @
X3

Equation (3) has the form Ax = b. Such an equation is called a matrix equation,
to distinguish it from a vector equation such as is shown in (2).

Notice how the matrix in (3) is just the matrix of coefficients of the system (1).
Similar calculations show that any system of linear equations, or any vector equation
such as (2), can be written as an equivalent matrix equation in the form Ax = b. This
simple observation will be used repeatedly throughout the text.

Here is the formal result.

ey

is equivalent to

If A is an m x n matrix, with columns ay, ..., a,, and if b is in R, the matrix
equation
Ax=b 4)

has the same solution set as the vector equation
xXia; + xpa + -+ x,a, = b (5)

which, in turn, has the same solution set as the system of linear equations whose
augmented matrix is
[ai a, -~ a, b] (6)

Theorem 3 provides a powerful tool for gaining insight into problems in linear
algebra, because a system of linear equations may now be viewed in three different
but equivalent ways: as a matrix equation, as a vector equation, or as a system of linear
equations. Whenever you construct a mathematical model of a problem in real life, you
are free to choose whichever viewpoint is most natural. Then you may switch from one
formulation of a problem to another whenever it is convenient. In any case, the matrix
equation (4), the vector equation (5), and the system of equations are all solved in the
same way —by row reducing the augmented matrix (6). Other methods of solution will
be discussed later.
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Span{al, a,, 33}

The columns of

A= [ a
through 0.

a

a3 | span a plane
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Existence of Solutions

The definition of Ax leads directly to the following useful fact.

The equation Ax = b has a solution if and only if b is a linear combination of the
columns of A4.

Section 1.3 considered the existence question, “Is b in Span{a, ..., a,}?” Equiva-
lently, “Is Ax = b consistent?” A harder existence problem is to determine whether the
equation Ax = b is consistent for all possible b.

1 3 4 b
EXAMPLE 3 LetA=|—-4 2 —6 |[andb = | b, |.Is the equation Ax = b
-3 -2 -7 bs

consistent for all possible by, by, b3?

SOLUTION Row reduce the augmented matrix for Ax = b:

1 3 4 p] [1 3 4 b
—4 2 =6 by |~|0 14 10 by +4b
3 -2 =7 b | |0 T 5 bi+3b
(1 3 4 by
~lo 14 10 by + 4b,

0 0 0 b3+3b—3(by+4by)

The third entry in column 4 equals b; — %bz + bs.The equation Ax = b is not consistent
for every b because some choices of b can make b, — %bz + b3 nonzero. [ |

The reduced matrix in Example 3 provides a description of all b for which the
equation Ax = b is consistent: The entries in b must satisfy

bl—%b2+b3=0

This is the equation of a plane through the origin in R*. The plane is the set of all linear
combinations of the three columns of 4. See Figure 1.

The equation Ax = b in Example 3 fails to be consistent for all b because the
echelon form of A has a row of zeros. If A had a pivot in all three rows, we would
not care about the calculations in the augmented column because in this case an echelon
form of the augmented matrix could not have arow suchas[0 0 0 1].

In the next theorem, the sentence “The columns of 4 span R”” means that every b in

R™ is a linear combination of the columns of A.In general, a set of vectors {vy,...,v,}
in R™ spans (or generates) R™ if every vector in R™ is a linear combination of
Vi,...,Vp—thatis,if Span{vy,...,v,} = R".

Let A be an m x n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false.
a. For each b in R, the equation Ax = b has a solution.

b. Each b in R is a linear combination of the columns of A.

c. The columns of A span R™.

d. A has a pivot position in every row.
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Theorem 4 is one of the most useful theorems in this chapter. Statements (a), (b), and
(c) are equivalent because of the definition of Ax and what it means for a set of vectors
to span R”. The discussion after Example 3 suggests why (a) and (d) are equivalent;
a proof is given at the end of the section. The exercises will provide examples of how
Theorem 4 is used.

Warning: Theorem 4 is about a coefficient matrix, not an augmented matrix. If an
augmented matrix [ A b ] has a pivot position in every row, then the equation Ax = b
may or may not be consistent.

Computation of Ax

The calculations in Example 1 were based on the definition of the product of a matrix A
and a vector x. The following simple example will lead to a more efficient method for
calculating the entries in Ax when working problems by hand.

3 4 X1
EXAMPLE 4 Compute Ax,where A=| —1 5 =3 |[andx= | x;
-2 8 X3
SOLUTION From the definition,
2 3 4 X1 2 3 4
-1 5 =3 X | =x1| -1 | +x2 51 4+x3| =3
6 —2 8 X3 6 -2 8
i 2)(71 3)(72 i 4.X3
=| —x; | + 5x2 | + | —3x3 (7)
6x —2Xx> 1 8x3

B 2x1 + 3xy + 4x3 T
= | —x1 + 5x3 —3x3
| 6x1 —2x3 + 8x3 |

The first entry in the product Ax is a sum of products (sometimes called a dot product),
using the first row of A and the entries in x. That is,

2 3 4 X1 2x1 4+ 3x, + 4x3
X2 =
X3
This matrix shows how to compute the first entry in Ax directly, without writing down
all the calculations shown in (7). Similarly, the second entry in Ax can be calculated at

once by multiplying the entries in the second row of A by the corresponding entries in
x and then summing the resulting products:

X1
-1 5 =3 X2 = —X1 + 5X2 - 3X3
X3
Likewise, the third entry in Ax can be calculated from the third row of 4 and the entries
in X. ]

Row-Vector Rule for Computing Ax

If the product Ax is defined, then the i th entry in Ax is the sum of the products of
corresponding entries from row i of A and from the vector x.
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EXAMPLE 5
a 1 2 —1 g (1442347 |3
[0 -5 3 7 T 1044 (=5-3+3-7| |6
2 -3 4 2-44(=3)-7 —137]
b. 8 0 [7}= 8§:44+0-7 | = 32
| -5 2 (=5 -4+2-7 —6 |
1 o[ r 1-r+0-5s+0-¢ r
C 0 0 s|=10r+1-5s+0-¢t =135 |
| 0 1 t O-r+0-s+1-¢ t

By definition, the matrix in Example 5(c) with 1’s on the diagonal and 0’s elsewhere
is called an identity matrix and is denoted by /. The calculation in part (c) shows that
Ix = xforevery xinR*. There is an analogous n x n identity matrix, sometimes written
as I,. As in part (c), I,x = x for every x in R”.

Properties of the Matrix—Vector Product Ax

The facts in the next theorem are important and will be used throughout the text. The
proof relies on the definition of Ax and the algebraic properties of R”.

If A is an m x n matrix, u and v are vectors in R”, and c is a scalar, then:

a. A(u+v) = Au+ Av;
b. A(cu) = c(Au).

PROOF For simplicity, taken =3, A =[a; a, az],andu,vin R3. (The proof of
the general case is similar.) Fori = 1,2, 3, let u; and v; be the ith entries in u and v,
respectively. To prove statement (a), compute A(u + v) as a linear combination of the
columns of A using the entries in u + v as weights.

up + vy
Uy + vy
Uz + v3

Aw+v) =[a; ay a3]

) Entries inu + v
= (u1 +vi)a; + (U2 + vo)ar + (u3 + v3)az

1 i i
= (u1a; + uray + u3a;3) + (via; + v2a; + v3a3)
= Au + Av

Columns of 4

To prove statement (b), compute A(cu) as a linear combination of the columns of A
using the entries in cu as weights.

CUq
CUy
CUus

A(cu) = [a; ay a3] = (cup)a; + (cuz)ay + (cuz)a;

c(uiay) + c(uzaz) + c(u3az)
= c(u1a; + usa, + uzas)
= c(Au) u



40 CHAPTER 1 Linear Equations in Linear Algebra

1.4 EXERCISES

— NUMERICAL NOTE

To optimize a computer algorithm to compute Ax, the sequence of calculations
should involve data stored in contiguous memory locations. The most widely
used professional algorithms for matrix computations are written in Fortran, a
language that stores a matrix as a set of columns. Such algorithms compute Ax as
a linear combination of the columns of A. In contrast, if a program is written in
the popular language C, which stores matrices by rows, Ax should be computed
via the alternative rule that uses the rows of A.

PROOF OF THEOREM 4 As was pointed out after Theorem 4, statements (a), (b), and
(c) are logically equivalent. So, it suffices to show (for an arbitrary matrix A) that (a)
and (d) are either both true or both false. This will tie all four statements together.

Let U be an echelon form of A. Given b in R, we can row reduce the augmented
matrix [ A b] to an augmented matrix [U d] for some d in R™:

[4 b]~--~[U 4]

If statement (d) is true, then each row of U contains a pivot position and there can be no
pivot in the augmented column. So Ax = b has a solution for any b, and (a) is true. If (d)
is false, the last row of U is all zeros. Let d be any vector with a 1 in its last entry. Then
[U d]represents an inconsistent system. Since row operations are reversible, [ U d ]
can be transformed into the form [ A b ]. The new system Ax = b is also inconsistent,
and (a) is false. [ |

PRACTICE PROBLEMS

1 5 -2 0 _g -7
1. LetA=| -3 1 9 =5 |,p= ,andb = 9 |.It can be shown that
0
4 -8 -1 7 4 0

p is a solution of Ax = b. Use this fact to exhibit b as a specific linear combination
of the columns of A.

2 5
3 1

by computing A(u + v) and Au + Av.

2. Let A = [ :|, u= [_‘1‘], and v = [_Z] Verify Theorem 5(a) in this case

3. Construct a 3 x 3 matrix A and vectors b and ¢ in R? so that Ax = b has a solution,
but Ax = ¢ does not.

Compute the products in Exercises 1-4 using (a) the definition, as In Exercises 5-8, use the definition of Ax to write the matrix
in Example 1, and (b) the row—vector rule for computing Ax.Ifa  equation as a vector equation, or vice versa.
product is undefined, explain why.

[—4

3
-2
7

-3

}2.

5
[ 2 5 1 -8 4] -1 -8
6 [_f] >l 7 3 —5] 3 2[16]
| -1 -2
7 -3 1

- 1 2 112 -9
8 3 —4 6. |: ] =
s 1 2] |: } :| 9 —6 || =5 12

-3 2 —4



-5 7 6

—1 3 -8 -8

7. X1 7 + X2 _5 + X3 0 = 0
—4 1 2 -7

[ o2 [5]e el

In Exercises 9 and 10, write the system first as a vector equation

and then as a matrix equation.
9. 3X1 + X3 — SX3 =9 10. 8)C1 —

5X1 +4X2 =1

Xy = 4
X2 + 4X3 =0

X —3x, =2
Given A and b in Exercises 11 and 12, write the augmented matrix

for the linear system that corresponds to the matrix equation
Ax = b. Then solve the system and write the solution as a vector.

M1 2 47 =27
11. A= 0 1 51,b= 2
-2 —4 -3 | L 9]
! 2 1] M 0]
12. A=| -3 -1 2 |,b= 1
L 0 5 3] | -1 |
0 3 =5
13. Letu=| 4 [and A= | —2 6 [.Is uin the plane R?
4 1 1
spanned by the columns of A? (See the figure.) Why or why
not?
*u?
Plane spanned by
‘—_—._________70 u? the columns of A
Where is u?
M 2 5 8 7
14. Letu=| -3 |andA =] 0 1 —1 |.Isuinthe subset
2 1 3 0

of R? spanned by the columns of A? Why or why not?

15.

LetA = -1 andb = b .Show that the equation
|—6 3 by

Ax = b does not have a solution for all possible b, and
describe the set of all b for which Ax = b does have a

solution.
1 -3 —4 b
16. RepeatExercise 15:A=| -3 2 6 |,b=| b,
5 -1 -8 by

Exercises 17-20 refer to the matrices A and B below. Make
appropriate calculations that justify your answers and mention an
appropriate theorem.

3 0 3 1 3 -2 2

-1 -1 -1 1 0 1 1 =5

A= 0 -4 2 -8 B= 1 2 -3 7
2 0 3 -1 -2 -8 2 -1

17. How many rows of A contain a pivot position? Does the
equation Ax = b have a solution for each b in R*?

18. Do the columns of B span R*? Does the equation Bx =y
have a solution for each y in R*?

19. Can each vector in R* be written as a linear combination of
the columns of the matrix A above? Do the columns of A
span R*?

20. Can every vector in R* be written as a linear combination of
the columns of the matrix B above? Do the columns of B
span R3?

1] 0] 1]

0 —1 0

21. Letv, = 1 ,Vy = 0 ,V3 = 0
L 0] L 1] | —1 |

Does {Vvi, V5, v3} span R*? Why or why not?
0] 0] [ 47

22, Letv, = 0f,vo=1| -3 |,vs=1] —1

| —2 8 | | =5 |
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Does {v|, V2, v3} span R*? Why or why not?

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a.

b. A vector b is a linear combination of the columns of a
matrix A if and only if the equation Ax = b has at least
one solution.

The equation Ax = b is referred to as a vector equation.

c. The equation Ax = b is consistent if the augmented ma-
trix [ A b ] has a pivot position in every row.

d. The first entry in the product Ax is a sum of products.

e. If the columns of an m x n matrix A span R", then the
equation Ax = b is consistent for each b in R”.

f. If A is an m x n matrix and if the equation Ax = b is
inconsistent for some b in R, then A cannot have a pivot
position in every row.

24. a. Every matrix equation Ax = b corresponds to a vector

equation with the same solution set.

b. Any linear combination of vectors can always be written
in the form Ax for a suitable matrix A and vector Xx.

c. The solution set of a linear system whose augmented
matrix is [a; a, a3 b] is the same as the solution
setof Ax =b,ifA=[a;, a, a3].

d. If the equation Ax = b is inconsistent, then b is not in the
set spanned by the columns of A4.

e. If the augmented matrix [ A b ] has a pivot position in
every row, then the equation Ax = b is inconsistent.
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25.

26.

27.

28.

29.

30.

31.
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f. If A is an m x n matrix whose columns do not span R™,
then the equation Ax = b is inconsistent for some b in
R™.

4 -3 1 -3 -7
Note that 5 =2 5 —1 [ =] —3 |.Use this fact
-6 2 -3 2 10
(and no row operations) to find scalars c;, ¢, ¢3 such that
-7 4 -3 1
=3 | =q 5|(14c| -2 |+c| 5
10 —6 2 -3
7 3 6
Letu=|2|,v=| 1 [,andw= | 1
5 3 0

It can be shown that 3u — 5v — w = 0. Use this fact (and
no row operations) to find x; and x, that satisfy the equation

7 37, 6
2 1 [x']= 1
5 3 2 0

Let q, q,, g5, and v represent vectors in R, and let xi, x,,
and x3 denote scalars. Write the following vector equation as
a matrix equation. Identify any symbols you choose to use.

X1q; + X2q; + X33 =V

Rewrite the (numerical) matrix equation below in symbolic
form as a vector equation, using symbols vy, v, ... for the
vectors and ¢y, ¢y, . .. for scalars. Define what each symbol
represents, using the data given in the matrix equation.

-3
-3 5 -4 9 7
5 8 1 -2 —4

=[]

Construct a 3 x 3 matrix, not in echelon form, whose
columns span R3. Show that the matrix you construct has the
desired property.

Construct a 3 x 3 matrix, not in echelon form, whose
columns do not span R*. Show that the matrix you construct
has the desired property.

Let A be a 3 x 2 matrix. Explain why the equation Ax = b
cannot be consistent for all b in R®. Generalize your

El Mastering Linear Algebra Concepts: Span 1-18

32.

33.

34.

3s.

36.

argument to the case of an arbitrary 4 with more rows than
columns.

Could a set of three vectors in R* span all of R*? Explain.
What about n vectors in R” when 7 is less than m?

Suppose A is a 4 x 3 matrix and b is a vector in R* with the
property that Ax = b has a unique solution. What can you say
about the reduced echelon form of A? Justify your answer.

Suppose A is a 3 x 3 matrix and b is a vector in R* with the
property that Ax = b has a unique solution. Explain why the
columns of A4 must span R3.

Let A be a 3 x 4 matrix, let y, and y, be vectors in R?, and
letw =y, +Yy,.Suppose y, = Ax; and y, = Ax, for some
vectors x; and X, in R*. What fact allows you to conclude that
the system Ax = w is consistent? (Note: x; and X, denote
vectors, not scalar entries in vectors.)

Let A be a 5 x 3 matrix, let y be a vector in R?, and let z
be a vector in R>. Suppose Ay = z. What fact allows you to
conclude that the system Ax = 4z is consistent?

[M] In Exercises 37-40, determine if the columns of the matrix

span R*.
7 2 =5 8 5 -7 -4 9
-5 =3 4 -9 6 -8 -7 5
37. 6 10 -2 7 38. 4 -4 -9 -9
7 9 2 15 9 11 16 7
12 -7 11 -9 5
9 4 8 7 -3
. —6 11 -7 3 -9
L 4 -6 10 -5 12
8 11 -6 -7 13
-7 =8 5 6 -9
40. 11 7 -7 -9 -6
3 4 1 8 7

41.

42.

[M] Find a column of the matrix in Exercise 39 that can be
deleted and yet have the remaining matrix columns still span
R*.

[M] Find a column of the matrix in Exercise 40 that can be
deleted and yet have the remaining matrix columns still span
R*. Can you delete more than one column?

SOLUTIONS TO PRACTICE PROBLEMS

1. The matrix equation

-2 0 _; -7
19 sl o= 9
-8 —1 7 0
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is equivalent to the vector equation

1 5 -2 0 —7
3/ 3|1 =2 1|+0| 9|—-4-5|= 9
4 -8 —1 7 0

which expresses b as a linear combination of the columns of A.

2 wev= 4[]
o2 -] [
wrav=3 3]G 3

-[2)-[2]-[3

Remark: There are, in fact, infinitely many correct solutions to Practice Problem 3.
When creating matrices to satisfy specified criteria, it is often useful to create
matrices that are straightforward, such as those already in reduced echelon form.
Here is one possible solution:

3. Let
1 0 1 3 3
A=10 1 1|,b=|2|,andec= |2
0O 0 O 0 1

Notice the reduced echelon form of the augmented matrix corresponding to Ax = b
is

I o 1 3
o 1 1 2f,
0O 0 0 O

which corresponds to a consistent system, and hence Ax = b has solutions. The
reduced echelon form of the augmented matrix corresponding to Ax = c¢ is

1 0 1 3
o 1 1 2],
0 0 0 1

which corresponds to an inconsistent system, and hence Ax = ¢ does not have any
solutions.

1.5 | SOLUTION SETS OF LINEAR SYSTEMS

Solution sets of linear systems are important objects of study in linear algebra. They
will appear later in several different contexts. This section uses vector notation to give
explicit and geometric descriptions of such solution sets.

Homogeneous Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the form
Ax = 0, where A is an m x n matrix and 0 is the zero vector in R”. Such a system
Ax = 0 always has at least one solution, namely, x = 0 (the zero vector in R"). This
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FIGURE 1

zero solution is usually called the trivial solution. For a given equation Ax = 0, the
important question is whether there exists a nontrivial solution, that is, a nonzero
vector x that satisfies Ax = 0. The Existence and Uniqueness Theorem in Section 1.2
(Theorem 2) leads immediately to the following fact.

The homogeneous equation Ax = 0 has a nontrivial solution if and only if the
equation has at least one free variable.

EXAMPLE 1 Determine if the following homogeneous system has a nontrivial
solution. Then describe the solution set.

3X1 +5)C2 —4)(73 =0
—3x; —2x, +4x3=0
6x;1 + x, —8x3 =0

SOLUTION Let A be the matrix of coefficients of the system and row reduce the
augmented matrix [ A 0] to echelon form:

35 -4 0 3 5 -4 0 35 -4 0
-3 -2 4 O0Of~|J0 3 0 O|~]0 3 0 O
6 1 -8 0 0-9 0 0 0 0 0 0

Since x3 is a free variable, AXx = 0 has nontrivial solutions (one for each choice of x3).
To describe the solution set, continue the row reduction of [ A 0] to reduced echelon
form:

1 0o -% o xp —30=0
0 1 0 0 X =0
0 0 0 0 0 =0

Solve for the basic variables x; and x, and obtain x; = %X3, x, = 0, with x3 free. As a
vector, the general solution of Ax = 0 has the form

4 4 4
X1 3%3 3 3
X=1|x | = 0 =x3| 0 | =x3v, wherev=] 0
X3 X3 1 1

Here x3 is factored out of the expression for the general solution vector. This shows that
every solution of Ax = 0 in this case is a scalar multiple of v. The trivial solution is
obtained by choosing x3 = 0. Geometrically, the solution set is a line through 0 in R3.
See Figure 1. [ |

Notice that a nontrivial solution x can have some zero entries so long as not all of
its entries are zero.

EXAMPLE 2 A single linear equation can be treated as a very simple system of
equations. Describe all solutions of the homogeneous “system”

10)(?1 — 3)(?2 — 2X3 =0 (1)

SOLUTION There is no need for matrix notation. Solve for the basic variable x| in
terms of the free variables. The general solution is x; = .3x; 4+ .2x3, with x; and x3
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free. As a vector, the general solution is

X1 3x + .2x3 3x, 2x3
X=|x | = X2 = Xy | + 0
X3 X3 0 X3

3 2

=x| 1 |4+x3] 0 (with x5, x5 free) 2

0 1

t t

u A\

This calculation shows that every solution of (1) is a linear combination of the vectors
u and v, shown in (2). That is, the solution set is Span {u, v}. Since neither u nor v is a
scalar multiple of the other, the solution set is a plane through the origin. See Figure 2.

|

Examples 1 and 2, along with the exercises, illustrate the fact that the solution
set of a homogeneous equation Ax = 0 can always be expressed explicitly as
Span{vy,...,v,} for suitable vectors vi, ..., v,. If the only solution is the zero vector,
then the solution set is Span {0}. If the equation Ax = 0 has only one free variable, the
solution set is a line through the origin, as in Figure 1. A plane through the origin, as in
Figure 2, provides a good mental image for the solution set of Ax = 0 when there are
two or more free variables. Note, however, that a similar figure can be used to visualize
Span {u, v} even when u and v do not arise as solutions of Ax = 0. See Figure 11 in
Section 1.3.

Parametric Vector Form

The original equation (1) for the plane in Example 2 is an implicit description of the
plane. Solving this equation amounts to finding an explicit description of the plane as
the set spanned by u and v. Equation (2) is called a parametric vector equation of the
plane. Sometimes such an equation is written as

Xx=su-+1tv (s,zinR)

to emphasize that the parameters vary over all real numbers. In Example 1, the equation
X = x3V (with x3 free), or x = ¢tv (with z in R), is a parametric vector equation of a line.
Whenever a solution set is described explicitly with vectors as in Examples 1 and 2, we
say that the solution is in parametric vector form.

Solutions of Nonhomogeneous Systems

When a nonhomogeneous linear system has many solutions, the general solution can be
written in parametric vector form as one vector plus an arbitrary linear combination of
vectors that satisfy the corresponding homogeneous system.

EXAMPLE 3 Describe all solutions of Ax = b, where

3 5 —4 7
A=| -3 =2 4 and b= | —1
6 1 =8 —4
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[
FIGURE 3
Adding p to v translates v to v + p.

L+p

FIGURE 4
Translated line.

SOLUTION Here A is the matrix of coefficients from Example 1. Row operations on
[A b]produce

3 5 —4 7 1 0 -3 -1 X1 —ix3=-—1
-3 -2 4 -1 |~{0 1 0 2|, X = 2
6 1 -8 —4 0 0 0 0 0 =0
Thus x; = —1 + §x3,x2 = 2,and xj is free. As a vector, the general solution of Ax = b
has the form
X1 -1+ %X3 1 %X3 -1 %
X=|x | = 2 = 2|+ 0 = 2 +x31 0
X3 X3 0 X3 0 1
f f
p v
The equation x = p + X3V, or, writing ¢ as a general parameter,
x=p+tv (inR) 3)

describes the solution set of Ax = b in parametric vector form. Recall from Example 1
that the solution set of Ax = 0 has the parametric vector equation

x=1tv (tinR) @

[with the same v that appears in (3)]. Thus the solutions of Ax = b are obtained by
adding the vector p to the solutions of Ax = 0. The vector p itself is just one particular
solution of Ax = b [corresponding to ¢ = 0 in (3)]. [ ]

To describe the solution set of Ax = b geometrically, we can think of vector
addition as a translation. Given v and p in R? or R3, the effect of adding p to v is
to move v in a direction parallel to the line through p and 0. We say that v is translated
by p to v + p. See Figure 3. If each point on a line L in R? or R? is translated by a
vector p, the result is a line parallel to L. See Figure 4.

Suppose L is the line through 0 and v, described by equation (4). Adding p to each
point on L produces the translated line described by equation (3). Note that p is on the
line in equation (3). We call (3) the equation of the line through p parallel to v. Thus
the solution set of AX = b is a line through p parallel to the solution set of Ax = 0.
Figure 5 illustrates this case.

Ax=b

A Py
/

Ax=0
P %

tv

FIGURE 5 Parallel solution sets of Ax = b and
Ax = 0.

The relation between the solution sets of Ax = b and Ax = 0 shown in Figure 5
generalizes to any consistent equation Ax = b, although the solution set will be larger
than a line when there are several free variables. The following theorem gives the precise
statement. See Exercise 25 for a proof.
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THEOREM 6 Suppose the equation Ax = b is consistent for some given b, and let p be a
solution. Then the solution set of Ax = b is the set of all vectors of the form
w = p + v;,, where vj, is any solution of the homogeneous equation Ax = 0.

Theorem 6 says that if Ax = b has a solution, then the solution set is obtained by
translating the solution set of Ax = 0, using any particular solution p of Ax = b for
the translation. Figure 6 illustrates the case in which there are two free variables. Even
when n > 3, our mental image of the solution set of a consistent system Ax = b (with
b # 0) is either a single nonzero point or a line or plane not passing through the origin.

X3
Ax =b
Ax =10
P
7 X,

X1

FIGURE 6 Parallel solution sets of
Ax = band Ax = 0.

Warning: Theorem 6 and Figure 6 apply only to an equation Ax = b that has at least
one nonzero solution p. When Ax = b has no solution, the solution set is empty.

The following algorithm outlines the calculations shown in Examples 1,2, and 3.

WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC
VECTOR FORM

1. Row reduce the augmented matrix to reduced echelon form.

2. Express each basic variable in terms of any free variables appearing in an
equation.

3. Write a typical solution x as a vector whose entries depend on the free
variables, if any.

4. Decompose x into a linear combination of vectors (with numeric entries) using
the free variables as parameters.

PRACTICE PROBLEMS

1. Each of the following equations determines a plane in R®. Do the two planes
intersect? If so, describe their intersection.

X1 +4x, —5x3=0
2x;1 — X +8x3 =9

2. Write the general solution of 10x; — 3x, — 2x3 = 7 in parametric vector form, and
relate the solution set to the one found in Example 2.

3. Prove the first part of Theorem 6: Suppose that p is a solution of Ax = b, so that
Ap = b. Let v, be any solution to the homogeneous equation Ax = 0, and let
W = p + v;,. Show that w is a solution to Ax = b.
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1.5

EXERCISES

In Exercises 1-4, determine if the system has a nontrivial solution.
Try to use as few row operations as possible.

1. 2x; —5x, +8x3=0 2. xX; —3x 4+ 7x3=0
—2)61 —7X2+ X3:O —2X1+ X2—4X3:0
4X1+2X2+7X3:0 x1—|—2x2—|—9x3=0

3. —3X1 -+ 5X2 - 7.X3 =0 4. —SX] -+ 7X2 -+ 9X3 =0

—6x1 4+ 7x, + x3=0

X1 —2XZ+6X3=0

In Exercises 5 and 6, follow the method of Examples 1 and 2
to write the solution set of the given homogeneous system in
parametric vector form.

5. X1 +3x0n+ x3=0 6.
—4.X| - 9)(2 + 2.X3 =0
—3)C2 —6)C3 =0

X1 +3x —5x3=0
X + 4X2 - 8.X3 =0
—3x1 — 7X2 + 9.X3 =0

In Exercises 7-12, describe all solutions of Ax = 0 in parametric
vector form, where A is row equivalent to the given matrix.

1T 3 =3 7 1 =2 -9 5
7 0 1 —4 5] 8. [0 1 2 —6]
i -9 6 1 3 0 —4
? -1 3 —2] 10. [2 6 0 —8]
1 —4 —2 0 3 —57
0o 0 1 0 0 -1
1. 0O 0 0 0 1 —4
L0 0 0 0 0 0]
1T 5 2 -6 9 07
0o 0 1 -7 4 -8
12. 0 0 0 0 0 1
L0 0 0 0 0 O]

13. Suppose the solution set of a certain system of linear equa-
tions can be described as x| = 5 4 4x3,x, = —2 — 7x3, with
x5 free. Use vectors to describe this set as a line in R?>.

14. Suppose the solution set of a certain system of linear
equations can be described as x; = 3x4, X, =8 + x4,
x3 = 2 — 5x4, with x4 free. Use vectors to describe this set
as a “line” in R*.

15. Follow the method of Example 3 to describe the solutions of
the following system in parametric vector form. Also, give
a geometric description of the solution set and compare it to
that in Exercise 5.

X1+3x0n+ =1
—4X1 —9)C2 +2)C3 = -1
—3X2 —6)63:—3

16. As in Exercise 15, describe the solutions of the following
system in parametric vector form, and provide a geometric
comparison with the solution set in Exercise 6.

X + 3X2 — SX3

X1 + 4X2 — 8.X3
—3)61 — 7X2 + 9X3 =-6

17. Describe and compare the solution sets of x; + 9x; —4x3 =0
and x; + 9x, — 4x; = —2.

18. Describe and compare the solution sets of x; — 3x, 4+ 5x3 = 0
and x; — 3x; + 5x3 = 4.

In Exercises 19 and 20, find the parametric equation of the line
through a parallel to b.

-2 -5 3 -7
ofp=[3] =)=
In Exercises 21 and 22, find a parametric equation of the line M

through p and q. [Hint: M is parallel to the vector q — p. See the
figure below.]

wre[ o= 3] o[ Sa-[ ]

X
\p\
L] XI
E\ . -p
q-p

M

19. a=|:

2

The line through p and q.

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.
23. a.

b. The equation Ax = 0 gives an explicit description of its
solution set.

A homogeneous equation is always consistent.

c. The homogeneous equation Ax = 0 has the trivial so-
lution if and only if the equation has at least one free
variable.

d. The equation x = p + tv describes a line through v par-
allel to p.

e. The solution set of Ax = b is the set of all vectors of
the form w = p + v;,, where v,, is any solution of the
equation Ax = 0.

24. a. Ifxisanontrivial solution of Ax = 0, then every entry in

X is nonzero.

b. The equation X = x,u + x3v, with x, and x; free (and
neither u nor v a multiple of the other), describes a plane
through the origin.

c. The equation Ax = b is homogeneous if the zero vector
is a solution.

d. The effect of adding p to a vector is to move the vector in
a direction parallel to p.



25.

26.

27.

28.

e. The solution set of Ax = b is obtained by translating the
solution set of Ax = 0.

Prove the second part of Theorem 6: Let w be any solution of
Ax = b, and define v, = w — p. Show that v, is a solution
of Ax = 0. This shows that every solution of Ax = b has the
formw = p + v, with p a particular solution of Ax = b and
v, a solution of Ax = 0.

Suppose Ax = b has a solution. Explain why the solution is
unique precisely when Ax = 0 has only the trivial solution.

Suppose A is the 3 x 3 zero matrix (with all zero entries).
Describe the solution set of the equation Ax = 0.

If b # 0, can the solution set of Ax = b be a plane through
the origin? Explain.

In Exercises 29-32, (a) does the equation Ax = 0 have a nontriv-
ial solution and (b) does the equation Ax = b have at least one
solution for every possible b?

29.
30.
31.
32.

33.

A is a 3 x 3 matrix with three pivot positions.
A is a 3 x 3 matrix with two pivot positions.
A is a 3 x 2 matrix with two pivot positions.

A is a2 x 4 matrix with two pivot positions.

-2 -6
Given A = 7 21 |, find one nontrivial solution of
-3 -9

Ax = 0 by inspection. [Hint: Think of the equation Ax = 0
written as a vector equation.]

34.

3s.

36.

37.

38.

39.

40.

1.5 Solution Sets of Linear Systems 49

4 -6
Given A = | -8 12 |, find one nontrivial solution of
6 -9

Ax = 0 by inspection.

Construct a 3 x 3 nonzero matrix A such that the vector
1
1 | is a solution of Ax = 0.

1

Construct a 3 x 3 nonzero matrix A such that the vector
1
-2
1

is a solution of Ax = 0.

Construct a 2 x 2 matrix A such that the solution set of the
equation Ax = 0 is the line in R? through (4,1) and the
origin. Then, find a vector b in R? such that the solution set
of Ax = b is not a line in R? parallel to the solution set of
Ax = 0. Why does this not contradict Theorem 6?

Suppose A is a 3 x 3 matrix and y is a vector in R? such that
the equation Ax =y does not have a solution. Does there
exist a vector z in R? such that the equation Ax = z has a
unique solution? Discuss.

Let A be anm x n matrix and let u be a vector in R” that satis-
fies the equation Ax = 0. Show that for any scalar ¢, the vec-
tor cu also satisfies Ax = 0. [That is, show that A(cu) = 0.]

Let A be an m X n matrix, and let u and v be vectors in R”
with the property that Au = 0 and Av = 0. Explain why
A(u+v) must be the zero vector. Then explain why
A(cu + dv) = 0 for each pair of scalars ¢ and d .

SOLUTIONS TO PRACTICE PROBLEMS

1. Row reduce the augmented matrix:

1 4 -5 0 1 4 -5 0 1 0 3 4
2 -1 8 9 0 -9 18 9 0o 1 -2 -1
X1 +3x3= 4
Xy — 2)63 =-1
Thus x; = 4 — 3x3, x; = —1 + 2x3, with x5 free. The general solution in parametric
vector form is
X1 4 — 3)63 -3
Xo |l = —-142x3 | =] —1|+x3 2
X3 X3 0 1
t t
|y \4

The intersection of the two planes is the line through p in the direction of v.
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2. The augmented matrix [ 10 =3 -2 7] is row equivalent to [ 1 -3-2 7 ],
and the general solution is x; = .7 4+ .3x, + .2x3, with x, and x3 free. That is,

X1 T4 3x + 2x3 7 3 2
XxX=|x | = X2 = 0| +x| 1 |+x;3] 0
X3 X3 0 0 1

= p + xou + X3V

The solution set of the nonhomogeneous equation Ax = b is the translated plane
p + Span {u, v}, which passes through p and is parallel to the solution set of the
homogeneous equation in Example 2.

3. Using Theorem 5 from Section 1.4, notice
Ap+vy) =Ap+ Avp, =b+0=h,

hence p + vy, is a solution to Ax = b.

1.6 APPLICATIONS OF LINEAR SYSTEMS

You might expect that a real-life problem involving linear algebra would have only
one solution, or perhaps no solution. The purpose of this section is to show how linear
systems with many solutions can arise naturally. The applications here come from
economics, chemistry, and network flow.

A Homogeneous System in Economics

The system of 500 equations in 500 variables, mentioned in this chapter’s introduction,
is now known as a Leontief “input—output” (or “production”) model.! Section 2.6 will
examine this model in more detail, when more theory and better notation are available.
For now, we look at a simpler “exchange model,” also due to Leontief.

Suppose a nation’s economy is divided into many sectors, such as various manufac-
turing, communication, entertainment, and service industries. Suppose that for each sec-
tor we know its total output for one year and we know exactly how this output is divided
or “exchanged” among the other sectors of the economy. Let the total dollar value of a
sector’s output be called the price of that output. Leontief proved the following result.

There exist equilibrium prices that can be assigned to the total outputs of the
various sectors in such a way that the income of each sector exactly balances its
expenses.

The following example shows how to find the equilibrium prices.

EXAMPLE 1 Suppose an economy consists of the Coal, Electric (power), and Steel
sectors, and the output of each sector is distributed among the various sectors as shown
in Table 1, where the entries in a column represent the fractional parts of a sector’s total
output.

The second column of Table 1, for instance, says that the total output of the
Electric sector is divided as follows: 40% to Coal, 50% to Steel, and the remaining
10% to Electric. (Electric treats this 10% as an expense it incurs in order to operate its

! See Wassily W. Leontief, “Input-Output Economics,” Scientific American, October 1951, pp. 15-21.
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business.) Since all output must be taken into account, the decimal fractions in each
column must sum to 1.

Denote the prices (i.e., dollar values) of the total annual outputs of the Coal,
Electric, and Steel sectors by pc, pg, and ps, respectively. If possible, find equilibrium
prices that make each sector’s income match its expenditures.

TABLE 1 A Simple Economy
Distribution of Output from:

Coal Electric Steel Purchased by:
0 4 .6 Coal
.6 1 2 Electric
4 5 2 Steel

SOLUTION A sector looks down a column to see where its output goes, and it looks
across a row to see what it needs as inputs. For instance, the first row of Table 1 says
that Coal receives (and pays for) 40% of the Electric output and 60% of the Steel
output. Since the respective values of the total outputs are pg and ps, Coal must spend
.4 pg dollars for its share of Electric’s output and .6pg for its share of Steel’s output.
Thus Coal’s total expenses are .4pg + .6ps. To make Coal’s income, pc, equal to its
expenses, we want

pc = 4pe + .6ps (D

The second row of the exchange table shows that the Electric sector spends .6 pc
for coal, .1pg for electricity, and .2 pg for steel. Hence the income/expense requirement
for Electric is

PE = .6pc + .1pg + 2ps 2
Finally, the third row of the exchange table leads to the final requirement:
ps = .4pc + .5pe + 2ps A3)

To solve the system of equations (1), (2), and (3), move all the unknowns to the left
sides of the equations and combine like terms. [For instance, on the left side of (2),
write pg — .1pg as .9pg.]
pc — A4peg —.6ps =0
—.6pc + -9PE — .2ps =0
—4pc — Spg + 8ps =0

Row reduction is next. For simplicity here, decimals are rounded to two places.

1—4-6 0] [1 -4 -6 0 1 -4 -6 0
—6 9-2 0|~|0 .66-56 0|~]|0 66 —56 0
~4-5 8 0] |0-66 .56 0 0 0

[1 -4 -6 0 10 —.94
~l0 1-8 0 0 1 —85
(00 0 o0 0
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The general solution is pc = .94ps, pg = .85ps, and ps is free. The equilibrium price
vector for the economy has the form

pPc .94 ps .94
p=|pe|=1| 8ps | =ps| 85
Ds Ds 1

Any (nonnegative) choice for pg results in a choice of equilibrium prices. For instance,
if we take ps to be 100 (or $100 million), then pc = 94 and pg = 85. The incomes and
expenditures of each sector will be equal if the output of Coal is priced at $94 million,
that of Electric at $85 million, and that of Steel at $100 million. [ |

Balancing Chemical Equations

Chemical equations describe the quantities of substances consumed and produced by
chemical reactions. For instance, when propane gas burns, the propane (C3Hg) combines
with oxygen (O;) to form carbon dioxide (CO,) and water (H,O), according to an
equation of the form

(x1)C3Hg + (x2)02 — (x3)CO; + (x4)H20 (4)

To “balance” this equation, a chemist must find whole numbers xi, . .., x4 such that the
total numbers of carbon (C), hydrogen (H), and oxygen (O) atoms on the left match the
corresponding numbers of atoms on the right (because atoms are neither destroyed nor
created in the reaction).

A systematic method for balancing chemical equations is to set up a vector equation
that describes the numbers of atoms of each type present in a reaction. Since equation
(4) involves three types of atoms (carbon, hydrogen, and oxygen), construct a vector in
R3 for each reactant and product in (4) that lists the numbers of “atoms per molecule,”

as follows:
3 0 17 0 | < Carbon
C3Hg: [ 8 |, O: | O |, COy: | O |, HyO: | 2 | < Hydrogen
0 2 2 | 1 | < Oxygen
To balance equation (4), the coefficients xi, ..., x4 must satisfy
3 0 (1 0
Xi| 81 +x2[ 0] =x3[0 | +x42
0 2 | 2 1
To solve, move all the terms to the left (changing the signs in the third and fourth
vectors):
3 0 —1 0 0
xi| 81 +x2]1 0] + x3 Ol +x4l 21=10
0 2 -2 —1 0

Row reduction of the augmented matrix for this equation leads to the general solution
X = %x4, Xy, = %x4, X3 = %x4, with x4 free

Since the coefficients in a chemical equation must be integers, take x4 = 4, in which
case x; = 1, x, = 5,and x3 = 3. The balanced equation is

C3H8 + 502 e 3C02 + 4H20

The equation would also be balanced if, for example, each coefficient were doubled. For
most purposes, however, chemists prefer to use a balanced equation whose coefficients
are the smallest possible whole numbers.
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Network Flow

Systems of linear equations arise naturally when scientists, engineers, or economists
study the flow of some quantity through a network. For instance, urban planners and
traffic engineers monitor the pattern of traffic flow in a grid of city streets. Electrical
engineers calculate current flow through electrical circuits. And economists analyze the
distribution of products from manufacturers to consumers through a network of whole-
salers and retailers. For many networks, the systems of equations involve hundreds or
even thousands of variables and equations.

A network consists of a set of points called junctions, or nodes, with lines or arcs
called branches connecting some or all of the junctions. The direction of flow in each
branch is indicated, and the flow amount (or rate) is either shown or is denoted by a
variable.

The basic assumption of network flow is that the total flow into the network equals
the total flow out of the network and that the total flow into a junction equals the total
flow out of the junction. For example, Figure 1 shows 30 units flowing into a junction
through one branch, with x; and x, denoting the flows out of the junction through other
branches. Since the flow is “conserved” at each junction, we must have x; + x, = 30.
In a similar fashion, the flow at each junction is described by a linear equation. The
problem of network analysis is to determine the flow in each branch when partial
information (such as the flow into and out of the network) is known.

EXAMPLE 2 The network in Figure 2 shows the traffic flow (in vehicles per hour)
over several one-way streets in downtown Baltimore during a typical early afternoon.
Determine the general flow pattern for the network.

X3 100
Calvert St. South St.Y T
N
Lombard St.
300 <€ B < ¢ < 400
X4
Xy A X5y
Pratt St. |A D
300 > > » 600
X1 Inner Harbor
A
500

FIGURE 2 Baltimore streets.

SOLUTION Write equations that describe the flow, and then find the general solution
of the system. Label the street intersections (junctions) and the unknown flows in the
branches, as shown in Figure 2. At each intersection, set the flow in equal to the flow out.

Intersection Flow in Flow out
A 3004+ 500 = x|+ x;
B X2+ x4 = 300+ x;
C 100 + 400 = x4+ x5
D X1+ x5 = 600
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Also, the total flow into the network (500 + 300 + 100 + 400) equals the total flow
out of the network (300 + x3 + 600), which simplifies to x3 = 400. Combine this
equation with a rearrangement of the first four equations to obtain the following system

of equations:
X1+ X2 = 800
Xy — X3 + X4 = 300
X4 + x5 = 500
X + x5 = 600
X3 = 400

Row reduction of the associated augmented matrix leads to

X1 + x5 = 600
X2 — x5 = 200

X3 = 400

X4 + x5 = 500

The general flow pattern for the network is described by

x; = 600 — x5
X, = 200 + x5
x3 = 400
X4 = 500 — x5
X5 1s free

A negative flow in a network branch corresponds to flow in the direction opposite
to that shown on the model. Since the streets in this problem are one-way, none of the
variables here can be negative. This fact leads to certain limitations on the possible
values of the variables. For instance, x5 < 500 because x4 cannot be negative. Other
constraints on the variables are considered in Practice Problem 2. [ |

PRACTICE PROBLEMS

1. Suppose an economy has three sectors: Agriculture, Mining, and Manufacturing.
Agriculture sells 5% of its output to Mining and 30% to Manufacturing, and retains
the rest. Mining sells 20% of its output to Agriculture and 70% to Manufacturing,
and retains the rest. Manufacturing sells 20% of its output to Agriculture and 30% to
Mining, and retains the rest. Determine the exchange table for this economy, where
the columns describe how the output of each sector is exchanged among the three
sectors.

2. Consider the network flow studied in Example 2. Determine the possible range of
values of x| and x,. [Hint: The example showed that x5 < 500. What does this imply
about x| and x,? Also, use the fact that x5 > 0.]
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1.

Suppose an economy has only two sectors, Goods and Ser-
vices. Each year, Goods sells 80% of its output to Services
and keeps the rest, while Services sells 70% of its output to
Goods and retains the rest. Find equilibrium prices for the
annual outputs of the Goods and Services sectors that make
each sector’s income match its expenditures.

I Services

Find another set of equilibrium prices for the economy in
Example 1. Suppose the same economy used Japanese yen
instead of dollars to measure the value of the various sec-
tors’” outputs. Would this change the problem in any way?
Discuss.

Consider an economy with three sectors, Chemicals & Met-
als, Fuels & Power, and Machinery. Chemicals sells 30% of
its output to Fuels and 50% to Machinery and retains the
rest. Fuels sells 80% of its output to Chemicals and 10%
to Machinery and retains the rest. Machinery sells 40% to
Chemicals and 40% to Fuels and retains the rest.

a. Construct the exchange table for this economy.

b. Develop a system of equations that leads to prices at
which each sector’s income matches its expenses. Then
write the augmented matrix that can be row reduced to
find these prices.

c. [M] Find a set of equilibrium prices when the price for
the Machinery output is 100 units.

Suppose an economy has four sectors, Agriculture (A), En-
ergy (E), Manufacturing (M), and Transportation (T). Sector
A sells 10% of its output to E and 25% to M and retains the
rest. Sector E sells 30% of its output to A, 35% to M, and 25%
to T and retains the rest. Sector M sells 30% of its output to
A, 15% to E, and 40% to T and retains the rest. Sector T sells
20% of its output to A, 10% to E, and 30% to M and retains
the rest.

a. Construct the exchange table for this economy.

b. [M] Find a set of equilibrium prices for the economy.

Balance the chemical equations in Exercises 5—10 using the vector
equation approach discussed in this section.

5.

Boron sulfide reacts violently with water to form boric acid
and hydrogen sulfide gas (the smell of rotten eggs). The

10.

11.

12.

unbalanced equation is
st3 + HQO — H3BO3 + st

[For each compound, construct a vector that lists the numbers
of atoms of boron, sulfur, hydrogen, and oxygen.]

When solutions of sodium phosphate and barium nitrate are
mixed, the result is barium phosphate (as a precipitate) and
sodium nitrate. The unbalanced equation is

Na3PO4 + Ba(NO3)2 — Ba; (PO4)2 + NaNO;
[For each compound, construct a vector that lists the num-
bers of atoms of sodium (Na), phosphorus, oxygen, barium,

and nitrogen. For instance, barium nitrate corresponds to
0,0,6,1,2).]

. Alka-Seltzer contains sodium bicarbonate (NaHCO;) and

citric acid (H;CgHs07). When a tablet is dissolved in water,
the following reaction produces sodium citrate, water, and
carbon dioxide (gas):

NaHC03 + H3C(,H5O7 — Na3C6H507 + Hzo + C02

. The following reaction between potassium permanganate

(KMnOy4) and manganese sulfate in water produces man-
ganese dioxide, potassium sulfate, and sulfuric acid:

KMHO4 + MHSO4 + H20 — Mn02 + KQSO4 + HzSO4

[For each compound, construct a vector that lists the numbers
of atoms of potassium (K), manganese, oxygen, sulfur, and
hydrogen.]

. [M] If possible, use exact arithmetic or rational format for

calculations in balancing the following chemical reaction:
PbN6 + CI'Ml'leg — Pb304 + Cl'203 + MHOZ + NO

[M] The chemical reaction below can be used in some indus-
trial processes, such as the production of arsene (AsH3). Use
exact arithmetic or rational format for calculations to balance
this equation.

MnS + ASzCI'10035 + H2S04
— HMnO, + AsH; + CrS;0;, + H,O

Find the general flow pattern of the network shown in the
figure. Assuming that the flows are all nonnegative, what is
the largest possible value for x3?

A
20 —_1;

XA Xy

80 (—C *2

a. Find the general traffic pattern in the freeway network
shown in the figure. (Flow rates are in cars/minute.)

b. Describe the general traffic pattern when the road whose
flow is x4 is closed.
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c. When x; = 0, what is the minimum value of x;?
200

13. a. Find the general flow pattern in the network shown in the
figure.

b. Assuming that the flow must be in the directions indi-
cated, find the minimum flows in the branches denoted
by x5, X3, X4, and Xxs.

30 40
A
A 4
A X X C
80 €— 2 B S_4+—100
1Y A X6
60)—E X3 Xy D—>90
A
A 4
20 40

14. Intersections in England are often constructed as one-way
“roundabouts,” such as the one shown in the figure. Assume
that traffic must travel in the directions shown. Find the gen-
eral solution of the network flow. Find the smallest possible
value for xg.

120 150

X3 X4

50—)—B‘ E—>80

100 <—'/j\</t}:_<_ 100

,
=

(S}
=

=)
&

SOLUTIONS TO PRACTICE PROBLEMS

1. Write the percentages as decimals. Since all output must be taken into account, each
column must sum to 1. This fact helps to fill in any missing entries.

Distribution of Output from:

Agriculture Mining Manufacturing Purchased by:
65 20 20 Agriculture
05 .10 30 Mining
30 70 S50 Manufacturing

2. Since x5 <500, the equations D and A for x; and x, imply that x; > 100
and x; < 700. The fact that x5 > 0 implies that x; < 600 and x, > 200. So,
100 < x; < 600, and 200 < x, < 700.

1.7 LINEAR INDEPENDENCE

The homogeneous equations in Section 1.5 can be studied from a different perspective
by writing them as vector equations. In this way, the focus shifts from the unknown
solutions of Ax = 0 to the vectors that appear in the vector equations.
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For instance, consider the equation

1 4 2 0
X2 +x 5| 4+x3]1|=1]0 (1)
3 6 0 0

This equation has a trivial solution, of course, where x; = x, = x3 = 0. As in Sec-
tion 1.5, the main issue is whether the trivial solution is the only one.

An indexed set of vectors {vi,...,V,} in R" is said to be linearly independent
if the vector equation

X1V +Xvp + -+ x,v, =0
has only the trivial solution. The set {vy, ..., v,} is said to be linearly dependent
if there exist weights ¢y, ..., ¢,, not all zero, such that

cvitevat 4y, =0 ©))

Equation (2) is called a linear dependence relation among vy, ..., v, when the
weights are not all zero. An indexed set is linearly dependent if and only if it is not lin-
early independent. For brevity, we may say that vy, ..., v, are linearly dependent when
we mean that {v,...,Vv,} is a linearly dependent set. We use analogous terminology
for linearly independent sets.

1 4 2
EXAMPLE 1 Letvi=|2|,v2=|5 |,andv; = |1
3 6 0

a. Determine if the set {vi, v,, v3} is linearly independent.
b. If possible, find a linear dependence relation among vy, v,, and vs.

SOLUTION

a. We must determine if there is a nontrivial solution of equation (1) above. Row oper-
ations on the associated augmented matrix show that

1 4 2 0 1 4 2 0
2 5 1 0|~|0 -3 -3 0
36 0 0 0 0 0 0

Clearly, x; and x, are basic variables, and xj3 is free. Each nonzero value of x3
determines a nontrivial solution of (1). Hence vy, v,, v3 are linearly dependent (and
not linearly independent).

b. To find a linear dependence relation among v;, v,, and v3, completely row reduce
the augmented matrix and write the new system:

1 0 -2 0 X1 —2x3=0

0 1 1 0 X+ x3=0

O 0 0 O 0=0
Thus x; = 2x3, xo = —Xx3, and x3 is free. Choose any nonzero value for x;—say,
x3 = 5. Then x; = 10 and x, = —5. Substitute these values into equation (1) and

obtain
10V1 — 5V2 + 5V3 =0

This is one (out of infinitely many) possible linear dependence relations among vy,
vy, and v3. ]
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Linear Independence of Matrix Columns

Suppose that we begin with a matrix A = [a; --- a, | instead of a set of vectors. The
matrix equation Ax = 0 can be written as

xja; +x2a, +---+x,a, =0

Each linear dependence relation among the columns of A corresponds to a nontrivial
solution of Ax = 0. Thus we have the following important fact.

The columns of a matrix A are linearly independent if and only if the equation

Ax = 0 has only the trivial solution. 3)
0 1
EXAMPLE 2 Determine if the columns of the matrix A = |1 2 —1 | are
5 8

linearly independent.

SOLUTION To study Ax = 0, row reduce the augmented matrix:

0O 1 4 0 1 2 -1 0 1 2 -1 0
1 2 -1 0|~|]0 1 4 O0O|~|0 1 4 O
5 8 0 0 0 -2 5 0 0 0 13 0

At this point, it is clear that there are three basic variables and no free variables. So
the equation Ax = 0 has only the trivial solution, and the columns of A are linearly
independent. [ ]

Sets of One or Two Vectors

A set containing only one vector—say, v—is linearly independent if and only if v is not
the zero vector. This is because the vector equation x;v = 0 has only the trivial solution
when v # 0. The zero vector is linearly dependent because x;0 = 0 has many nontrivial
solutions.

The next example will explain the nature of a linearly dependent set of two vectors.

EXAMPLE 3 Determine if the following sets of vectors are linearly independent.

conf]oe[l] e[l

SOLUTION
a. Notice that v, is a multiple of v, namely, v, = 2v,. Hence —2v; + v, = 0, which
shows that {v{, v,} is linearly dependent.
b. The vectors v; and v, are certainly not multiples of one another. Could they be
linearly dependent? Suppose ¢ and d satisfy
cvi+dvy =0

If ¢ # 0,then we can solve for vy in terms of v,, namely, vi = (—d/c)v,. This result
is impossible because v, is not a multiple of v,. So ¢ must be zero. Similarly, d must
also be zero. Thus {vy, v,} is a linearly independent set. ]
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The arguments in Example 3 show that you can always decide by inspection when a
set of two vectors is linearly dependent. Row operations are unnecessary. Simply check
whether at least one of the vectors is a scalar times the other. (The test applies only to
sets of rwo vectors.)

A set of two vectors {vy, v,} is linearly dependent if at least one of the vectors is
a multiple of the other. The set is linearly independent if and only if neither of the
vectors is a multiple of the other.

In geometric terms, two vectors are linearly dependent if and only if they lie on the
same line through the origin. Figure 1 shows the vectors from Example 3.

Sets of Two or More Vectors

The proof of the next theorem is similar to the solution of Example 3. Details are given
at the end of this section.

Characterization of Linearly Dependent Sets

An indexed set S = {vy,...,V p} of two or more vectors is linearly dependent if
and only if at least one of the vectors in S is a linear combination of the others. In
fact, if S is linearly dependent and v; # 0, then some v; (with j > 1) is a linear
combination of the preceding vectors, vy,...,v;_.

Warning: Theorem 7 does not say that every vector in a linearly dependent set is a
linear combination of the preceding vectors. A vector in a linearly dependent set may
fail to be a linear combination of the other vectors. See Practice Problem 1(c).

3 1
EXAMPLE 4 ILetu= |1 |andv= | 6 |.Describe the set spanned by u and v,
0 0

and explain why a vector w is in Span {u, v} if and only if {u, v, w} is linearly dependent.

SOLUTION The vectors u and v are linearly independent because neither vector is
a multiple of the other, and so they span a plane in R*. (See Section 1.3.) In fact,
Span {u, v} is the xjx;-plane (with x3 = 0). If w is a linear combination of u and v,
then {u, v, w} is linearly dependent, by Theorem 7. Conversely, suppose that {u, v, w}
is linearly dependent. By Theorem 7, some vector in {u, v, w} is a linear combination
of the preceding vectors (since u # 0). That vector must be w, since v is not a multiple
of u. So w is in Span {u, v}. See Figure 2. ]

X3

Linearly independent,
w not in Span{u, v}

Linearly dependent,
w in Span{u, v}

FIGURE 2 Linear dependence in R*.



60 CHAPTER 1 Linear Equations in Linear Algebra

THEOREM 8
)4
* ES ES ES ES

FIGURE 3

If p > n, the columns are linearly
dependent.

2, 1)

X

L]
-1
FIGURE 4
A linearly dependent set in R?.

THEOREM 9

Example 4 generalizes to any set {u, v, w} in R* with u and v linearly independent.
The set {u, v, w} will be linearly dependent if and only if w is in the plane spanned by
uandv.

The next two theorems describe special cases in which the linear dependence of a
set is automatic. Moreover, Theorem 8 will be a key result for work in later chapters.

If a set contains more vectors than there are entries in each vector, then the set

is linearly dependent. That is, any set {v;,...,V,} in R" is linearly dependent if
p>n.
PROOF Let A =([vy --- Vv,]. Then 4 is n x p, and the equation Ax = 0 corre-

sponds to a system of n equations in p unknowns. If p > n, there are more variables
than equations, so there must be a free variable. Hence Ax = 0 has a nontrivial solution,
and the columns of A are linearly dependent. See Figure 3 for a matrix version of this
theorem. [ |

Warning: Theorem 8 says nothing about the case in which the number of vectors in
the set does not exceed the number of entries in each vector.

4
-1
8, because there are three vectors in the set and there are only two entries in each vector.
Notice, however, that none of the vectors is a multiple of one of the other vectors. See
Figure 4. |

EXAMPLE 5 The vectors [ ? ], [ ], |: _§:| are linearly dependent by Theorem

If aset S = {vy,...,v,} in R" contains the zero vector, then the set is linearly
dependent.

PROOF By renumbering the vectors, we may suppose v = 0. Then the equation
1vy + 0vy + -+ + Ov, = 0 shows that S is linearly dependent. [ |

EXAMPLE 6 Determine by inspection if the given set is linearly dependent.

1] 273 277 o _i _2
a. | 7|00, [1].]1 b. [3].]0[. |1 CO P B S

6] 9 5] 0] |8 10 s
SOLUTION

a. The set contains four vectors, each of which has only three entries. So the set is
linearly dependent by Theorem 8.

b. Theorem 8 does not apply here because the number of vectors does not exceed the
number of entries in each vector. Since the zero vector is in the set, the set is linearly
dependent by Theorem 9.

c. Compare the corresponding entries of the two vectors. The second vector seems to
be —3/2 times the first vector. This relation holds for the first three pairs of entries,
but fails for the fourth pair. Thus neither of the vectors is a multiple of the other, and
hence they are linearly independent. [ |
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1.7 EXERCISES
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In general, you should read a section thoroughly several times to absorb an
important concept such as linear independence. The notes in the Study Guide for this
section will help you learn to form mental images of key ideas in linear algebra. For
instance, the following proof is worth reading carefully because it shows how the
definition of linear independence can be used.

PROOF OF THEOREM 7 (Characterization of Linearly Dependent Sets)
If some v; in § equals a linear combination of the other vectors, then v; can be
subtracted from both sides of the equation, producing a linear dependence relation with
a nonzero weight (—1) on v;. [For instance, if vi = c2v> + c3v3, then 0 = (—=1)v; +
¢2Vy + ¢3V3 + 0vy + -+ + 0v,.] Thus § is linearly dependent.

Conversely, suppose S is linearly dependent. If v; is zero, then it is a (trivial)
linear combination of the other vectors in S. Otherwise, v # 0, and there exist weights
C1,...,Cp,notall zero, such that

cvi+ vy + -+ cpv, =0

Let j be the largest subscript for which ¢; # 0. If j =1, then ¢;v; = 0, which is
impossible because v; # 0.So j > 1, and

civy + -+ cjv; +0Vj+1 +"'+0Vp =0

CiV;, = —C1Vp —+++—Cj—1Vj—1
Vj = (—C_l) Vi +.+ (_cj__l) Vj—l [ |
¢j Cj
PRACTICE PROBLEMS

3 —6 0 3

1. Letu = 2|, v= 1 |,w=| -5 |,andz = 7

—4 7 2 -5
a. Are the sets {u, v}, {u, w}, {u,z}, {v,w}, {v,z},and {w, z} each linearly indepen-

dent? Why or why not?
b. Does the answer to Part (a) imply that {u, v, w, z} is linearly independent?

c. To determine if {u, v, w, z} is linearly dependent, is it wise to check if, say, w is
a linear combination of u, v, and z?

d. Is {u, v, w,z} linearly dependent?

2. Suppose that {v{, v,, v3} is a linearly dependent set of vectors in R” and v, is vector
in R”. Show that {v;, v5, v3, v4} is also a linearly dependent set.

In Exercises 1-4, determine if the vectors are linearly indepen- 0 -8 5 —4 -3 0
dent. Justify each answer. 5 3 -7 4 6 0 -1 4
-1 5 —4 : 1 0o 3
5 7 9 0 0 -3 1 -3 2 5 4 6
1. |o],| 2|, 4 O, 5| | 4 : _
0 —6 -8 2 -8 1 1 4 -3 0 1 -3 3 =2
7. | -2 -7 5 1 8. | -3 7 -1 2
1 -3 —1 -2 -4 -5 7 5 0 1 —4 3
> [ « [R5 : :

In Exercises 9 and 10, (a) for what values of /& is v; in

In Exercises 5-8, determine if the columns of the matrix form a Span {v;, v,}, and (b) for what values of % is {v, v,, v3} linearly

linearly independent set. Justify each answer.

dependent? Justify each answer.
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1] =37 5]
9. vV = -3 ,Vp = 9 ,V3 = -7
L 2| | —6 | L n |
17 =27 M 27
10. vi=| -5 |,v»=1| 10 |,v3=| =9
| —3 | L 6] | 7|

In Exercises 11-14, find the value(s) of /& for which the vectors
are linearly dependent. Justify each answer.

37 -1 277678
w1, =5[] 5| 12| 4[| 7|.|n
L 4] L 7] L #] L 1] [ 3] [ 4]
T 1] =27 37 1] =57 [1]
B s -9 r| @ ||| 7] |1
3] [ 6] [-9] L 3] L 8] Ln]

Determine by inspection whether the vectors in Exercises 15-20
are linearly independent. Justify each answer.

- 4 6
15. f],[g],[;],[_;] 16. | =2 |, | =3

L | 6 9

37 T0 -6 -
w3 = B

L -1] Lo 4

-8 [ 2 M1 -2 0
19. | 12 |,] =3 20. 41,1 51,10

| -4 ] | -1 | -7 3 0

In Exercises 21 and 22, mark each statement True or False. Justify
each answer on the basis of a careful reading of the text.

21. a. The columns of a matrix A are linearly independent if the

equation Ax = 0 has the trivial solution.

b. If S is alinearly dependent set, then each vector is a linear
combination of the other vectors in S.

c. The columns of any 4 x 5 matrix are linearly dependent.

d. If x and y are linearly independent, and if {x,y,z} is
linearly dependent, then z is in Span {x, y}.

22. a. Two vectors are linearly dependent if and only if they lie

on a line through the origin.

b. If aset contains fewer vectors than there are entries in the
vectors, then the set is linearly independent.

c. If x and y are linearly independent, and if z is in
Span {x, y}, then {x, y, z} is linearly dependent.

d. If asetin R” is linearly dependent, then the set contains
more vectors than there are entries in each vector.

In Exercises 23-26, describe the possible echelon forms of the
matrix. Use the notation of Example 1 in Section 1.2.

23. Ais a3 x 3 matrix with linearly independent columns.

24. Aisa?2 x 2 matrix with linearly dependent columns.

25. Aisa4 x 2 matrix, A = [a,
a.

a], and a, is not a multiple of

26. Aisadx3matrix, A =[a; a, as],suchthat{a;,ay}is
linearly independent and a; is not in Span {a;, a,}.

27. How many pivot columns must a 7 x 5 matrix have if its
columns are linearly independent? Why?

28. How many pivot columns must a 5 x 7 matrix have if its
columns span R3? Why?

29. Construct 3 x 2 matrices A and B such that Ax = 0 has only
the trivial solution and Bx = 0 has a nontrivial solution.

30. a. Fill in the blank in the following statement: “If A is
an m x n matrix, then the columns of A are linearly
independent if and only if A has pivot columns.”

b. Explain why the statement in (a) is true.

Exercises 31 and 32 should be solved without performing row
operations. [Hint: Write Ax = 0 as a vector equation.]

2 3 5
. -5 1 —4 .
31. Given A = 3 ] _a , observe that the third column
1 0 1

is the sum of the first two columns. Find a nontrivial solution
of Ax = 0.

4 1 6
32. Given A = | —7 5 3 |, observe that the first column
9 -3 3

plus twice the second column equals the third column. Find
a nontrivial solution of Ax = 0.

Each statement in Exercises 33-38 is either true (in all cases)
or false (for at least one example). If false, construct a specific
example to show that the statement is not always true. Such an
example is called a counterexample to the statement. If a statement
is true, give a justification. (One specific example cannot explain
why a statement is always true. You will have to do more work
here than in Exercises 21 and 22.)

33. Ifv,,...,vsareinR*and v; = 2v, + vy, then {v,, v,, v3, v}
is linearly dependent.

34, If v,...,v, are in R* and v3 = 0, then {v;, vy, V3, vy} is
linearly dependent.

35. If v, and v, are in R* and v, is not a scalar multiple of vy,
then {v;, v,} is linearly independent.

36. Ifvy,...,v, are in R* and v; is not a linear combination of
Vi, V2, Vg, then {vy, v, v3, v4} is linearly independent.

37. Ifvi,..., vy are in R* and {v,, v5, v3} is linearly dependent,
then {vy, v,, v3, v4} is also linearly dependent.

38. If vy,..., vy are linearly independent vectors in R*, then
{V1, V2, v3} is also linearly independent. [Hint: Think about
X1V + XoVo + x3v3 +0-vy = 0.]
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39. Suppose A is an m x n matrix with the property that for all b 12 10 -6 =3 7 10
in R the equation Ax = b has at most one solution. Use the -7 -6 4 7 -9 5
definition of linear independence to explain why the columns 42. A= 9 9 -9 -5 5 -1
of A must be linearly independent. -4 -3 1 6 -8 9

8 7 -5 -9 11 -8
43. [M] With A and B as in Exercise 41, select a column v of 4
that was not used in the construction of B and determine if
v is in the set spanned by the columns of B. (Describe your
calculations.)

44. [M] Repeat Exercise 43 with the matrices A and B from
Exercise 42. Then give an explanation for what you discover,
assuming that B was constructed as specified.

40. Suppose an m x n matrix A has n pivot columns. Explain
why for each b in R” the equation Ax = b has at most one
solution. [Hint: Explain why Ax = b cannot have infinitely
many solutions.]

[M] In Exercises 41 and 42, use as many columns of A as possible
to construct a matrix B with the property that the equation Bx = 0
has only the trivial solution. Solve Bx = 0 to verify your work.

8§ -3 0 =7 2

9 4 5 11 —7
M A=1 6 5 2 4 4
5 -1 7 0 10

SOLUTIONS TO PRACTICE PROBLEMS

1. a. Yes.Ineach case, neither vector is a multiple of the other. Thus each set is linearly
independent.

b. No. The observation in Part (a), by itself, says nothing about the linear indepen-
dence of {u,v,w,z}.

c. No. When testing for linear independence, it is usually a poor idea to check if
one selected vector is a linear combination of the others. It may happen that

P the selected vector is not a linear combination of the others and yet the whole

Span{u, v, z) set of vectors is linearly dependent. In this practice problem, w is not a linear

combination of u, v, and z.

X

d. Yes, by Theorem 8. There are more vectors (four) than entries (three) in them.

2. Applying the definition of linearly dependent to {v;, v,, v3} implies that there exist
scalars ¢y, ¢, and c3, not all zero, such that
C1V] + vy + c3v3 = 0.
Adding 0 v4 = 0 to both sides of this equation results in
1V + vy +c3v3 + 0vy = 0.

Since ¢y, 2, ¢3 and 0 are not all zero, the set {vy, v,, v3, v4} satisfies the definition of
a linearly dependent set.

1.8 INTRODUCTION TO LINEAR TRANSFORMATIONS

The difference between a matrix equation Ax = b and the associated vector equation
xia; + -+ + x,a, = b is merely a matter of notation. However, a matrix equation
Ax = b can arise in linear algebra (and in applications such as computer graphics and
signal processing) in a way that is not directly connected with linear combinations of
vectors. This happens when we think of the matrix A as an object that “acts” on a vector
x by multiplication to produce a new vector called Ax.
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For instance, the equations

1 1
e HE R G
1 3
R SR

say that multiplication by A transforms x into b and transforms u into the zero vector.
See Figure 1.

multiplication

by A

multiplication

by A

FIGURE 1 Transforming vectors via matrix
multiplication.

From this new point of view, solving the equation Ax = b amounts to finding
all vectors x in R* that are transformed into the vector b in R? under the “action” of
multiplication by 4.

The correspondence from x to Ax is a function from one set of vectors to another.
This concept generalizes the common notion of a function as a rule that transforms one
real number into another.

A transformation (or function or mapping) 7" from R” to R” is a rule that assigns
to each vector x in R” a vector 7'(x) in R”. The set R” is called the domain of 7", and R”
is called the codomain of 7'. The notation 7 : R” — R indicates that the domain of T
is R” and the codomain is R”. For x in R”, the vector 7'(x) in R" is called the image of x
(under the action of 7°). The set of all images 7'(x) is called the range of 7. See Figure 2.

xe

Rﬂ
Domain Codomain
FIGURE 2 Domain, codomain, and range of
T:R"— R"™.
The new terminology in this section is important because a dynamic view of matrix—
vector multiplication is the key to understanding several ideas in linear algebra and to

building mathematical models of physical systems that evolve over time. Such dynam-
ical systems will be discussed in Sections 1.10, 4.8, and 4.9 and throughout Chapter 5.

Matrix Transformations

The rest of this section focuses on mappings associated with matrix multiplication. For
each x in R”, T'(x) is computed as Ax, where A is an m x n matrix. For simplicity, we
sometimes denote such a matrix transformation by x +— Ax. Observe that the domain of
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T is R” when A has n columns and the codomain of 7" is R” when each column of A
has m entries. The range of 7 is the set of all linear combinations of the columns of A4,
because each image 7'(x) is of the form Ax.

1 -3 ) 3 3
EXAMPLE 1 Let A = 3 5 ,u=|: },b: 21,e=1]21, and
-1
-1 7 =5 5
define a transformation 7 : R? — R® by T'(x) = Ax, so that
1 -3 X X1 — 3X2
T(x)=Ax=| 3 5 [x1j|: 3x1 + 5x3
-1 7L —x1 4 7x;
a. Find T (u), the image of u under the transformation 7 .
b. Find an x in R? whose image under T is b.
c. Is there more than one x whose image under T is b?
d. Determine if ¢ is in the range of the transformation 7.
SOLUTION
a. Compute
1 =3 ) 5
T(n) = Au = 3 5 |:_1:|= 1
-1 7 -9
b. Solve T'(x) = b for x. That is, solve Ax = b, or
1 =37 N 3
3 5 [ ! ] =| 2 )
-1 7 |L* -5
Using the method discussed in Section 1.4, row reduce the augmented matrix:
1 -3 3 1 -3 3 1 =3 3 1 015
35 2(~|0 14 -T7|~]0 1-=5(~[0 1-=5 2)
-1 7 =5 0 4 -2 0 0 O 0 0 0
[ 1.5 . . .
Hence x; = 1.5, x, = —.5,and x = B . The image of this x under 7 is the

given vector b.

c. Any x whose image under 7" is b must satisfy equation (1). From (2), it is clear that
equation (1) has a unique solution. So there is exactly one x whose image is b.

d. The vector ¢ is in the range of T if ¢ is the image of some x in R?, that is, if ¢ = T'(x)

for some x. This is just another way of asking if the system Ax = c is consistent. To
find the answer, row reduce the augmented matrix:

1 -3 3 1 -3 3 1 -3 3 1 -3 3

3 5 2|~0 14 -T7|~(0 1 2|(~]0 1 2

-1 7 5 0 4 8 0o 14 -7 0 0 -35
The third equation, 0 = —35, shows that the system is inconsistent. So ¢ is not in the
range of 7. [ |

The question in Example 1(c) is a uniqueness problem for a system of linear
equations, translated here into the language of matrix transformations: Is b the image of
a unique X in R"? Similarly, Example 1(d) is an existence problem: Does there exist an
x whose image is ¢?
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X3

FIGURE 3

A projection transformation.

Aty

sheared sheep

The next two matrix transformations can be viewed geometrically. They reinforce
the dynamic view of a matrix as something that transforms vectors into other vectors.
Section 2.7 contains other interesting examples connected with computer graphics.

I 0 0
EXAMPLE 2 If A=[0 1 0], then the transformation x — AX projects
0o 0 O
points in R3 onto the x;x,-plane because
X1 10 0][x X1
X |~ |0 1 0 X2 | = | X2
X3 0 0 0 X3 0
See Figure 3. [ |
EXAMPLE 3 Let A = |:(1) ?i| The transformation 7 : R> — R? defined by

T (x) = Ax is called a shear transformation. It can be shown that if 7" acts on each
point in the 2 x 2 square shown in Figure 4, then the set of images forms the shaded
parallelogram. The key idea is to show that 7" maps line segments onto line segments
(as shown in Exercise 27) and then to check that the corners of the square map onto

the vertices of the parallelogram. For instance, the image of the point u = [g} is

o[} )= [fmmm 2]} ] (2]

deforms the square as if the top of the square were pushed to the right while the base is
held fixed. Shear transformations appear in physics, geology, and crystallography. H

X, 2 X, 2
T
2 2 -
WV =
X 1 + X 1
2 2 8

FIGURE 4 A shear transformation.

Linear Transformations

Theorem 5 in Section 1.4 shows that if A is m X n, then the transformation x — Ax has
the properties
A(u+v)=Au+ Av and A(cu) = cAu

for allu, vin R” and all scalars c. These properties, written in function notation, identify
the most important class of transformations in linear algebra.

A transformation (or mapping) 7 is linear if:

(1) T(wa+v) =T(u)+ T(v) forallu,v inthe domain of T';
(i) T'(cu) = c¢T(u) for all scalars ¢ and all u in the domain of 7.

Every matrix transformation is a linear transformation. Important examples of
linear transformations that are not matrix transformations will be discussed in Chapters
4 andS.



1.8 Introduction to Linear Transformations 67

Linear transformations preserve the operations of vector addition and scalar mul-
tiplication. Property (i) says that the result 7'(u + v) of first adding u and v in R” and
then applying T is the same as first applying 7 to u and to v and then adding 7 (u) and
T'(v) in R™. These two properties lead easily to the following useful facts.

If T is a linear transformation, then
T0)=0 (3)

and
T(cu+dv)=cT() +dT(v) “4)

for all vectors u, v in the domain of 7" and all scalars ¢, d .

Property (3) follows from condition (ii) in the definition, because 7'(0) = 7'(0u) =
07T (u) = 0. Property (4) requires both (i) and (ii):

T(cu+dv)=T(cu)+T(dv)=cT()+dT(v)
Observe that if a transformation satisfies (4) for all u, v and c, d, it must be linear.

(Set ¢ = d =1 for preservation of addition, and set d = 0 for preservation of scalar
multiplication.) Repeated application of (4) produces a useful generalization:

T(crvi+-+cpvy) =c1T(V) + -+ ¢, T(v)) )

In engineering and physics, (5) is referred to as a superposition principle. Think
of vi,...,V, as signals that go into a system and 7'(v;), ..., T(v,) as the responses of
that system to the signals. The system satisfies the superposition principle if whenever
an input is expressed as a linear combination of such signals, the system’s response is
the same linear combination of the responses to the individual signals. We will return to
this idea in Chapter 4.

EXAMPLE 4 Given a scalar r, define 7 : R? — R? by T'(x) = rx. T is called a
contraction when 0 < r < 1 and a dilation when r > 1.Let r = 3, and show that T is
a linear transformation.

SOLUTION Letu, v be in RZ and let ¢, d be scalars. Then
T(cu+dv) =3(cu+dv) Definition of T
= 3cu + 3dv
= c(3u) + d(3v)
=cT(a)+dT(v)

Vector arithmetic

Thus T is a linear transformation because it satisfies (4). See Figure 5. [ |
X X [
,T\‘ J(u)
U, °

FIGURE 5 A dilation transformation.



68 CHAPTER 1 Linear Equations in Linear Algebra

EXAMPLE 5 Define a linear transformation 7 : R? — R? by
_ 0 —1 X1 | =%
reo=[1 5[ w] =[]
. . 4 2 6
Find the images under 7 of u = [1i|,v = |:3i|,andu+v = [4}

R Y C TR T e
raw=|1 S][4]=] ¢

Note that 7'(u 4 v) is obviously equal to 7'(u) + 7'(v). It appears from Figure 6 that
T rotates u, v, and u + v counterclockwise about the origin through 90°. In fact, T
transforms the entire parallelogram determined by u and v into the one determined by
T (u) and T'(v). (See Exercise 28.) ]

.T(u +vV)

FIGURE 6 A rotation transformation.

The final example is not geometrical; instead, it shows how a linear mapping can
transform one type of data into another.

EXAMPLE 6 A company manufactures two products, B and C. Using data from
Example 7 in Section 1.3, we construct a “unit cost” matrix, U = [b ¢], whose
columns describe the “costs per dollar of output” for the products:

Product
B C
45 .40 | Materials
U=|.25 .30 | Labor
15 .15 | Overhead

Letx = (x1, x») be a “production” vector, corresponding to x; dollars of product B and
X dollars of product C, and define T : R? — R3 by

45 40 Total cost of materials
T(x) =Ux=x;| .25 | + x| .30 | = | Total cost of labor
15 15 Total cost of overhead

The mapping T transforms a list of production quantities (measured in dollars) into a
list of total costs. The linearity of this mapping is reflected in two ways:

1. If production is increased by a factor of, say, 4, from x to 4x, then the costs will
increase by the same factor, from 7'(x) to 47 (x).
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2. If x and y are production vectors, then the total cost vector associated with the
combined production x +y is precisely the sum of the cost vectors 7°(x) and

T(y).

PRACTICE PROBLEMS

1. Suppose T : R® — R? and T(x) = Ax for some matrix A and for each x in R>. How
many rows and columns does A have?

1

2. LetA = |:0

0 . . o .
1 :| . Give a geometric description of the transformation x — AXx.

3. The line segment from 0 to a vector u is the set of points of the form ru, where
0 <t < 1. Show that a linear transformation 7" maps this segment into the segment

between 0 and 7 (u).

1.8 EXERCISES

2 0

1. LetA:[0 2

:|,anddeﬁne T :R? - R2by T(x) = AX.

Find the images under 7" of u = |: _; ] and v = [Z ]

5 0 0 1 a
2. Let A=| 0 5 0|, u= O|,and v=| b
o 0 5 —4 c

Define 7 : R? — R3 by T'(x) = Ax. Find T'(u) and T'(v).

In Exercises 3-6, with T defined by 7'(x) = Ax, find a vector x
whose image under 7" is b, and determine whether x is unique.

1 0 =2 -1
3.4=-2 1 6|,b= 7
3 =2 -5 -3

1 -3 2 6

|3 =5 -9 -9

f1 -5 -7 -2
S A‘_—3 7 5]"’_[—2}
1 =2 1 1
3 4 5 9
6. 4= 0 1 1 b= 3
| -3 5 —4 -6

7. Let A be a 6 x 5 matrix. What must ¢ and b be in order to
define T : R — R? by T'(x) = Ax?

8. How many rows and columns must a matrix A have in order
to define a mapping from R* into R? by the rule T'(x) = Ax?

For Exercises 9 and 10, find all x in R* that are mapped into the
zero vector by the transformation x > Ax for the given matrix A.

1 -4 7 =5
9. A=[0 1 —4 3
2 -6 6 —4

1 3 9 2
1 0 3 —4
10. A= o 1 2 3
-2 3 0 5
—1
11. Letb = 1 |,andlet A be the matrix in Exercise 9.1s b in
0
the range of the linear transformation x — Ax? Why or why
not?
—1
12. Letb = _‘I’ ,and let A be the matrix in Exercise 10. Is
4
b in the range of the linear transformation x > Ax? Why or
why not?

In Exercises 13-16, use a rectangular coordinate system to plot

u= [ ; ] V= [ _i :| , and their images under the given transfor-

mation 7'. (Make a separate and reasonably large sketch for each
exercise.) Describe geometrically what 7' does to each vector x
in R2.

13. T(x) = :_(1) _?][2}
14. T(x) = _'(5) 2][2]
15. T(x) = _8 ?][2]
16. T(x) = (1) (1)][;2]

17. Let T :R?> — R? be a linear transformation that maps

57. 2 1]. -1
u—[z]mto[l}andmapsv—|:3:|1nto|: 3j|.Usethe

fact that 7 is linear to find the images under 7" of 3u, 2v, and
3u + 2v.
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18.

19.

20.

The figure shows vectors u, v, and w, along with the images
T (u) and T'(v) under the action of a linear transformation
T : R? — R2. Copy this figure carefully, and draw the image
T(w) as accurately as possible. [Hint: First, write w as a
linear combination of u and v.]

X X,

2

T(v)

° T(u)

Lete; = [(1)],82 = [?},yl = |:§i|,andy2 = [_é},and

let T :R? — R? be a linear transformation that maps e

into y, and maps e, into y,. Find the images of [ _g} and
X1
X2 ’
1 x _ -2 _ 7
Let x = [xz], v, = [ 5], and v, = [_3:|, and let

T : R?> — R? be a linear transformation that maps x into
X1Vy + x,v,. Find a matrix A such that T'(x) is Ax for
each x.

In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22.

23.

a. A linear transformation is a special type of function.

b. If Ais a3 x 5 matrix and 7T is a transformation defined
by T(x) = Ax, then the domain of T is R3.

c. If Aisanm x n matrix, then the range of the transforma-
tion X > Ax is R™.

d. Every linear transformation is a matrix transformation.

e. A transformation 7 is linear if and only if 7T (c;vi+
cv2) = ¢ T(vy) + ¢;T(v,) for all v; and v, in the
domain of 7" and for all scalars ¢, and ¢,.

o

Every matrix transformation is a linear transformation.
b. The codomain of the transformation x + AX is the set of
all linear combinations of the columns of A.

c. If T:R"— R™ is a linear transformation and if ¢ is
in R™, then a uniqueness question is “Is ¢ in the range
of T?”

d. A linear transformation preserves the operations of vector
addition and scalar multiplication.

e. The superposition principle is a physical description of a
linear transformation.

Let T : R? — R? be the linear transformation that reflects
each point through the x;-axis. (See Practice Problem 2.)

24.

25.

26.

27.

28.

29.

30.

31.

Make two sketches similar to Figure 6 that illustrate prop-
erties (i) and (ii) of a linear transformation.

Suppose vectors vy, ..., v, span R”,andlet 7 : R” — R" be
alinear transformation. Suppose 7'(v;) = O fori = 1,..., p.
Show that 7 is the zero transformation. That is, show that if
X is any vector in R”, then 7'(x) = 0.

Givenv # 0and p in R”, the line through p in the direction of
v has the parametric equation x = p + ¢v. Show that a linear
transformation 7' : R” — R” maps this line onto another line
or onto a single point (a degenerate line).

Let u and v be linearly independent vectors in R?, and let P
be the plane through u, v, and 0. The parametric equation
of P is x = su+tv (with 5,7 in R). Show that a linear
transformation 7 : R®> — R* maps P onto a plane through
0, or onto a line through 0, or onto just the origin in R3. What
must be true about 7'(u) and 7'(v) in order for the image of
the plane P to be a plane?

a. Show that the line through vectors p and q in R” may be
written in the parametric form x = (1 —)p + 7q. (Refer
to the figure with Exercises 21 and 22 in Section 1.5.)

b. The line segment from p to q is the set of points of the
form (1 —#)p + tq for 0 < ¢ < 1 (as shown in the figure
below). Show that a linear transformation 7" maps this
line segment onto a line segment or onto a single point.

(tzl)q\‘(l_\w‘tq
X

(t=0)p

Let u and v be vectors in R”. It can be shown that the set P of
all points in the parallelogram determined by u and v has the
formau + bv,for0 <a <1,0<b <1.LetT :R" — R"
be a linear transformation. Explain why the image of a point
in P under the transformation 7 lies in the parallelogram
determined by 7'(u) and 7'(v).

Define /' : R — R by f(x) = mx + b.

a. Show that f is a linear transformation when b = 0.

b. Find a property of a linear transformation that is violated
when b # 0.

c. Why is f called a linear function?

An daffine transformation T :R" — R™ has the form
T(x) = Ax + b, with A an m x n matrix and b in R”. Show
that 7' is not a linear transformation when b # 0. (Affine
transformations are important in computer graphics.)

Let 7:R" — R”™ be a linear transformation, and let
{V1,v,,v3} be a linearly dependent set in R”. Explain why
the set {T'(vy), T(v,), T (v3)} is linearly dependent.

In Exercises 32-36, column vectors are written as rows, such as
X = (X1, X2), and T (x) is written as 7' (x, x3).

32.

Show that the transformation 7 defined by T'(x;,x;) =
(4x| — 2x,, 3|x2]) is not linear.



33.

34.

35.

36.

Show that the transformation 7' defined by T(x;,x,) =
(2x1 — 3x2, x1 + 4, 5x,) is not linear.

Let T : R" — R” be a linear transformation. Show that if
T maps two linearly independent vectors onto a linearly
dependent set, then the equation 7'(x) = 0 has a nontrivial
solution. [Hint: Suppose u and v in R” are linearly inde-
pendent and yet 7' (u) and 7 (v) are linearly dependent. Then
c1T(u) + 2T (v) = 0 for some weights ¢; and ¢,, not both
zero. Use this equation.]

Let 7 : R3> — R? be the transformation that reflects each
vector X = (x1, X5, x3) through the plane x3 =0 onto
T(x) = (x1,x2, —X3).Show that T is a linear transformation.
[See Example 4 for ideas.]

Let T : R® — R3 be the transformation that projects each
vector X = (xy, X, x3) onto the plane x, =0, so T(x) =
(x1,0, x3). Show that T is a linear transformation.

[M] In Exercises 37 and 38, the given matrix determines a linear
transformation 7. Find all x such that 7'(x) = 0.

The transformation x — AX.

37.

39.

40.
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4 -2 5 =5 -9 -4 -9 4
-9 7 -8 0 38 5 -8 -7 6
-6 4 5 3 ' 7 11 16 -9
5 -3 8 —4 9 -7 —4 5
7
[M] Letb = g and let A be the matrix in Exercise 37. Is
7

b in the range of the transformation x — Ax? If so, find an x
whose image under the transformation is b.

-7
13
| =5
Is b in the range of the transformation x — Ax? If so, find an
x whose image under the transformation is b.

[M] Letb = and let A be the matrix in Exercise 38.
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SOLUTIONS TO PRACTICE PROBLEMS

x-axis (or x-axis).

1. A must have five columns for Ax to be defined. A must have two rows for the
codomain of T to be R2.

2. Plot some random points (vectors) on graph paper to see what happens. A point such
as (4, 1) maps into (4, —1). The transformation x > Ax reflects points through the

3. Letx = tufor some ¢ such that 0 < ¢ < 1. Since T is linear, T'(tu) = ¢ T'(u), which
is a point on the line segment between 0 and 7'(u).

1.9 THE MATRIX OF A LINEAR TRANSFORMATION

Whenever a linear transformation 7" arises geometrically or is described in words, we
usually want a “formula” for 7' (x). The discussion that follows shows that every linear
transformation from R” to R” is actually a matrix transformation x — Ax and that
important properties of 7" are intimately related to familiar properties of A. The key to
finding A is to observe that T is completely determined by what it does to the columns

of the n x n identity matrix I,,.

T(e)) =

0

EXAMPLE 1 The columns of I, = [1 (1’] are e = [H and e, = [‘1’}

Suppose T is a linear transformation from R? into R3 such that

5 -3
=7 and T(ep) = 8
2 0

With no additional information, find a formula for the image of an arbitrary x in R?.
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SOLUTION Write

1 0
X=|:2]=X1[Oi|+xz[li|=X101+X202 (1)

Since T is a linear transformation,

T(X) = X1 T(e]) + X2T(ez) (2)
5 -3 le — 3)C2
=x1| =7 | +x 8| =| —7x; +8x, |
2 0 2x1 4+ 0

The step from equation (1) to equation (2) explains why knowledge of 7'(e;) and
T (e,) is sufficient to determine 7 (x) for any x. Moreover, since (2) expresses 7'(X) as
a linear combination of vectors, we can put these vectors into the columns of a matrix
A and write (2) as

T(x)=[T() T(e)] [2} — Ax

THEOREM 10 Let 7 : R” — R™ be a linear transformation. Then there exists a unique matrix
A such that
T(x) = Ax for all x in R”

In fact, A is the m x n matrix whose j th column is the vector 7'(e;), where e; is
the jth column of the identity matrix in R":

A=[T@) - Tn] 3)

PROOF Write x =I,x=[e; --- e,]x =x1€; +---+ x,e,, and use the linearity
of T to compute

T(X) = T(xlel + o+ Xnen) = xlT(el) + - an(en)

X1
=[T@) - T@)]| : |=4x

Xn
The uniqueness of A is treated in Exercise 33. [ |

The matrix A in (3) is called the standard matrix for the linear transforma-
tion 7.

We know now that every linear transformation from R” to R” can be viewed as
a matrix transformation, and vice versa. The term linear transformation focuses on a
property of a mapping, while matrix transformation describes how such a mapping is
implemented, as Examples 2 and 3 illustrate.

EXAMPLE 2 Find the standard matrix A for the dilation transformation 7'(x) = 3x,
for x in R?.



FIGURE 2
The unit square.
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SOLUTION Write

T(el) = 391 = |:(:;i| and T(e2) = 362 = |:(3)]

vy
3 0
A:[O 3] |

EXAMPLE 3 Let T : R? — R? be the transformation that rotates each point in R?
about the origin through an angle ¢, with counterclockwise rotation for a positive angle.
We could show geometrically that such a transformation is linear. (See Figure 6 in
Section 1.8.) Find the standard matrix A of this transformation.

SOLUTION ! rotates into | <o> ¢ ,and 0 rotates into | ¢ | See Figure 1.
0 sin ¢ 1 cos ¢
By Theorem 10,

| cosg —sing
" | sing  cosg

Example 5 in Section 1.8 is a special case of this transformation, with ¢ = /2. [ |

(cos @, sin @)

X
\ I 1(1,0) !
/

FIGURE 1 A rotation transformation.

Geometric Linear Transformations of R?

Examples 2 and 3 illustrate linear transformations that are described geometrically.
Tables 14 illustrate other common geometric linear transformations of the plane.
Because the transformations are linear, they are determined completely by what they
do to the columns of /5. Instead of showing only the images of e; and e,, the tables
show what a transformation does to the unit square (Figure 2).

Other transformations can be constructed from those listed in Tables 1-4 by
applying one transformation after another. For instance, a horizontal shear could be
followed by a reflection in the x;-axis. Section 2.1 will show that such a composition of
linear transformations is linear. (Also, see Exercise 36.)

Existence and Uniqueness Questions

The concept of a linear transformation provides a new way to understand the existence
and uniqueness questions asked earlier. The two definitions following Tables 1-4 give
the appropriate terminology for transformations.
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TABLE 1 Reflections

Transformation Image of the Unit Square Standard Matrix
Reflection through ) 1 0
the x;-axis 0 —1

E %
0
-1
Reflection through )
the x,-axis
X
Reflection through Xy
the line x, = x; X, =X
0
1 V7
A b
il
1
i

Reflection through Xy
the line x, = —x,;

Reflection through )
the origin

[ )

0]

o]
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TABLE 2 Contractions and Expansions

Transformation Image of the Unit Square Standard Matrix
Horizontal 2 * k 0
contraction 0 1

and expansion [0]

Vertical
contraction
and expansion

1

0<k<l1 k>1

0<k<l1
TABLE 3 Shears
Transformation Image of the Unit Square Standard Matrix
Horizontal shear Xy *2 [ 1 k]
k
] [1] 0 1
| |
I o\ =— — I
} X } X
k 1 k|1
0 0
k<0 k>0

Vertical shear

k<0 k>0
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TABLE 4 Projections

Transformation Image of the Unit Square Standard Matrix
Projection onto ) 1 0
the x,-axis 0 0

Projection onto ) 0 0
the x,-axis

A mapping 7 : R” — R™ is said to be onto R” if each b in R” is the image of
at least one x in R".

Equivalently, 7" is onto R” when the range of T is all of the codomain R™. That is,
T maps R” onto R™ if, for each b in the codomain R”, there exists at least one solution
of T(x) = b. “Does T map R” onto R”?” is an existence question. The mapping 7 is
not onto when there is some b in R” for which the equation 7'(x) = b has no solution.
See Figure 3.

Ran ge
[R m

T is not onto R™ T is onto R™

FIGURE 3 Is the range of 7 all of R"?

A mapping 7 : R” — R is said to be one-to-one if each b in R” is the image
of at most one x in R”.



Mastering: Existence
and Uniqueness 1-39

THEOREM 11
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Equivalently, 7" is one-to-one if, for each b in R”, the equation 7'(x) = b has
either a unique solution or none at all. “Is 7" one-to-one?” is a uniqueness question.
The mapping T is not one-to-one when some b in R™ is the image of more than one
vector in R”. If there is no such b, then T is one-to-one. See Figure 4.

\ \

Domain Range Domain T Range

Rm
T is not one-to-one T is one-to-one

FIGURE 4 Is every b the image of at most one vector?

The projection transformations shown in Table 4 are not one-to-one and do not map
R? onto R2. The transformations in Tables 1, 2, and 3 are one-to-one and do map R?
onto R2. Other possibilities are shown in the two examples below.

Example 4 and the theorems that follow show how the function properties of being
one-to-one and mapping onto are related to important concepts studied earlier in this
chapter.

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

1 4 8 1
A=10 2 -1 3
0o 0 0 5

Does T map R* onto R3? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a
pivot position in each row. By Theorem 4 in Section 1.4, for each b in R?, the equation
Ax = b is consistent. In other words, the linear transformation 7" maps R* (its domain)
onto R3. However, since the equation Ax = b has a free variable (because there are four
variables and only three basic variables), each b is the image of more than one x. That
is, T' is not one-to-one. |

Let T : R" — R be a linear transformation. Then 7 is one-to-one if and only if
the equation 7'(x) = 0 has only the trivial solution.

Remark: To prove a theorem that says “statement P is true if and only if statement Q is
true,” one must establish two things: (1) If P is true, then Q is true and (2) If Q is true,
then P is true. The second requirement can also be established by showing (2a): If P is
false, then Q is false. (This is called contrapositive reasoning.) This proof uses (1) and
(2a) to show that P and Q are either both true or both false.

PROOF Since T is linear, T(0) = 0. If T is one-to-one, then the equation 7'(x) = 0
has at most one solution and hence only the trivial solution. If 7" is not one-to-one, then
there is a b that is the image of at least two different vectors in R” —say, u and v. That
is, T(u) = b and T'(v) = b. But then, since 7 is linear,

Tw—v)=Tw—-TKV¥)=b—-b=0
The vector u — v is not zero, since u # v. Hence the equation 7'(x) = 0 has more than

one solution. So, either the two conditions in the theorem are both true or they are both
false. |
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THEOREM 12

X,

The transformation 7 is not
onto R3.

Let 7 : R” — R be a linear transformation, and let A be the standard matrix for
T . Then:

a. T maps R” onto R™ if and only if the columns of A span R";

b. T is one-to-one if and only if the columns of A are linearly independent.

Remark: “If and only if” statements can be linked together. For example if “P if and
only if Q” is known and “Q if and only if R” is known, then one can conclude “P if
and only if R.” This strategy is used repeatedly in this proof.

PROOF

a. By Theorem 4 in Section 1.4, the columns of A span R” if and only if for each b
in R™ the equation Ax = b is consistent—in other words, if and only if for every b,
the equation 7°(x) = b has at least one solution. This is true if and only if 7" maps
R" onto R™.

b. The equations 7'(x) = 0 and Ax = 0 are the same except for notation. So, by
Theorem 11, T is one-to-one if and only if Ax = 0 has only the trivial solution. This
happens if and only if the columns of A are linearly independent, as was already
noted in the boxed statement (3) in Section 1.7. [ |

Statement (a) in Theorem 12 is equivalent to the statement “7" maps R” onto R"
if and only if every vector in R™ is a linear combination of the columns of A.” See
Theorem 4 in Section 1.4.

In the next example and in some exercises that follow, column vectors are written in
rows, such as X = (xy, x3), and T'(x) is written as 7'(xy, x,) instead of the more formal

T((x1, x2)).

EXAMPLE 5 Let T(x1,x2) = (3x; + x2, 5x1 + 7x3, x1 + 3x;). Show that T is a
one-to-one linear transformation. Does 7" map R? onto R*?

SOLUTION When x and 7(x) are written as column vectors, you can determine the
standard matrix of 7' by inspection, visualizing the row—vector computation of each
entry in Ax.

3x1 + x> ? ? Y 3 1 X
Tx)=|5x+70 |=]2 2 [‘]: 5 7 [1} )
X1+ 3x; 3

~
~

So T is indeed a linear transformation, with its standard matrix A shown in (4). The
columns of A are linearly independent because they are not multiples. By Theorem
12(b), T is one-to-one. To decide if T is onto R?, examine the span of the columns of
A. Since A is 3 x 2, the columns of A span R? if and only if 4 has 3 pivot positions, by
Theorem 4. This is impossible, since A has only 2 columns. So the columns of 4 do not
span R3, and the associated linear transformation is not onto R3. [

PRACTICE PROBLEMS

1. Let T : R? — R? be the transformation that first performs a horizontal shear that
maps e, into e, — .5e; (but leaves e; unchanged) and then reflects the result through
the x,-axis. Assuming that 7 is linear, find its standard matrix. [Hint: Determine the
final location of the images of e; and e;.]

2. Suppose A is a7 x 5 matrix with 5 pivots. Let 7 (x) = Ax be a linear transformation
from R into R7.Is T a one-to-one linear transformation? Is 7" onto R”?
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In Exercises 1-10, assume that 7 is a linear transformation. Find
the standard matrix of 7.

1. T:R?> - R* T(e;) = (3,1,3,1)and T (e;) = (—5,2,0,0),
where e; = (1,0) and e, = (0, 1).

2. T:R*—R?, T(e)=(1,3), T(e)=(4.—7), and
T(e3) = (—5,4), where e, ey, e3 are the columns of the
3 x 3 identity matrix.

3. T :R? — R? rotates points (about the origin) through 37 /2
radians (counterclockwise).

4. T : R? — R? rotates points (about the origin) through —m /4
radians (clockwise). [Hint: T'(e;) = (1/+/2,—1//2).]

5. T : R? — R?is a vertical shear transformation that maps e,
into e; — 2e; but leaves the vector e, unchanged.

6. T : R?> — R?isahorizontal shear transformation that leaves
e; unchanged and maps e, into e, + 3e;.

7. T :R?*> — R? first rotates points through —37/4 radian
(clockwise) and then reflects points through the horizontal

xi-axis. [Hint: T(e)) = (—1/+/2.1/+/2) ]

8. T :R? — R first reflects points through the horizontal x;-
axis and then reflects points through the line x, = x;.

9. T :R? — R? first performs a horizontal shear that trans-
forms e, into e, — 2e; (leaving e; unchanged) and then re-
flects points through the line x, = —x;.

10. T : R? — R? first reflects points through the vertical x,-axis
and then rotates points /2 radians.

11. A linear transformation 7 : R? — R? first reflects points
through the x;-axis and then reflects points through the x,-
axis. Show that 7" can also be described as a linear transfor-
mation that rotates points about the origin. What is the angle
of that rotation?

12. Show that the transformation in Exercise 8 is merely a rota-
tion about the origin. What is the angle of the rotation?

13. Let T : R? — R?be the linear transformation such that T'(e;)
and T'(e,) are the vectors shown in the figure. Using the
figure, sketch the vector 7(2, 1).

X

T(e,) T(ey)

| K

14. Let T : R? — R? be a linear transformation with standard
matrix A = [a; a,], where a; and a, are shown in the

figure. Using the figure, draw the image of [ -l ] under the

3

transformation 7 .

In Exercises 15 and 16, fill in the missing entries of the matrix,
assuming that the equation holds for all values of the variables.

? ? ? X1 3)C1 —2X3
15. ? ? ? X2 = 4X1
? ? ? X3 X| — X2 + X3

? ? X X1 — X
16. | ? 2 [ 1]: —=2x1 + X3
? ? e X1
In Exercises 17-20, show that 7" is a linear transformation by

finding a matrix that implements the mapping. Note that x1, x5, . ..
are not vectors but are entries in vectors.

17. T(x1,x2,x3,x4) = (0, X1 + X2, X2 + X3, X3 + X4)

18. T(x1,x2) = (2x3 — 3x1,x1 —4x,,0, x2)

19. T(x1,x2,x3) = (x1 — 5x5 + 4x3, X — 6X3)

20. T(x1, X2, X3,x4) = 2x; + 3x3 — 4xy4 (T : R* - R)

21. Let T :R> — R? be a linear transformation such that
T(x1,x2) = (x; + x2,4x; + 5x,). Find x such that T (x) =
(3,8).

22. Let T :R?>— R3 be a linear transformation such that
T (x1,x3) = (x1 —2x2, —x1 + 3X5,3x; — 2X»). Find x such
that 7' (x) = (—1,4,9).

In Exercises 23 and 24, mark each statement True or False. Justify
each answer.

23. a. A linear transformation 7" : R" — R” is completely de-
termined by its effect on the columns of the n x n identity
matrix.

b. If T : R? — R? rotates vectors about the origin through
an angle ¢, then 7 is a linear transformation.

c. When two linear transformations are performed one after
another, the combined effect may not always be a linear
transformation.

d. A mapping 7 : R” — R" is onto R™ if every vector X in
R" maps onto some vector in R”.

e. If A is a 3 x 2 matrix, then the transformation x — Ax
cannot be one-to-one.

24. a. Notevery linear transformation from R” to R” is a matrix

transformation.

b. The columns of the standard matrix for a linear transfor-
mation from R” to R™ are the images of the columns of
the n x n identity matrix.



80 CHAPTER 1 Linear Equations in Linear Algebra

c. The standard matrix of a linear transformation from R?
to R? that reflects points through the horizontal axis,

the vertical axis, or the origin has the form [?) 3 ],

where a and d are £1.

d. A mapping 7 : R” — R™ is one-to-one if each vector in
R" maps onto a unique vector in R".

e. If A is a 3 x 2 matrix, then the transformation x — Ax
cannot map R? onto R?.

In Exercises 25-28, determine if the specified linear transforma-
tion is (a) one-to-one and (b) onto. Justify each answer.

25.
26.
27.
28.

The transformation in Exercise 17
The transformation in Exercise 2
The transformation in Exercise 19

The transformation in Exercise 14

In Exercises 29 and 30, describe the possible echelon forms of the
standard matrix for a linear transformation 7. Use the notation of
Example 1 in Section 1.2.

29.
30.
31.

32.

33.

T : R?® — R* is one-to-one.
T : R* — R? is onto.

Let T : R" — R™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “T is one-to-one if and only if A has pivot
columns.” Explain why the statement is true. [Hint: Look in
the exercises for Section 1.7.]

Let T :R" — R™ be a linear transformation, with A its
standard matrix. Complete the following statement to make
it true: “7" maps R” onto R™ if and only if A has
pivot columns.” Find some theorems that explain why the
statement is true.

Verify the uniqueness of 4 in Theorem 10.Let 7" : R" — R”
be a linear transformation such that 7'(x) = Bx for some

34.

35.

36.

m x n matrix B. Show that if A is the standard matrix for
T, then A = B. [Hint: Show that A and B have the same
columns.]

Why is the question “Is the linear transformation 7" onto?”
an existence question?

If a linear transformation 7" : R” — R™ maps R" onto R,
can you give a relation between m and n? If T is one-to-one,
what can you say about m and n?

Let S : R” - R" and T : R” — R” be linear transforma-
tions. Show that the mapping x + 7'(S(x)) is a linear trans-
formation (from R? to R™). [Hint: Compute T (S(cu + dv))
for u, v in R? and scalars ¢ and d. Justify each step of the
computation, and explain why this computation gives the
desired conclusion.]

[M] In Exercises 37-40, let T be the linear transformation whose
standard matrix is given. In Exercises 37 and 38, decide if 7" is a
one-to-one mapping. In Exercises 39 and 40, decide if T maps R>
onto R, Justify your answers.

-5 10 =5 4 7 5 4 -9
8 3 —4 7 10 6 16 —4
Tl 4 9 5 3 Bl s 12 7
|3 2 5 4 -8 —6 —2 5
4 -7 3 7 5]
6 -8 5 12 -8
9. | -7 10 -8 -9 14
3 -5 4 2 -6
|5 6 -6 —7 3|
T 9 13 5 6 —1]
14 15 -7 -6 4
4. | -8 -9 12 -5 -9
-5 6 -8 9 8
|13 14 15 2 11|

SOLUTION TO PRACTICE PROBLEMS

1. Follow what happens to e; and e,. See Figure 5. First, e; is unaffected by the shear
and then is reflected into —e;. So T'(e;) = —e;. Second, e, goes to e, — .5e; by the

shear transformation. Since reflection through the x;-axis changes e; into —e; and

2

L L

4 [

Shear transformation Reflection through the x,-axis

FIGURE 5 The composition of two transformations.
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leaves e, unchanged, the vector e; — .5e; goes to e; + .5e;. So T'(e;) = e, + .5e;.
Thus the standard matrix of 7 is

[T Tie]=[e e2+.5e1]=[‘é f]

2. The standard matrix representation of 7" is the matrix 4. Since A has 5 columns and
5 pivots, there is a pivot in every column so the columns are linearly independent.
By Theorem 12, T' is one-to-one. Since A has 7 rows and only 5 pivots, there is not
a pivot in every row and hence the columns of A do not span R”. By Theorem 12,
and T is not onto.

1.10 LINEAR MODELS IN BUSINESS, SCIENCE, AND ENGINEERING

The mathematical models in this section are all linear; that is, each describes a
problem by means of a linear equation, usually in vector or matrix form. The first
model concerns nutrition but actually is representative of a general technique in linear
programming problems. The second model comes from electrical engineering. The third
model introduces the concept of a linear difference equation, a powerful mathematical
tool for studying dynamic processes in a wide variety of fields such as engineering,
ecology, economics, telecommunications, and the management sciences. Linear models
are important because natural phenomena are often linear or nearly linear when the
variables involved are held within reasonable bounds. Also, linear models are more
easily adapted for computer calculation than are complex nonlinear models.

As you read about each model, pay attention to how its linearity reflects some
property of the system being modeled.

Constructing a Nutritious Weight-Loss Diet

The formula for the Cambridge Diet, a popular diet in the 1980s, was based on years
of research. A team of scientists headed by Dr. Alan H. Howard developed this diet
at Cambridge University after more than eight years of clinical work with obese
patients.! The very low-calorie powdered formula diet combines a precise balance
of carbohydrate, high-quality protein, and fat, together with vitamins, minerals, trace
elements, and electrolytes. Millions of persons have used the diet to achieve rapid and
substantial weight loss.

To achieve the desired amounts and proportions of nutrients, Dr. Howard had to
incorporate a large variety of foodstuffs in the diet. Each foodstuff supplied several of
the required ingredients, but not in the correct proportions. For instance, nonfat milk was
a major source of protein but contained too much calcium. So soy flour was used for
part of the protein because soy flour contains little calcium. However, soy flour contains
proportionally too much fat, so whey was added since it supplies less fat in relation to
calcium. Unfortunately, whey contains too much carbohydrate. . . .

The following example illustrates the problem on a small scale. Listed in Table 1
are three of the ingredients in the diet, together with the amounts of certain nutrients
supplied by 100 grams (g) of each ingredient.?

! The first announcement of this rapid weight-loss regimen was given in the International Journal of Obesity
(1978) 2,321-332.

2 Ingredients in the diet as of 1984; nutrient data for ingredients adapted from USDA Agricultural
Handbooks No. 8-1 and 8-6, 1976.
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TABLE 1

Amounts (g) Supplied per 100 g of Ingredient Amounts (g) Supplied by
Nutrient Nonfat milk Soy flour Whey Cambridge Diet in One Day
Protein 36 51 13 33
Carbohydrate 52 34 74 45

Fat 0 7 1.1 3

EXAMPLE 1 If possible, find some combination of nonfat milk, soy flour, and whey
to provide the exact amounts of protein, carbohydrate, and fat supplied by the diet in
one day (Table 1).

SOLUTION Let x;, x5, and X3, respectively, denote the number of units (100 g) of
these foodstuffs. One approach to the problem is to derive equations for each nutrient
separately. For instance, the product

x1 units of | | protein per unit
nonfat milk of nonfat milk

gives the amount of protein supplied by x; units of nonfat milk. To this amount, we
would then add similar products for soy flour and whey and set the resulting sum equal
to the amount of protein we need. Analogous calculations would have to be made for
each nutrient.

A more efficient method, and one that is conceptually simpler, is to consider a
“nutrient vector” for each foodstuff and build just one vector equation. The amount
of nutrients supplied by x; units of nonfat milk is the scalar multiple

Scalar Vector

X1 units of nutrients per unit
: = Xi4a;
ey
where a, is the first column in Table 1. Let a, and a3 be the corresponding vectors for
soy flour and whey, respectively, and let b be the vector that lists the total nutrients
required (the last column of the table). Then x,a; and x3a; give the nutrients supplied

by x; units of soy flour and x3 units of whey, respectively. So the relevant equation is

nonfat milk of nonfat milk

xia; + x2a; + x3a3 = b )
Row reduction of the augmented matrix for the corresponding system of equations
shows that
36 51 13 33 1 o0 0 .277
52 34 74 45| ~---~ |0 1 O .392
0 7 11 3 0 0 1 .233

To three significant digits, the diet requires .277 units of nonfat milk, .392 units of
soy flour, and .233 units of whey in order to provide the desired amounts of protein,
carbohydrate, and fat. |

It is important that the values of x1, x,, and x3 found above are nonnegative. This is
necessary for the solution to be physically feasible. (How could you use —.233 units of
whey, for instance?) With a large number of nutrient requirements, it may be necessary
to use a larger number of foodstuffs in order to produce a system of equations with
a “nonnegative” solution. Thus many, many different combinations of foodstuffs may
need to be examined in order to find a system of equations with such a solution. In
fact, the manufacturer of the Cambridge Diet was able to supply 31 nutrients in precise
amounts using only 33 ingredients.
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The diet construction problem leads to the /inear equation (2) because the amount
of nutrients supplied by each foodstuff can be written as a scalar multiple of a vector,
as in (1). That is, the nutrients supplied by a foodstuff are proportional to the amount of
the foodstuff added to the diet mixture. Also, each nutrient in the mixture is the sum of
the amounts from the various foodstuffs.

Problems of formulating specialized diets for humans and livestock occur fre-
quently. Usually they are treated by linear programming techniques. Our method of
constructing vector equations often simplifies the task of formulating such problems.

Linear Equations and Electrical Networks

Current flow in a simple electrical network can be described by a system of linear
equations. A voltage source such as a battery forces a current of electrons to flow through
the network. When the current passes through a resistor (such as a lightbulb or motor),
some of the voltage is “used up”’; by Ohm’s law, this “voltage drop” across a resistor is
given by

V =RI

where the voltage V' is measured in volts, the resistance R in ohms (denoted by €2), and
the current flow I in amperes (amps, for short).

The network in Figure 1 contains three closed loops. The currents flowing in loops
1,2, and 3 are denoted by I}, I, and I3, respectively. The designated directions of such
loop currents are arbitrary. If a current turns out to be negative, then the actual direction
of current flow is opposite to that chosen in the figure. If the current direction shown is
away from the positive (longer) side of a battery ({1-) around to the negative (shorter)
side, the voltage is positive; otherwise, the voltage is negative.

Current flow in a loop is governed by the following rule.

KIRCHHOFF'S VOLTAGE LAW

The algebraic sum of the R/ voltage drops in one direction around a loop equals
the algebraic sum of the voltage sources in the same direction around the loop.

EXAMPLE 2 Determine the loop currents in the network in Figure 1.

SOLUTION For loop 1, the current /; flows through three resistors, and the sum of the
R1I voltage drops is

AL +40L+3L1 =4 +4+3) =111,

Current from loop 2 also flows in part of loop 1, through the short branch between A
and B. The associated R/ drop there is 3/, volts. However, the current direction for the
branch AB in loop 1 is opposite to that chosen for the flow in loop 2, so the algebraic
sum of all R/ drops for loop 1 is 117} — 31,. Since the voltage in loop 1 is +30 volts,
Kirchhoff’s voltage law implies that

117, — 31, =30
The equation for loop 2 is
=3I +6L—-1;=5

The term —37; comes from the flow of the loop 1 current through the branch AB (with
a negative voltage drop because the current flow there is opposite to the flow in loop 2).
The term 61, is the sum of all resistances in loop 2, multiplied by the loop current. The
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term —/3 = —1 - I3 comes from the loop 3 current flowing through the 1-ohm resistor
in branch CD, in the direction opposite to the flow in loop 2. The loop 3 equation is
—1, +31; =-25

Note that the 5-volt battery in branch CD is counted as part of both loop 2 and loop 3,
but it is —5 volts for loop 3 because of the direction chosen for the current in loop 3.
The 20-volt battery is negative for the same reason.

The loop currents are found by solving the system

117, — 31, = 30
=3I, +6l, — I3 = 5 3)

— L +3;=-25
Row operations on the augmented matrix lead to the solution: /1 = 3 amps, I, = 1 amp,
and /3 = —8 amps. The negative value of /5 indicates that the actual current in loop 3
flows in the direction opposite to that shown in Figure 1. |

It is instructive to look at system (3) as a vector equation:

11 -3 0 30
Ll 3 |+0L| 6|+6L]-1]|= 5 4)
0 —1 3 —-25
f f f f
r | ) I3 v

The first entry of each vector concerns the first loop, and similarly for the second and
third entries. The first resistor vector r lists the resistance in the various loops through
which current /; flows. A resistance is written negatively when /| flows against the flow
direction in another loop. Examine Figure 1 and see how to compute the entries in ry;
then do the same for r, and r3. The matrix form of equation (4),

Ri=v, where R=][r; r, r3] and i=| 1,

I
provides a matrix version of Ohm’s law. If all loop currents are chosen in the same direc-
tion (say, counterclockwise), then all entries off the main diagonal of R will be negative.
The matrix equation Ri = v makes the linearity of this model easy to see at a
glance. For instance, if the voltage vector is doubled, then the current vector must
double. Also, a superposition principle holds. That is, the solution of equation (4) is

the sum of the solutions of the equations

30 0 0
Ri=| 0|, Ri=|5]|, and Ri= 0
0 0 —25

Each equation here corresponds to the circuit with only one voltage source (the other
sources being replaced by wires that close each loop). The model for current flow is
linear precisely because Ohm’s law and Kirchhoff’s law are linear: The voltage drop
across a resistor is proportional to the current flowing through it (Ohm), and the sum of
the voltage drops in a loop equals the sum of the voltage sources in the loop (Kirchhoff).

Loop currents in a network can be used to determine the current in any branch of
the network. If only one loop current passes through a branch, such as from B to D
in Figure 1, the branch current equals the loop current. If more than one loop current
passes through a branch, such as from A to B, the branch current is the algebraic sum
of the loop currents in the branch (Kirchhoff’s current law). For instance, the current in
branch AB is I} — I, = 3 — 1 = 2 amps, in the direction of /;. The current in branch
CDis I, — I = 9 amps.
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Difference Equations

In many fields such as ecology, economics, and engineering, a need arises to model
mathematically a dynamic system that changes over time. Several features of the system
are each measured at discrete time intervals, producing a sequence of vectors Xo, X,
Xy, .... The entries in X; provide information about the state of the system at the time
of the kth measurement.

If there is a matrix A such that x; = AXy, X, = AX), and, in general,

Xp+1 = Ax, fork =0,1,2,... 5)

then (5) is called a linear difference equation (or recurrence relation). Given such
an equation, one can compute X;, Xp, and so on, provided X, is known. Sections 4.8
and 4.9, and several sections in Chapter 5, will develop formulas for x; and describe
what can happen to X, as k increases indefinitely. The discussion below illustrates how
a difference equation might arise.

A subject of interest to demographers is the movement of populations or groups of
people from one region to another. The simple model here considers the changes in the
population of a certain city and its surrounding suburbs over a period of years.

Fix an initial year—say, 2014 —and denote the populations of the city and suburbs
that year by r¢ and so, respectively. Let x( be the population vector

X — o City population, 2014
0= ) Suburban population, 2014

For 2015 and subsequent years, denote the populations of the city and suburbs by the

vectors
r ) r3
X; = s X = s X3 =
S1 52 53

Our goal is to describe mathematically how these vectors might be related.

Suppose demographic studies show that each year about 5% of the city’s population
moves to the suburbs (and 95% remains in the city), while 3% of the suburban population
moves to the city (and 97% remains in the suburbs). See Figure 2.

Suburbs

.05

.03

FIGURE 2 Annual percentage migration between city and suburbs.

After 1 year, the original r( persons in the city are now distributed between city and

suburbs as
95ry | .95 Remain in city
|: .05r¢ ] o r0|: .05:| Move to suburbs ©)
The 5o persons in the suburbs in 2014 are distributed 1 year later as

|: .03 :| Move to city
S0

.97 Remain in suburbs

(N
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The vectors in (6) and (7) account for all of the population in 2015.3 Thus
"l .95 " 031 195 .03 || ro
si]TLos | T o7 T 05 97| s

X = MX() (8)

That is,

where M is the migration matrix determined by the following table:

From:
City Suburbs  To:
.95 .03 City
.05 .97 Suburbs

Equation (8) describes how the population changes from 2014 to 2015. If the migration
percentages remain constant, then the change from 2015 to 2016 is given by

Xy = MX]
and similarly for 2016 to 2017 and subsequent years. In general,
Xpt+1 = Mx; fork =0,1,2,... 9)

The sequence of vectors {Xo, X;, Xa, ...} describes the population of the city/suburban
region over a period of years.

EXAMPLE 3 Compute the population of the region just described for the years
2015 and 2016, given that the population in 2014 was 600,000 in the city and 400,000
in the suburbs.

600,000
400,000

< = .95 .03 || 600,000 | | 582,000
P71.05 .97 || 400,000 | ~ | 418,000

SOLUTION The initial population in 2014 is x, = |: ] For 2015,

For 2016,

.05 .97 || 418,000 434,560 "

_ _ |:.95 .031||:582,000:| _ |:565,440:|
Xy = M X = =

The model for population movement in (9) is linear because the correspondence

X; > Xk+1 is a linear transformation. The linearity depends on two facts: the number

of people who chose to move from one area to another is proportional to the number of

people in that area, as shown in (6) and (7), and the cumulative effect of these choices

is found by adding the movement of people from the different areas.

PRACTICE PROBLEM
Find a matrix A and vectors x and b such that the problem in Example 1 amounts to

solving the equation Ax = b.

3 For simplicity, we ignore other influences on the population such as births, deaths, and migration into and
out of the city/suburban region.
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EXERCISES

1. The container of a breakfast cereal usually lists the number

of calories and the amounts of protein, carbohydrate, and
fat contained in one serving of the cereal. The amounts for
two common cereals are given below. Suppose a mixture of
these two cereals is to be prepared that contains exactly 295
calories, 9 g of protein, 48 g of carbohydrate, and 8 g of fat.
a. Setup a vector equation for this problem. Include a state-
ment of what the variables in your equation represent.

b. Write an equivalent matrix equation, and then determine
if the desired mixture of the two cereals can be prepared.

Nutrition Information per Serving

General Mills Quaker®
Nutrient Cheerios 100% Natural Cereal
Calories 110 130
Protein (g) 4 3
Carbohydrate (g) 20 18
Fat (g) 2 5

. One serving of Post Shredded Wheat® supplies 160 calories,

5 g of protein, 6 g of fiber, and 1 g of fat. One serving of

Crispix® supplies 110 calories, 2 g of protein, .1 g of fiber,

and 4 g of fat.

a. Setup a matrix B and a vector u such that Bu gives the
amounts of calories, protein, fiber, and fat contained in
a mixture of three servings of Shredded Wheat and two
servings of Crispix.

b. [M] Suppose that you want a cereal with more fiber than
Crispix but fewer calories than Shredded Wheat. Is it
possible for a mixture of the two cereals to supply 130
calories, 3.20 g of protein, 2.46 g of fiber, and .64 g of
fat? If so, what is the mixture?

. After taking a nutrition class, a big Annie’s® Mac and Cheese
fan decides to improve the levels of protein and fiber in
her favorite lunch by adding broccoli and canned chicken.
The nutritional information for the foods referred to in this
exercise are given in the table below.

Nutrition Information per Serving

Nutrient Mac and Cheese Broccoli Chicken Shells
Calories 270 51 70 260
Protein (g) 10 54 15 9
Fiber (g) 2 52 0 5

a. [M] If she wants to limit her lunch to 400 calories but
get 30 g of protein and 10 g of fiber, what proportions of
servings of Mac and Cheese, broccoli, and chicken should
she use?

b. [M] She found that there was too much broccoli in the
proportions from part (a), so she decided to switch from

4.

classical Mac and Cheese to Annie’s® Whole Wheat
Shells and White Cheddar. What proportions of servings
of each food should she use to meet the same goals as in
part (a)?

The Cambridge Diet supplies .8 g of calcium per day, in
addition to the nutrients listed in Table 1 for Example 1.
The amounts of calcium per unit (100 g) supplied by the
three ingredients in the Cambridge Diet are as follows: 1.26 g
from nonfat milk, .19 g from soy flour, and .8 g from whey.
Another ingredient in the diet mixture is isolated soy protein,
which provides the following nutrients in each unit: 80 g of
protein, O g of carbohydrate, 3.4 g of fat, and .18 g of calcium.
a. Set up a matrix equation whose solution determines the
amounts of nonfat milk, soy flour, whey, and isolated
soy protein necessary to supply the precise amounts of
protein, carbohydrate, fat, and calcium in the Cambridge
Diet. State what the variables in the equation represent.

b. [M] Solve the equation in (a) and discuss your answer.

In Exercises 5-8, write a matrix equation that determines the loop
currents. [M] If MATLAB or another matrix program is available,
solve the system for the loop currents.

5.

6.

40V 40
II
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10.

11.

In a certain region, about 7% of a city’s population moves
to the surrounding suburbs each year, and about 5% of the
suburban population moves into the city. In 2015, there were
800,000 residents in the city and 500,000 in the suburbs.
Set up a difference equation that describes this situation,
where X, is the initial population in 2015. Then estimate
the populations in the city and in the suburbs two years
later, in 2017. (Ignore other factors that might influence the
population sizes.)

In a certain region, about 6% of a city’s population moves
to the surrounding suburbs each year, and about 4% of the
suburban population moves into the city. In 2015, there were
10,000,000 residents in the city and 800,000 in the suburbs.
Set up a difference equation that describes this situation,
where X is the initial population in 2015. Then estimate the
populations in the city and in the suburbs two years later, in
2017.

In 2012 the population of California was 38,041,430, and the

population living in the United States but outside California

was 275,872,610. During the year, it is estimated that

748,252 persons moved from California to elsewhere in the

United States, while 493,641 persons moved to California

from elsewhere in the United States.*

a. Set up the migration matrix for this situation, using five
decimal places for the migration rates into and out of
California. Let your work show how you produced the
migration matrix.

b. [M] Compute the projected populations in the year 2022
for California and elsewhere in the United States, assum-
ing that the migration rates did not change during the 10-
year period. (These calculations do not take into account
births, deaths, or the substantial migration of persons into
California and elsewhere in the United States from other
countries.)

4 Migration data retrieved from http:/www.governing.com/

12.

13.

14.

[M] Budget® Rent A Car in Wichita, Kansas, has a fleet of
about 500 cars, at three locations. A car rented at one location
may be returned to any of the three locations. The various
fractions of cars returned to the three locations are shown in
the matrix below. Suppose that on Monday there are 295 cars
at the airport (or rented from there), 55 cars at the east side
office, and 150 cars at the west side office. What will be the
approximate distribution of cars on Wednesday?

Cars Rented From:

Airport East West Returned To:
.97 .05 .10 Airport
.00 .90 .05 East
.03 .05 .85 West

[M] Let M and x, be as in Example 3.

a. Compute the population vectors x; for k = 1,...,20.
Discuss what you find.

b. Repeat part (a) with an initial population of 350,000 in
the city and 650,000 in the suburbs. What do you find?

[M] Study how changes in boundary temperatures on a steel
plate affect the temperatures at interior points on the plate.

a. Begin by estimating the temperatures 77, 7, T3, Ty at
each of the sets of four points on the steel plate shown in
the figure. In each case, the value of 7}, is approximated by
the average of the temperatures at the four closest points.
See Exercises 33 and 34 in Section 1.1, where the values
(in degrees) turn out to be (20, 27.5, 30, 22.5). How is this
list of values related to your results for the points in set
(a) and set (b)?

b. Without making any computations, guess the interior

temperatures in (a) when the boundary temperatures are
all multiplied by 3. Check your guess.

c. Finally, make a general conjecture about the correspon-
dence from the list of eight boundary temperatures to the
list of four interior temperatures.

Plate A Plate B
20°  20° 0°  0°
0° ! 2 0° 10° ! 2 40°
0° 4 3 0° 10° 4 3 40°
20°  20° 10° 10°

(a) (b)


http://www.governing.com/
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SOLUTION TO PRACTICE PROBLEM

36

51

13 X1 33
74 , XxX=|x |, b=]|45
1.1 X3 3

CHAPTER 1 SUPPLEMENTARY EXERCISES

1. Mark each statement True or False. Justify each answer. (If
true, cite appropriate facts or theorems. If false, explain why
or give a counterexample that shows why the statement is not
true in every case.

a. Every matrix is row equivalent to a unique matrix in
echelon form.

b. Any system of n linear equations in n variables has at
most n solutions.

c. If a system of linear equations has two different solu-
tions, it must have infinitely many solutions.

d. Ifasystem of linear equations has no free variables, then
it has a unique solution.

e. If an augmented matrix [A b] is transformed into
[C d] by elementary row operations, then the equa-
tions Ax = b and Cx = d have exactly the same solu-
tion sets.

f. If a system Ax = b has more than one solution, then so
does the system Ax = 0.

g. If A is an m x n matrix and the equation AX = b is
consistent for some b, then the columns of A span R”.

h. If an augmented matrix [ A b | can be transformed by
elementary row operations into reduced echelon form,
then the equation Ax = b is consistent.

i. If matrices A and B are row equivalent, they have the
same reduced echelon form.

j-  The equation Ax = 0 has the trivial solution if and only
if there are no free variables.

k. If Ais an m x n matrix and the equation Ax = b is con-
sistent for every b in R™, then A has m pivot columns.

1. If an m x n matrix A has a pivot position in every row,
then the equation Ax = b has a unique solution for each
b in R™.

m. If an n xn matrix A has n pivot positions, then the
reduced echelon form of A is the n x n identity matrix.

n. If 3 x 3 matrices A and B each have three pivot posi-
tions, then A can be transformed into B by elementary
row operations.

o. If A is an m x n matrix, if the equation Ax = b has at
least two different solutions, and if the equation Ax = ¢
is consistent, then the equation Ax = ¢ has many solu-
tions.

p. If A and B are row equivalent m x n matrices and if the
columns of A span R™, then so do the columns of B.

q. If none of the vectors in the set S = {v|, v,, v3} in R? is
a multiple of one of the other vectors, then S is linearly
independent.

r. If {u, v, w} is linearly independent, then u, v, and w are
not in R?.

s. Insome cases, it is possible for four vectors to span R®.
t. Ifuandvare in R”, then —u is in Span{u, v}.

u. Ifu,v,and w are nonzero vectors in R?, then w is a linear
combination of u and v.

v. If wis a linear combination of w and v in R”, then u is a
linear combination of v and w.

w. Suppose that v, v,, and v; are in R>, v, is not a multiple
of v, and v3 is not a linear combination of v; and v,.
Then {vy, v, v} is linearly independent.

X. A linear transformation is a function.

y. If Ais a6 x 5 matrix, the linear transformation x — Ax
cannot map R> onto RS,

z. If A is an m x n matrix with m pivot columns, then the
linear transformation x — AX is a one-to-one mapping.

Let a and b represent real numbers. Describe the possible
solution sets of the (linear) equation ax = b. [Hint: The
number of solutions depends upon a and b.]

The solutions (x, y, z) of a single linear equation
ax +by+cz=d

form a plane in R? when a, b, and ¢ are not all zero. Construct
sets of three linear equations whose graphs (a) intersect in
a single line, (b) intersect in a single point, and (c) have no
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points in common. Typical graphs are illustrated in the figure.

Three planes intersecting
in a line

Three planes intersecting
in a point

(b)

E =

= =

|
L

Three planes with no Three planes with no
intersection intersection

(© (c)

. Suppose the coefficient matrix of a linear system of three
equations in three variables has a pivot position in each
column. Explain why the system has a unique solution.

. Determine / and k such that the solution set of the system

(i) is empty, (ii) contains a unique solution, and (iii) contains

infinitely many solutions.

a. x;+3x,=k b.
4x1 + hx, = 8

—2X1 + th = 1
6x1 + kxo, = =2

. Consider the problem of determining whether the following
system of equations is consistent:

4)(1 — 2X2 + 7)63 =-5
8x; — 3x, + 10x3 = -3

a. Define appropriate vectors, and restate the problem in
terms of linear combinations. Then solve that problem.

&

Define an appropriate matrix, and restate the problem
using the phrase “columns of A.”

c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7.

. Consider the problem of determining whether the following
system of equations is consistent for all by, b,, bs:

2x1 — 4)(72 — 2X3 = b1
—5X1 + X2+ X3 = bz

7X1 — 5X2 — 3X3 = b3

a. Define appropriate vectors, and restate the problem in
terms of Span {v;, v,, v3}. Then solve that problem.

&

Define an appropriate matrix, and restate the problem
using the phrase “columns of 4.”

10.

11.

12.

13.

14.

15.

16.

17.

18.

c. Define an appropriate linear transformation 7" using the
matrix in (b), and restate the problem in terms of 7.

. Describe the possible echelon forms of the matrix 4. Use the

notation of Example 1 in Section 1.2.
a. Aisa?2 x 3 matrix whose columns span R?.

b. Aisa3 x 3 matrix whose columns span R3.

. 5
. Write the vector [ 6] as the sum of two vectors,

one on the line {(x,y):y =2x} and one on the line
{0, p) 1y = x/25.

Letay,a,,and b be the vectors in R? shown in the figure, and
let A = [a; a].Does the equation Ax = b have a solution?
If so, is the solution unique? Explain.

Construct a2 x 3 matrix A, not in echelon form, such that the
solution of Ax = 0 is a line in R>.

Construct a2 x 3 matrix 4, not in echelon form, such that the
solution of Ax = 0 is a plane in R3.

Write the reduced echelon form of a 3 x 3 matrix 4 such
that the first two columns of A are pivot columns and
3 0
Al 2| =10
1 0

. 1 a .
Determine the value(s) of a such that { |:a ] s |:a ) ] } is

linearly independent.

In (a) and (b), suppose the vectors are linearly independent.
What can you say about the numbers a, ..., f? Justify your
answers. [Hint: Use a theorem for (b).]
a b d Cll lg i
a. |0, c|,]| e b. ; )
0 0 ¥ 0 1 f
0 0 1
Use Theorem 7 in Section 1.7 to explain why the columns of
the matrix A are linearly independent.
I 0 0 O
2 5 0 O
A= 36 8 0
4 7 9 10
Explain why a set {v|,Vv,,vs,v4} in R®> must be linearly

independent when {v,, v,, v3} is linearly independent and v,
is not in Span {vy, v, v3}.

Suppose {vy, v,} is a linearly independent set in R”. Show
that {v,, v; 4 v,} is also linearly independent.



19.

20.

21.

22.

23.

Suppose vy, v,, v3 are distinct points on one line in R?. The
line need not pass through the origin. Show that {v, v,, v3}
is linearly dependent.

Let T : R"” — R be a linear transformation, and suppose
T (u) = v. Show that T (—u) = —v.

Let T :R3>— R? be the linear transformation that re-
flects each vector through the plane x, = 0. That is,
T (x1, X2, X3) = (X1, —X2, x3). Find the standard matrix of 7.

Let A be a 3 x 3 matrix with the property that the linear
transformation x — Ax maps R? onto R3. Explain why the
transformation must be one-to-one.

A Givens rotation is a linear transformation from R” to R”
used in computer programs to create a zero entry in a vector
(usually a column of a matrix). The standard matrix of a
Givens rotation in R? has the form

[Z _2:|, a*+bh =1

Find a and b such that |: g :| is rotated into |: g :| .

X

“4.3)

\
\
\
A\ 4
X
' (5.0)

A Givens rotation in R?.

24.

25.
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The following equation describes a Givens rotation in R3.
Find a and b.

a 0 =b[2 2./5
0 1 0]|3]= 3, a+b*=1
b 0 a 4 0

A large apartment building is to be built using modular
construction techniques. The arrangement of apartments on
any particular floor is to be chosen from one of three basic
floor plans. Plan A has 18 apartments on one floor, in-
cluding 3 three-bedroom units, 7 two-bedroom units, and 8
one-bedroom units. Each floor of plan B includes 4 three-
bedroom units, 4 two-bedroom units, and 8 one-bedroom
units. Each floor of plan C includes 5 three-bedroom units,
3 two-bedroom units, and 9 one-bedroom units. Suppose the
building contains a total of x; floors of plan A, x;, floors of
plan B, and x3 floors of plan C.
3
7 1?
8
b. Write a formal linear combination of vectors that ex-
presses the total numbers of three-, two-, and one-
bedroom apartments contained in the building.

o

What interpretation can be given to the vector x;

c. [M] Is it possible to design the building with exactly 66
three-bedroom units, 74 two-bedroom units, and 136 one-
bedroom units? If so, is there more than one way to do it?
Explain your answer.






Matrix Algebra

Computer Models in Aircraft Design

To design the next generation of commercial and military
aircraft, engineers at Boeing’s Phantom Works use 3D
modeling and computational fluid dynamics (CFD). They
study the airflow around a virtual airplane to answer
important design questions before physical models are
created. This has drastically reduced design cycle times
and cost—and linear algebra plays a crucial role in the
process.

The virtual airplane begins as a mathematical “wire-
frame” model that exists only in computer memory and
on graphics display terminals. (Model of a Boeing 777 is
shown.) This mathematical model organizes and influences
each step of the design and manufacture of the airplane —
both the exterior and interior. The CFD analysis concerns
the exterior surface.

Although the finished skin of a plane may seem
smooth, the geometry of the surface is complicated. In
addition to wings and a fuselage, an aircraft has nacelles,
stabilizers, slats, flaps, and ailerons. The way air flows
around these structures determines how the plane moves
through the sky. Equations that describe the airflow are
complicated, and they must account for engine intake,
engine exhaust, and the wakes left by the wings of the
plane. To study the airflow, engineers need a highly refined
description of the plane’s surface.

A computer creates a model of the surface by first
superimposing a three-dimensional grid of “boxes” on the

original wire-frame model. Boxes in this grid lie either
completely inside or completely outside the plane, or they
intersect the surface of the plane. The computer selects
the boxes that intersect the surface and subdivides them,
retaining only the smaller boxes that still intersect the
surface. The subdividing process is repeated until the grid
is extremely fine. A typical grid can include more than
400,000 boxes.

The process for finding the airflow around the plane
involves repeatedly solving a system of linear equations
Ax = b that may involve up to 2 million equations and
variables. The vector b changes each time, based on data
from the grid and solutions of previous equations. Using
the fastest computers available commercially, a Phantom
Works team can spend from a few hours to several days
setting up and solving a single airflow problem. After the
team analyzes the solution, they may make small changes
to the airplane surface and begin the whole process again.
Thousands of CFD runs may be required.

This chapter presents two important concepts that
assist in the solution of such massive systems of equations:

e Partitioned matrices: A typical CFD system of
equations has a “sparse” coefficient matrix with
mostly zero entries. Grouping the variables correctly
leads to a partitioned matrix with many zero blocks.
Section 2.4 introduces such matrices and describes
some of their applications.

93
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e Matrix factorizations: Even when written with
partitioned matrices, the system of equations is
complicated. To further simplify the computations,
the CFD software at Boeing uses what is called
an LU factorization of the coefficient matrix.
Section 2.5 discusses LU and other useful matrix
factorizations. Further details about factorizations
appear at several points later in the text.

To analyze a solution of an airflow system, engineers
want to visualize the airflow over the surface of the plane.
They use computer graphics, and linear algebra provides
the engine for the graphics. The wire-frame model of the

plane’s surface is stored as data in many matrices. Once the

Modern CFD has revolutionized wing design. The Boeing
Blended Wing Body is in design for the year 2020 or sooner.

image has been rendered on a computer screen, engineers
can change its scale, zoom in or out of small regions, and
rotate the image to see parts that may be hidden from view. matrix multiplications. Section 2.7 explains the basic

Each of these operations is accomplished by appropriate ideas.

Our ability to analyze and solve equations will be greatly enhanced when we can perform
algebraic operations with matrices. Furthermore, the definitions and theorems in this
chapter provide some basic tools for handling the many applications of linear algebra
that involve two or more matrices. For square matrices, the Invertible Matrix Theorem
in Section 2.3 ties together most of the concepts treated earlier in the text. Sections 2.4
and 2.5 examine partitioned matrices and matrix factorizations, which appear in most
modern uses of linear algebra. Sections 2.6 and 2.7 describe two interesting applications
of matrix algebra, to economics and to computer graphics.

2.1 | MATRIX OPERATIONS

If A is an m x n matrix —that is, a matrix with m rows and n columns—then the scalar
entry in the ith row and j th column of 4 is denoted by a;; and is called the (i, j)-entry
of A. See Figure 1. For instance, the (3, 2)-entry is the number a3, in the third row,
second column. Each column of A is a list of m real numbers, which identifies a vector
in R™. Often, these columns are denoted by ay, ..., a,, and the matrix A is written as

A=[a a - a,]

Observe that the number a;; is the ith entry (from the top) of the jth column vector a; .

The diagonal entries in an m x n matrix A = [a;; | are ay1, az, ass. . .., and they
form the main diagonal of A. A diagonal matrix is a square n x n matrix whose
nondiagonal entries are zero. An example is the n x n identity matrix, I,,. An m X n
matrix whose entries are all zero is a zero matrix and is written as 0. The size of a zero
matrix is usually clear from the context.
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Column
- ] -
an Ay any
Row i ai “e e aij “e e @50 = A
| dm1 amj A
T T T
a; a a

FIGURE 1 Matrix notation.

Sums and Scalar Multiples

The arithmetic for vectors described earlier has a natural extension to matrices. We say
that two matrices are equal if they have the same size (i.e., the same number of rows
and the same number of columns) and if their corresponding columns are equal, which
amounts to saying that their corresponding entries are equal. If A and B are m x n
matrices, then the sum A4 + B is the m x n matrix whose columns are the sums of
the corresponding columns in A and B. Since vector addition of the columns is done
entrywise, each entry in A 4+ B is the sum of the corresponding entries in A and B. The
sum A + B is defined only when A and B are the same size.

EXAMPLE 1 Let

4 0 5 I 1 1 2 =3
=[5 3} =y s 5f e=[0 7]

Then
5 1 6
=3 L0
but A + C is not defined because A and C have different sizes. |

If r is a scalar and A is a matrix, then the scalar multiple rA4 is the matrix whose
columns are r times the corresponding columns in A. As with vectors, —A stands for
(—=1)A,and A — B is the same as A + (—1)B.

EXAMPLE 2 1If A and B are the matrices in Example 1, then
1 1 1 2 2 2
2B_2|:3 5 7]_[6 10 14]
4 0 5 2 2 2 2 =2 3
A_ZB_[—l 3 2}_[6 10 14} _[—7 —7 —12] "
It was unnecessary in Example 2 to compute A — 2B as A + (—1)2B because the

usual rules of algebra apply to sums and scalar multiples of matrices, as the following
theorem shows.

Let A, B, and C be matrices of the same size, and let r and s be scalars.

a. A+ B=B+ A
b. A+B)+C =4+ (B+C)
c. A+0=4

d. r(A+ B)=rA+rB
e. r+s)A=rA+sA
f. r(sd) = (rs)A
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Each equality in Theorem 1 is verified by showing that the matrix on the left side has
the same size as the matrix on the right and that corresponding columns are equal. Size
is no problem because A, B, and C are equal in size. The equality of columns follows
immediately from analogous properties of vectors. For instance, if the jth columns of
A,B,and C area;,b;,and c;, respectively, then the jth columns of (4 4+ B) + C and
A+ (B +C)are

(aj +b;)+c; and a; +(b; +¢;)
respectively. Since these two vector sums are equal for each j, property (b) is verified.
Because of the associative property of addition, we can simply write A + B 4+ C

for the sum, which can be computed either as (A + B) + C oras A + (B + C). The
same applies to sums of four or more matrices.

Matrix Multiplication

When a matrix B multiplies a vector X, it transforms x into the vector Bx. If this vector
is then multiplied in turn by a matrix A, the resulting vector is A(Bx). See Figure 2.

Multiplication Multiplication
Xeo [ °
Bx A(Bx)

FIGURE 2 Multiplication by B and then 4.

Thus A(Bx) is produced from x by a composition of mappings—the linear transfor-
mations studied in Section 1.8. Our goal is to represent this composite mapping as
multiplication by a single matrix, denoted by AB, so that

A(Bx) = (AB)x ()
See Figure 3.
Multiplication Multiplication
m m
Xe ° ® A(Bx)

Bx

Multiplication
by AB
FIGURE 3 Multiplication by AB.
If Aism xn, Bisn x p,and x is in R?, denote the columns of B by by,...,b,

and the entries in X by xy,...,x,. Then
Bx = x1b; +--- +Xpbp
By the linearity of multiplication by A4,

A(Bx) = A(x1by) + -+ + A(x,b,)
= x14b; + -+ x,A4b,
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The vector A(Bx) is a linear combination of the vectors Aby, ..., Ab,,using the entries
in X as weights. In matrix notation, this linear combination is written as

A(Bx) = [Ab;, Ab, --- Ab,]x

Thus multiplicationby [ Ab;  Ab, --- Ab, ] transforms x into A(Bx). We have found
the matrix we sought!

If A is an m x n matrix, and if B is an n X p matrix with columns by,...,b,,
then the product AB is the m x p matrix whose columns are Aby, ..., Ab,. That
is,

AB=A[b; by -+ b,|=[Ab; Aby --- 4b,]

This definition makes equation (1) true for all x in R”. Equation (1) proves that the
composite mapping in Figure 3 is a linear transformation and that its standard matrix is
AB. Multiplication of matrices corresponds to composition of linear transformations.

EXAMPLE 3 Compute AB, where A = [? _Zi| and B = |:th _g g]

SOLUTION Write B = [b; by b;], and compute:

oe[i 3] [t 23 [ 200
L ETR I )

Then ' l '

11 0 21

AB=A[b1 b, b3]=|:_1 13 _9:| |
tr
Ab;  Ab, Ab;

Notice that since the first column of AB is Ab, this column is a linear combination
of the columns of A using the entries in b; as weights. A similar statement is true for
each column of AB.

Each column of AB is a linear combination of the columns of A using weights
from the corresponding column of B.

Obviously, the number of columns of A must match the number of rows in B in
order for a linear combination such as Ab; to be defined. Also, the definition of AB
shows that AB has the same number of rows as A and the same number of columns
as B.

EXAMPLE 4 1If Ais a3 x5 matrix and B is a 5 x 2 matrix, what are the sizes of
AB and BA, if they are defined?
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SOLUTION Since A has 5 columns and B has 5 rows, the product AB is defined and
is a 3 x 2 matrix:

A B AB
* % ok ok % * %k * %k
*x ok k% % ok | = | k%
x ok ok ok ok * ok X %
EE
* %
3x5 5x2 3x2
Match
Size of AB

The product BA is not defined because the 2 columns of B do not match the 3 rows
of A. [ |

The definition of AB is important for theoretical work and applications, but the
following rule provides a more efficient method for calculating the individual entries in
AB when working small problems by hand.

ROW-COLUMN RULE FOR COMPUTING AB

If the product AB is defined, then the entry in row i and column j of AB is the
sum of the products of corresponding entries from row i of A and column j of
B.If (AB);; denotes the (i, j)-entry in AB, and if A is an m x n matrix, then

(AB)ij = aitbij + ainbyj + -+ + ainby;

To verify this rule,let B = [b; --- b, ]. Column j of AB is Ab;, and we can
compute Ab; by the row—vector rule for computing Ax from Section 1.4. The ith entry
in Ab; is the sum of the products of corresponding entries from row i of A and the
vector b;, which is precisely the computation described in the rule for computing the
(i, j)-entry of AB.

EXAMPLE 5 Use the row—column rule to compute two of the entries in AB for the
matrices in Example 3. An inspection of the numbers involved will make it clear how
the two methods for calculating AB produce the same matrix.

SOLUTION To find the entry in row 1 and column 3 of AB, consider row 1 of A and
column 3 of B. Multiply corresponding entries and add the results, as shown below:

'
AB—”[Z 3][4 3 6:|_[E| m| 2(6)+3(3)]_|:E| O 21]
- 1 =51 =2 3| (O O O “|lo O O

For the entry in row 2 and column 2 of AB, use row 2 of A and column 2 of B:

}
2 3[4 3 6] _[O m 207 _ [0 O 21
»[1 —5}[1 -2 3]‘[[\ 1(3) + —5(-2) D:|_[IZ| 13 D:|
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EXAMPLE 6 Find the entries in the second row of AB, where

EE RN
A=l 6 5 7| BZZI
-3 0 9

SOLUTION By the row—column rule, the entries of the second row of AB come from
row 2 of A (and the columns of B):

2 o5 07l -

4 —6

—~ =1 3 4D T

6 -8 7|5

-3 0 9 -
m m [0 O

| —4+21-12 6+43-8| |5 1 .

O O O O
O O o O

Notice that since Example 6 requested only the second row of AB, we could have
written just the second row of A to the left of B and computed

4 —6
[-1 3 —4]|7 1|=[5 1]
32

This observation about rows of AB is true in general and follows from the row—column
rule. Let row; (4) denote the ith row of a matrix A. Then

row; (AB) = row; (A)- B (2)

Properties of Matrix Multiplication

The following theorem lists the standard properties of matrix multiplication. Recall that
I,, represents the m x m identity matrix and /,,x = x for all x in R”.

Let A be an m x n matrix, and let B and C have sizes for which the indicated

sums and products are defined.

a. A(BC)=(4AB)C

b. A(B+C) = AB + AC

c. (B+C)A=BA+CA

d. r(AB) = (rA)B = A(rB)
for any scalar r

e. I,A=A=AI,

(associative law of multiplication)
(left distributive law)
(right distributive law)

(identity for matrix multiplication)

PROOF Properties (b)—(e) are considered in the exercises. Property (a) follows from
the fact that matrix multiplication corresponds to composition of linear transformations
(which are functions), and it is known (or easy to check) that the composition of func-
tions is associative. Here is another proof of (a) that rests on the “column definition” of
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the product of two matrices. Let

C=Jc ¢,
By the definition of matrix multiplication,
BC =[Bc¢ Be, |
A(BC) = [A(Bc)) A(Bcy) ]

Recall from equation (1) that the definition of AB makes A(Bx) = (AB)x for all x, so

A(BC) = [(AB)e (AB)c, ] = (AB)C n

The associative and distributive laws in Theorems 1 and 2 say essentially that pairs

of parentheses in matrix expressions can be inserted and deleted in the same way as in
the algebra of real numbers. In particular, we can write ABC for the product, which
can be computed either as A(BC) or as (AB)C." Similarly, a product ABCD of four
matrices can be computed as A(BCD) or (ABC)D or A(BC)D, and so on. It does not
matter how we group the matrices when computing the product, so long as the left-to-
right order of the matrices is preserved.

The left-to-right order in products is critical because AB and BA are usually not

the same. This is not surprising, because the columns of AB are linear combinations of
the columns of A, whereas the columns of BA are constructed from the columns of B.
The position of the factors in the product AB is emphasized by saying that A is right-
multiplied by B or that B is left-multiplied by A. If AB = BA, we say that A and B
commute with one another.

1
-2

2
4

0

EXAMPLE 7 Letd — [5 :

S s

i| . Show that these matrices do

not commute. That is, verify that AB # BA.

SOLUTION
5 1772 0 14 3
AB:[s —2}[4 3}:[—2 —6]
2 015 1 0 2
BA_[4 3}[3 —2}_[29 —2} .

Example 7 illustrates the first of the following list of important differences between

matrix algebra and the ordinary algebra of real numbers. See Exercises 9—12 for exam-
ples of these situations.

WARNINGS:
1. In general, AB # BA.

2. The cancellation laws do not hold for matrix multiplication. That is, if
AB = AC,then it is not true in general that B = C. (See Exercise 10.)

If a product AB is the zero matrix, you cannot conclude in general that either
A = 0or B = 0. (See Exercise 12.)

"'When B is square and C has fewer columns than A has rows, it is more efficient to compute A(BC) than

(AB)C.
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Powers of a Matrix

If A is an n x n matrix and if k is a positive integer, then A* denotes the product of k
copies of A:
A¥ = A-.. A

S
k

If A is nonzero and if x is in R”, then A¥x is the result of left-multiplying x by A
repeatedly k times. If k = 0, then A°x should be x itself. Thus A° is interpreted as the
identity matrix. Matrix powers are useful in both theory and applications (Sections 2.6,
4.9, and later in the text).

The Transpose of a Matrix

Given an m x n matrix A, the transpose of A is the n x m matrix, denoted by AT,
whose columns are formed from the corresponding rows of A4.

EXAMPLE 8 Let

a b 1 1 1 1
Az[ ] B=| 1 3|, C=[ }
c d 0 4 -3 5 =2 7
Then
1 -3
T a C T ) 1 0 T 1 5
A_[b d}’B_[2—3 4]’C_1—2 "
17
THEOREM 3 Let A and B denote matrices whose sizes are appropriate for the following sums
and products.
a. (AT =4

b. (A+ B)T = AT + BT
c. For any scalar r, (rd)” = rA”
d. (AB)T = BTAT

Proofs of (a)—(c) are straightforward and are omitted. For (d), see Exercise 33.
Usually, (AB)7 is not equal to A”B”, even when 4 and B have sizes such that the
product ATB7 is defined.

The generalization of Theorem 3(d) to products of more than two factors can be
stated in words as follows:

The transpose of a product of matrices equals the product of their transposes in
the reverse order.

The exercises contain numerical examples that illustrate properties of transposes.
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columns of AB.

— NUMERICAL NOTES

1. The fastest way to obtain AB on a computer depends on the way in which
the computer stores matrices in its memory. The standard high-performance
algorithms, such as in LAPACK, calculate AB by columns, as in our definition
of the product. (A version of LAPACK written in C++ calculates AB by rows.)

2. The definition of AB lends itself well to parallel processing on a computer. The
columns of B are assigned individually or in groups to different processors,
which independently and hence simultaneously compute the corresponding

PRACTICE PROBLEMS

1. Since vectors in R” may be regarded as n x 1 matrices, the properties of transposes
in Theorem 3 apply to vectors, too. Let

=[47] m e[]

Compute (Ax)7, x"4T, xx", and x"x. Is A’x” defined?

2. Let Abea4 x 4 matrix and let x be a vector in R*. What is the fastest way to compute
A?x? Count the multiplications.

3. Suppose A is anm x n matrix, all of whose rows are identical. Suppose Bisann x p
matrix, all of whose columns are identical. What can be said about the entries in AB?

2.1 EXERCISES

In Exercises | and 2, compute each matrix sum or product if it is
defined. If an expression is undefined, explain why. Let

2 0 -1 7 -5 1
A_[4 -5 2]’ B_[l —4 —3]’
12 3005 -5
c=[2 3] e=[d 3] =[]
1. 24, B—24, AC, CD

2. A+2B, 3C—-FE, CB, EB

In the rest of this exercise set and in those to follow, you should
assume that each matrix expression is defined. That is, the sizes
of the matrices (and vectors) involved “match” appropriately.

4

3. LetA:[5

:;] Compute 3/, — A and (31,)A.

4. Compute A — 575 and (573) A, when

9 -1 3
A=|-8 7 -6
-4 1 8

In Exercises 5 and 6, compute the product AB in two ways: (a) by
the definition, where Ab; and Ab, are computed separately, and
(b) by the row—column rule for computing AB.

10.

11.

. LetA =

A=| 5 4 ,B:[_; _ﬂ
- 2 _3_
-4 o

A=|-3 0 ,B:[; _ﬂ
- 3 5_

. If amatrix A is 5 x 3 and the product AB is 5 x 7, what is the

size of B?

. How many rows does B have if BC is a 3 x 4 matrix?

2 5 4 -5
_3 | and B = 3 k

k, if any, will make AB = BA?

2 o[t =[5 2]

:|. What value(s) of

Letd=1_, ¢ 5 5 301

Verify that AB = AC and yet B # C.

1 1 1 2 0 0
LetA=]1 2 3)land D =] 0 3 0 [.Com-
1 4 5 o 0 5

pute AD and DA. Explain how the columns or rows of A
change when A is multiplied by D on the right or on the
left. Find a 3 x 3 matrix B, not the identity matrix or the zero
matrix, such that AB = BA.
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AB is the zero matrix. Use two different nonzero columns
for B.

12. Let A = ] Construct a 2 X 2 matrix B such that

13. Letry,...,r, be vectorsin R”,and let Q be an m x n matrix.
Write the matrix [ Qr, --- Qr, | as a product of two matrices
(neither of which is an identity matrix).

14. Let U be the 3 x 2 cost matrix described in Example 6 of
Section 1.8. The first column of U lists the costs per dollar of
output for manufacturing product B, and the second column
lists the costs per dollar of output for product C. (The costs
are categorized as materials, labor, and overhead.) Let q,be
a vector in R? that lists the output (measured in dollars) of
products B and C manufactured during the first quarter of
the year, and let q,.q;, and q, be the analogous vectors
that list the amounts of products B and C manufactured in
the second, third, and fourth quarters, respectively. Give an
economic description of the data in the matrix UQ, where

O0=[q q q; q.

Exercises 15 and 16 concern arbitrary matrices A, B, and C for
which the indicated sums and products are defined. Mark each
statement True or False. Justify each answer.

15. a. If A and B are 2 x 2 with columns a;, a,, and by, b,,

respectively, then AB = [a;b; ayb,].

b. Each column of AB is a linear combination of the columns
of B using weights from the corresponding column of A.

c. AB+AC =A(B+0C)

d. AT+ BT =4+ B)T

e. The transpose of a product of matrices equals the product
of their transposes in the same order.

16. a. If A and B are 3x 3 and B = [b; b, b3].then AB =

[Ab; + Ab, + Abs].

b. The second row of AB is the second row of A multiplied
on the right by B.

c. (AB)C = (AC)B
d. (AB)T = ATBT

e. The transpose of a sum of matrices equals the sum of their

transposes.
1 -2 -1 2 -1 .
17. If A = [_2 5] and AB = [ 6 —9 3 ], determine

the first and second columns of B.

18. Suppose the first two columns, b, and b,, of B are equal.
What can you say about the columns of AB (if AB is defined)?
Why?

19. Suppose the third column of B is the sum of the first two
columns. What can you say about the third column of AB?
Why?

20. Suppose the second column of B is all zeros. What can you
say about the second column of AB?
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21. Suppose the last column of AB is entirely zero but B itself
has no column of zeros. What can you say about the columns
of A?

22. Show that if the columns of B are linearly dependent, then
so are the columns of AB.

23. Suppose CA = I, (the n x n identity matrix). Show that the
equation Ax = 0 has only the trivial solution. Explain why
A cannot have more columns than rows.

24. Suppose AD = I,, (the m x m identity matrix). Show that
for any b in R”, the equation Ax = b has a solution. [Hint:
Think about the equation A Db = b.] Explain why A cannot
have more rows than columns.

25. Suppose A is an m x n matrix and there exist 7 X m matrices
Cand Dsuchthat CA = [, and AD = I,,. Provethatm = n
and C = D. [Hint: Think about the product CAD.]

26. Suppose A isa 3 x n matrix whose columns span R*. Explain
how to construct an n x 3 matrix D such that AD = I5.

In Exercises 27 and 28, view vectors in R” as n x 1 matrices. For
u and v in R”, the matrix product u’visal x 1 matrix, called the
scalar product, or inner product, of u and v. It is usually written
as a single real number without brackets. The matrix product uv’”
is an n X n matrix, called the outer product of u and v. The
products u”v and uv” will appear later in the text.

-2 a
27. Letu=| 3 |andv= | b |.Computeu’v, v u,uv’,and
—4 c

vu’.

28. If uand v are in R”, how are u’'v and v''u related? How are
uv’ and vu’ related?

29. Prove Theorem 2(b) and 2(c). Use the row—column rule. The
(i, j)-entry in A(B + C) can be written as

n
aj(byj + cij) + -+ ap(byj + cuj) or Zaik(bkj + crj)
k=1

30. Prove Theorem 2(d). [Hint: The (i, j)-entry in (rA)B is
(rain)bij + -+ (rain)by;.]

31. Show that /,,A = A when A is an m X n matrix. You can
assume /,,x = x for all x in R"”.

32. Show that AI, = A when A is an m X n matrix. [Hint: Use
the (column) definition of A7, .]

33. Prove Theorem 3(d). [Hint: Consider the jth row of (AB)7 ]

34. Give a formula for (ABx)”, where x is a vector and A and B
are matrices of appropriate sizes.

35. [M] Read the documentation for your matrix program, and
write the commands that will produce the following matrices
(without keying in each entry of the matrix).

a. A5 x 6 matrix of zeros

b. A3 x 5 matrix of ones
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c. The 6 x 6 identity matrix
d. A5 x5 diagonal matrix, with diagonal entries 3,5,7,2,4

A useful way to test new ideas in matrix algebra, or to make
conjectures, is to make calculations with matrices selected at
random. Checking a property for a few matrices does not prove
that the property holds in general, but it makes the property more
believable. Also, if the property is actually false, you may discover
this when you make a few calculations.

36. [M] Write the command(s) that will create a 6 x 4 matrix
with random entries. In what range of numbers do the entries
lie? Tell how to create a 3 x 3 matrix with random integer
entries between —9 and 9. [Hint: If x is a random number
such that 0 < x < I, then —9.5 < 19(x — .5) < 9.5]

37. [M] Construct a random 4 x 4 matrix A and test whether
(A+I)(A—1I) = A>— 1. The best way to do this is to
compute (A + I)(A — I) — (A — I) and verify that this dif-
ference is the zero matrix. Do this for three random matrices.
Then test (A + B)(A — B) = A> — B? the same way for

38.

39.

40.

three pairs of random 4 x 4 matrices. Report your conclu-
sions.

[M] Use at least three pairs of random 4 x 4 matrices A and
B to test the equalities (4 + B)” = AT + BT and (AB)" =
AT BT, (See Exercise 37.) Report your conclusions. [Note:
Most matrix programs use A’ for AT ]

[M] Let
o 1 0 0 o0
0 0 1 0o 0
S={0 0 0 1 O
o 0 0 0 1
o 0 o0 0 o0

Compute S¥ fork =2,...,6.

[M] Describe in words what happens when you compute A°,
A% A% and A% for

1/6 1/2  1/3
A=|1/2 174 1/4
1/3  1/4  5/12

SOLUTIONS TO PRACTICE PROBLEMS
. I =3 ([5] _[—4 T
1. Ax—|:_2 4i||:3}—|: 2i|.So(Ax) =[-4 2].Also,

XTAT =[5 3][_§ ‘ﬂ:[_4 2].

The quantities (Ax)” and x’A” are equal, by Theorem 3(d). Next,

w =[5t 1= )

x'x=[5 3][?] =[25+9]=34

A 1 x 1 matrix such as x’x is usually written without the brackets. Finally, A’x” is
not defined, because x” does not have two rows to match the two columns of A7 .

2. The fastest way to compute A’x is to compute A(Ax). The product Ax requires
16 multiplications, 4 for each entry, and A(Ax) requires 16 more. In contrast, the
product A% requires 64 multiplications, 4 for each of the 16 entries in A2. After that,
A?x takes 16 more multiplications, for a total of 80.

3. First observe that by the definition of matrix multiplication,
AB =[Ab; Ab, --- Ab,]=[Ab; Ab;, --- Aby],

so the columns of AB are identical. Next, recall that row; (AB) = row;(A) - B. Since
all the rows of A are identical, all the rows of AB are identical. Putting this informa-
tion about the rows and columns together, it follows that all the entries in AB are the
same.

2.2 | THE INVERSE OF A MATRIX

Matrix algebra provides tools for manipulating matrix equations and creating various
useful formulas in ways similar to doing ordinary algebra with real numbers. This section
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investigates the matrix analogue of the reciprocal, or multiplicative inverse, of a nonzero
number.

Recall that the multiplicative inverse of a number such as 5 is 1/5 or 5. This
inverse satisfies the equations

5'.5=1 and 5-5'=1

The matrix generalization requires both equations and avoids the slanted-line notation
(for division) because matrix multiplication is not commutative. Furthermore, a full
generalization is possible only if the matrices involved are square.!

An n x n matrix A is said to be invertible if there is an n x n matrix C such that

CA=1 and AC =1

where I = I, the n x n identity matrix. In this case, C is an inverse of A4. In fact, C
is uniquely determined by A, because if B were another inverse of A, then B = Bl =
B(AC) = (BA)C = IC = C. This unique inverse is denoted by A~!, so that

A'A=1 and AA7'=1

A matrix that is not invertible is sometimes called a singular matrix, and an invertible
matrix is called a nonsingular matrix.

2 5 (7 -5
EXAMPLEL 1f4=| j _7}andC— E 2i|,then
T2 57[=7 —=5] 1 0
AC = -3 —7}[ 302 :[0 1] and
(-7 -5 2 5] 1 0
A= 3 2}[—3 ~7 _[0 1]
Thus C = A~ n

Here is a simple formula for the inverse of a 2 x 2 matrix, along with a test to tell
if the inverse exists.

b

a
LetA—[c d

i|. If ad — bc # 0, then A is invertible and

_ 1 d —b
Al = —
ad—bc[—c Cli|

If ad — bc = 0, then A is not invertible.

The simple proof of Theorem 4 is outlined in Exercises 25 and 26. The quantity
ad — bc is called the determinant of A, and we write

detA = ad — bc

Theorem 4 says that a 2 x 2 matrix A is invertible if and only if det A # 0.

!'One could say that an m X n matrix A is invertible if there exist n X m matrices C and D such that
CA = I, and AD = I,,. However, these equations imply that A is square and C = D. Thus A is invertible
as defined above. See Exercises 23-25 in Section 2.1.



106 CHAPTER 2 Matrix Algebra

THEOREM 5

5 6
SOLUTION Since det A = 3(6) — 4(5) = —2 # 0, A is invertible, and
4! = b6 —4]1_| 6/(=2) -4/(-2)|_[-3 2 -
T2 -5 3| | -5/(=2) 3/(=2) | |5/2 =3/2
Invertible matrices are indispensable in linear algebra— mainly for algebraic calcu-
lations and formula derivations, as in the next theorem. There are also occasions when

an inverse matrix provides insight into a mathematical model of a real-life situation, as
in Example 3, below.

EXAMPLE 2 Find the inverse of A = [3 4].

If A is an invertible n x n matrix, then for each b in R”, the equation Ax = b has
the unique solution x = A~ 'b.

PROOF Take any b in R”. A solution exists because if A~'b is substituted for x,
then Ax = A(A~'b) = (AA~")b = Ib = b. So A~ 'b is a solution. To prove that the
solution is unique, show that if u is any solution, then u, in fact, must be A~ 'b. Indeed,
if Au = b, we can multiply both sides by A~ and obtain

A" Au=A4""p, Tu=A4"'"p, and u=4""b ]

EXAMPLE 3 A horizontal elastic beam is supported at each end and is subjected
to forces at points 1, 2, and 3, as shown in Figure 1. Let f in R? list the forces at these
points, and let y in R3 list the amounts of deflection (that is, movement) of the beam at
the three points. Using Hooke’s law from physics, it can be shown that

y = Df

where D is a flexibility matrix. Its inverse is called the stiffness matrix. Describe the
physical significance of the columns of D and D™,

FIGURE 1 Deflection of an elastic beam.

SOLUTION Write I3 =[e; e, e;3]and observe that
D = DI3 = [De1 Dez De3]

Interpret the vector e; = (1,0, 0) as a unit force applied downward at point 1 on the
beam (with zero force at the other two points). Then De, the first column of D, lists
the beam deflections due to a unit force at point 1. Similar descriptions apply to the
second and third columns of D.

To study the stiffness matrix D~!, observe that the equation f = D~y computes a
force vector f when a deflection vector y is given. Write

D '=D'I;=[D7 e, D7'e; D7 les]

Now interpret e; as a deflection vector. Then D~ 'e; lists the forces that create the
deflection. That is, the first column of D! lists the forces that must be applied at the
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three points to produce a unit deflection at point 1 and zero deflections at the other points.
Similarly, columns 2 and 3 of D! list the forces required to produce unit deflections at
points 2 and 3, respectively. In each column, one or two of the forces must be negative
(point upward) to produce a unit deflection at the desired point and zero deflections at
the other two points. If the flexibility is measured, for example, in inches of deflection
per pound of load, then the stiffness matrix entries are given in pounds of load per inch
of deflection. [ ]

The formula in Theorem 5 is seldom used to solve an equation Ax = b numerically
because row reduction of [ A b] is nearly always faster. (Row reduction is usually
more accurate, too, when computations involve rounding off numbers.) One possible
exception is the 2 x 2 case. In this case, mental computations to solve Ax = b are
sometimes easier using the formula for 4™, as in the next example.

EXAMPLE 4 Use the inverse of the matrix 4 in Example 2 to solve the system
3x1 +4x, =3
5)61 + 6)62 =7

SOLUTION This system is equivalent to Ax = b, so

x:A_lbz[S_/32 —3?2][3}2[—2} )

The next theorem provides three useful facts about invertible matrices.

a. If A is an invertible matrix, then A~! is invertible and
(AaH'=4

b. If A and B are n X n invertible matrices, then so is AB, and the inverse of AB
is the product of the inverses of 4 and B in the reverse order. That is,

(AB)"! = B714™!

c. If A is an invertible matrix, then so is AT , and the inverse of A7 is the transpose
of A=!. That is,
(AT)—I — (A—I)T

PROOF To verify statement (a), find a matrix C such that
AT'C =1 and CA'=1

In fact, these equations are satisfied with A in place of C. Hence A~! is invertible, and
A is its inverse. Next, to prove statement (b), compute:

(ABY(B™'A™) = A(BB WA ' = AIA ' =447 =11

A similar calculation shows that (B~'A~")(AB) = I . For statement (c), use Theorem
3(d),read fromright to left, (A~ T AT = (AA™")T = IT = I.Similarly, AT (4™ =
IT = I.Hence A7 is invertible, and its inverse is (4~!)7. [

Remark: Part (b) illustrates the important role that definitions play in proofs. The the-
orem claims that B~! 47! is the inverse of AB. The proof establishes this by showing
that B—' A~! satisfies the definition of what it means to be the inverse of AB.Now, the
inverse of AB is a matrix that when multiplied on the left (or right) by A B, the product
is the identity matrix /. So the proof consists of showing that B! A~! has this property.
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The following generalization of Theorem 6(b) is needed later.

The product of n x n invertible matrices is invertible, and the inverse is the
product of their inverses in the reverse order.

There is an important connection between invertible matrices and row operations
that leads to a method for computing inverses. As we shall see, an invertible matrix A is
row equivalent to an identity matrix, and we can find A~ by watching the row reduction
of AtoI.

Elementary Matrices

An elementary matrix is one that is obtained by performing a single elementary row
operation on an identity matrix. The next example illustrates the three kinds of elemen-
tary matrices.

EXAMPLE 5 Let

1 0 O 1 0 1 0
E, = 0 1 0f, E=|1 0|, E3=|0 1 0,
—4 0 1 0 1 0 5
a b ¢
A=1|d e f
g h i

Compute E1A4, E;A, and E3A, and describe how these products can be obtained by
elementary row operations on A.

SOLUTION Verify that

a b ¢ d e f
E]A: d e f s EzAZ a b c |,
g—4a h—4b i—4c g h i
a b c
E3A= d e f
5¢ 5h  5i

Addition of —4 times row 1 of A to row 3 produces E;A. (This is a row replacement
operation.) An interchange of rows 1 and 2 of A produces E,A, and multiplication of
row 3 of A by 5 produces EzA. [ ]

Left-multiplication (that is, multiplication on the left) by E; in Example 5 has the
same effect on any 3 x n matrix. It adds —4 times row 1 to row 3. In particular, since
E, -1 = E;,weseethat E| itself is produced by this same row operation on the identity.
Thus Example 5 illustrates the following general fact about elementary matrices. See
Exercises 27 and 28.

If an elementary row operation is performed on an m X n matrix A4, the resulting
matrix can be written as EA, where the m x m matrix E is created by performing
the same row operation on /,,,.



THEOREM 7

2.2 The Inverse of a Matrix 109

Since row operations are reversible, as shown in Section 1.1, elementary matrices
are invertible, for if E is produced by a row operation on /, then there is another row op-
eration of the same type that changes E back into /. Hence there is an elementary matrix
F such that FE = [I. Since E and F correspond to reverse operations, EF = [, too.

Each elementary matrix E is invertible. The inverse of E is the elementary matrix
of the same type that transforms E back into /.

1 0 O
EXAMPLE 6 Find the inverse of E| = 0O 1 0
—4 0 1

SOLUTION To transform E; into I, add 44 times row 1 to row 3. The elementary
matrix that does this is

1 0 0
Ef'=] 0 1 0 |
+4 0 1

The following theorem provides the best way to “visualize” an invertible matrix,
and the theorem leads immediately to a method for finding the inverse of a matrix.

An n x n matrix A is invertible if and only if 4 is row equivalent to /,, and in
this case, any sequence of elementary row operations that reduces A4 to [, also
transforms 7, into A~!.

Remark: The comment on the proof of Theorem 11 in Chapter 1 noted that “P if and
only if Q” is equivalent to two statements: (1) “If P then Q” and (2) “If Q then P.”
The second statement is called the converse of the first and explains the use of the word
conversely in the second paragraph of this proof.

PROOF Suppose that A4 is invertible. Then, since the equation Ax = b has a solution
for each b (Theorem 5), A has a pivot position in every row (Theorem 4 in Section 1.4).
Because A is square, the n pivot positions must be on the diagonal, which implies that
the reduced echelon form of A is I,,. Thatis, A ~ I,,.

Now suppose, conversely, that A ~ I,,. Then, since each step of the row reduction
of A corresponds to left-multiplication by an elementary matrix, there exist elementary
matrices E, ..., E, such that

A~EA~ Ez(E]A) ~ e Ep(Ep—l - EA) =1,

That is,
Ep"'ElA:In (D

Since the product E, --- Ey of invertible matrices is invertible, (1) leads to
(Ep---E)N(Ep---ENA=(E,---E)',
A= (Ey-E)7
Thus A is invertible, as it is the inverse of an invertible matrix (Theorem 6). Also,
AT =[(E,—-E) ' =E,E

Then A~' = E, -+ E - I,,, which says that A~ results from applying E|, ..., E, suc-
cessively to 7,,. This is the same sequence in (1) that reduced A4 to I,,. [ |
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An Algorithm for Finding A—1

If we place A and I side by side to form an augmented matrix [ A [ ], then row
operations on this matrix produce identical operations on A and on /. By Theorem 7,
either there are row operations that transform 4 to 1, and I, to A" or else A is not
invertible.

ALGORITHM FOR FINDING A2

Row reduce the augmented matrix [A [ ]. If A is row equivalent to /, then
[A I]isrow equivalentto [/ A~'].Otherwise, A does not have an inverse.

o 1 2
EXAMPLE 7 Find the inverse of thematrix A= | 1 0 3 |,if it exists.
4 -3 8
SOLUTION
[0 1 2 1 0 0] [1 0 3 0 1 0]
[A I]=|1 0 3 0 1 Of~]J0 1 2 1 0 O
|4 -3 8 0 0 1] |4 -3 8 0 0 1]
1 0 3 0 1 0] 1 0 3 0 1 0]
~f0 1 2 1 0 Of~]0 1 2 1 0 O
|0 -3 -4 0 —4 1] |0 0 2 3 -4 1]
1 0 3 0 1 0 |
~10 1 2 1 0 0
|00 1 3/2 -2 1/2]
1 0 0 —-9/2 7 -3/27
~(0 1 0 =2 4 -1
|00 1 3/2 -2 1/2]
Theorem 7 shows, since A ~ I, that A is invertible, and
-9/2 7 =3/2
A= =2 4 -1
3/2 =2 1/2
It is a good idea to check the final answer:
0o 1 2 -9/2 7 -=3/2 1 0 0
AA'=11 0 3 -2 4 -1 |=]|0 1
4 -3 8 3/2 =2 1/2 0 0 1
It is not necessary to check that A~'4 = I since A is invertible. [ |
Another View of Matrix Inversion
Denote the columns of I, by ey,...,e,. Then row reductionof [A []to[I A™']
can be viewed as the simultaneous solution of the n systems
Ax =e;, Ax=1e;, ..., Ax=eg, 2)

where the “augmented columns” of these systems have all been placed next to A to form
[A e e --- e,]=[A I].Theequation AA™" = I and the definition of matrix
multiplication show that the columns of A™! are precisely the solutions of the systems
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in (2). This observation is useful because some applied problems may require finding
only one or two columns of A~!. In this case, only the corresponding systems in (2)

need be solved.

r— NUMERICAL NOTE

In practical work, A1 is seldom computed, unless the entries of A~ are needed.
Computing both A~! and A~'b takes about three times as many arithmetic
operations as solving Ax = b by row reduction, and row reduction may be more

accurate.

PRACTICE PROBLEMS

1. Use determinants to determine which of the following matrices are invertible.

N

4
b. [0

2. Find the inverse of the matrix A =

-9 c 6 -9
5 14 6
1 -2 -1
-1 5 6 |,ifitexists.
5 -4 5

3. If A is an invertible matrix, prove that 54 is an invertible matrix.

2 EXERCISES

Find the inverses of the matrices in Exercises 1-4.

1.

w

JE RN

I O

S

Use the inverse found in Exercise 1 to solve the system

8X| + 6X2 = 2

5x; + 4x, = —1

Use the inverse found in Exercise 3 to solve the system

8x; + 5x, = -9

—7X1 — 5)(2 = 11
1 2 -1 1 2

LetA—|:5 12i|,b1—|: 3:|,bz—|:_5i|,b3—|:6i|y
3

and by, = |:5:|

a. Find A™', and use it to solve the four equations Ax = by,
Ax = b,, Ax = b3, Ax = by

b. The four equations in part (a) can be solved by the same
set of row operations, since the coefficient matrix is the
same in each case. Solve the four equations in part (a) by
row reducing the augmented matrix [A b; b, b; by].

Use matrix algebra to show that if A is invertible and D
satisfies AD = I, then D = A",

In Exercises 9 and 10, mark each statement True or False. Justify
each answer.

9.

10.

11.

12.

a. In order for a matrix B to be the inverse of A, both
equations AB = I and BA = I must be true.

b. If A and B are n x n and invertible, then A~'B~! is the
inverse of AB.

c. IfA= |:(cl' 3 ] and ab — c¢d # 0, then A is invertible.

d. If A is an invertible n x n matrix, then the equation
Ax = b is consistent for each b in R".

e. Each elementary matrix is invertible.
a. A product of invertible n x n matrices is invertible, and

the inverse of the product is the product of their inverses
in the same order.

b. If A is invertible, then the inverse of A~ is A itself.
c. IfA= [i f; ] and ad = bc,then A is not invertible.

d. If A canbe row reduced to the identity matrix, then A must
be invertible.

e. If A is invertible, then elementary row operations that
reduce A to the identity I, also reduce A~! to 1,,.

Let A be an invertible n x n matrix, and let B be an n x p
matrix. Show that the equation AX = B has a unique solu-
tion A™!B.

Let Abe an invertible n x n matrix,and let Bbe ann x p ma-
trix. Explain why A~ B can be computed by row reduction:



112 CHAPTER 2 Matrix Algebra

If[A B]~---~[I X], then X = A'B.

If A is larger than 2 x 2, then row reduction of [4 B] is much
faster than computing both A~! and A~'B.

13. Suppose AB = AC, where B and C are n X p matrices and A
is invertible. Show that B = C'. Is this true, in general, when
A is not invertible?

14. Suppose (B — C)D = 0, where B and C are m x n matrices
and D is invertible. Show that B = C.

15. Suppose A, B, and C are invertible n x n matrices. Show that
ABC is also invertible by producing a matrix D such that
(ABC)D =1 and D (ABC) = 1.

16. Suppose A and B are n X n, B is invertible, and AB is invert-
ible. Show that A is invertible. [Hint: Let C = AB, and solve
this equation for A.]

17. Solve the equation AB = BC for A, assuming that A, B, and
C are square and B is invertible.

18. Suppose P is invertible and A = PBP~!. Solve for B in
terms of A.

19. IfA,B,and C are n x n invertible matrices, does the equation
C~ (A + X)B~! = I, have a solution, X? If so, find it.

20. Suppose A, B, and X are n x n matrices with A, X, and
A — AX invertible, and suppose

(A-AX)"'=X"'B (3)

a. Explain why B is invertible.

b. Solve (3) for X. If you need to invert a matrix, explain
why that matrix is invertible.

21. Explain why the columns of an n x n matrix A are linearly
independent when A is invertible.

22. Explain why the columns of an # x n matrix A span R” when
A is invertible. [Hint: Review Theorem 4 in Section 1.4.]

23. Suppose A is n x n and the equation Ax = 0 has only the
trivial solution. Explain why A has n pivot columns and A is
row equivalent to /,,. By Theorem 7, this shows that A must
be invertible. (This exercise and Exercise 24 will be cited in
Section 2.3.)

24. Suppose A is n x n and the equation AXx = b has a solution
for each b in R". Explain why A must be invertible. [Hint: Is
A row equivalent to 7, 7]

Exercises 25 and 26 prove Theorem 4 for A = |:Cc1 2 :|

25. Show that if ad — bc = 0, then the equation Ax = 0 has
more than one solution. Why does this imply that A is not
invertible? [Hint: First, consider a = b = 0. Then, if a and

b are not both zero, consider the vector x = |: _Z ].]
26. Show that if ad — bc # 0, the formula for A™" works.

Exercises 27 and 28 prove special cases of the facts about elemen-
tary matrices stated in the box following Example 5. Here A is a

3 x 3 matrix and / = I5. (A general proof would require slightly
more notation.)

27.

28.

a. Use equation (1) from Section 2.1 to show that
row; (A) = row; (/) - A, fori = 1,2,3.

b. Show that if rows 1 and 2 of A are interchanged, then the
result may be written as EA, where E is an elementary
matrix formed by interchanging rows 1 and 2 of /.

c. Show that if row 3 of A is multiplied by 5, then the result

may be written as EA, where E is formed by multiplying
row 3 of / by 5.

Show that if row 3 of A is replaced by row;(A) — 4 - row; (A),
the result is EA, where E is formed from / by replacing
rows (1) by rows (1) — 4 - row; (7).

Find the inverses of the matrices in Exercises 2932, if they exist.
Use the algorithm introduced in this section.

29.

31.

33.

34

3s.

3

(=)

37

38

t 2 5 10
| 4 7} 30. |: 4 7]
1 0 -2 1 -2 1
-3 1 4 32. 4 -7 3
2 -3 4 -2 6 —4
Use the algorithm from this section to find the inverses of
- 1 0 0 O
oo d 1 1 0 O
M D R ¢
- 1 1 1 1

Let A be the corresponding n X n matrix, and let B be its
inverse. Guess the form of B, and then prove that AB = [
and BA = I.

Repeat the strategy of Exercise 33 to guess the inverse of

1 0o 0 0
1 2 0 0
Aa=|1 2 3 01, Prove that your guess is
1 2 3 ceeooon
correct.
-2 -7 -9
Let A = 2 5 6 |. Find the third column of A~!
1 3 4

without computing the other columns.

-25 -9 =27
[M]Let A = | 546 180 537 |. Find the second and
154 50 149

third columns of A~! without computing the first column.

1 2
LetA=]1 3 |.Constructa 2 x 3 matrix C (by trial and
1 5

error) using only 1, —1, and O as entries, such that CA = I,.
Compute AC and note that AC # I5.
1 1 1

0 .
Let A = o 1 1 1 i| Construct a 4 x 2 matrix D




39.

40.

41.

using only 1 and O as entries, such that AD = I,. Is it possi-
ble that CA = I, for some 4 x 2 matrix C? Why or why not?

005  .002  .001
Let D= .002 .004 .002 | be a flexibility matrix,
.001 .002  .005

with flexibility measured in inches per pound. Suppose
that forces of 30, 50, and 20 lb are applied at points 1,
2, and 3, respectively, in Figure 1 of Example 3. Find the
corresponding deflections.

[M] Compute the stiffness matrix D! for D in Exercise 39.
List the forces needed to produce a deflection of .04 in. at
point 3, with zero deflections at the other points.

0040 0030  .0010  .0005
0030 .0050  .0030  .0010
IMILet D=1 5510 0030 0050 0030 | ¢ 2
0005 .0010  .0030  .0040

42.
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flexibility matrix for an elastic beam with four points at which
force is applied. Units are centimeters per newton of force.
Measurements at the four points show deflections of .08, .12,
.16, and .12 cm. Determine the forces at the four points.

Deflection of elastic beam in Exercises 41 and 42.

[M] With D as in Exercise 41, determine the forces that
produce a deflection of .24 cm at the second point on the
beam, with zero deflections at the other three points. How is
the answer related to the entries in D ~'? [Hint: First answer
the question when the deflection is 1 cm at the second point.]

SOLUTIONS TO PRACTICE PROBLEMS

. det

the matrix is invertible.

(4 —9
b. det_o 51|
6 -9
C. det__4 6
1 -2
2. [A4 I]~| -1 5
| 5 —4
1 -2
~10 3
0 6
1 =2
~10 3
|00

-1

-1
5
10

-1
5
0

6
5

-5

-7

; _z:| =3-6—(—9)-2 = 18 4+ 18 = 36. The determinant is nonzero, so

=4.5—(—9)-0 = 20 # 0. The matrix is invertible.

] =6-6—(—9)(—4) = 36 — 36 = 0. The matrix is not invertible.

1 0

1
1

1
1

_o O = O
—

—_— o O

-2

So[A [I]isrow equivalent to a matrix of the form [ B D ], where B is square
and has a row of zeros. Further row operations will not transform B into /, so we
stop. A does not have an inverse.

Since A is an invertible matrix, there exists a matrix C suchthat AC = I = CA.The

goal is to find a matrix D so that (54)D = I = D(5A4).Set D = 1/5C. Applying
Theorem 2 from Section 2.1 establishes that (54)(1/5C) = (5)(1/5)(AC) =11 =
I,and (1/5C)(5A) = (1/5)(5)(CA) =11 = I.Thus 1/5 C is indeed the inverse of
A, proving that A4 is invertible.

2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES

This section provides a review of most of the concepts introduced in Chapter 1, in
relation to systems of n linear equations in n unknowns and to square matrices. The
main result is Theorem 8.
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THEOREM 8

(@)
A
(b) €))

A\ U

© < (@
FIGURE 1

(k)

/AN
@ <= (@
(2) <= (h) <= ()

(d) <= () <= (N

(a) <= D)

The Invertible Matrix Theorem

Let A be a square n x n matrix. Then the following statements are equivalent.
That is, for a given A4, the statements are either all true or all false.

a. A is an invertible matrix.

A is row equivalent to the n x n identity matrix.

A has n pivot positions.

The equation Ax = 0 has only the trivial solution.

The columns of A form a linearly independent set.

The linear transformation x — AX is one-to-one.

The equation Ax = b has at least one solution for each b in R”.

50 - 0 a0 o

The columns of A span R”.

—

The linear transformation x — Ax maps R” onto R”.

There is an n x n matrix C such that CA = I.

—.

k. There is an n x n matrix D such that AD = I.

1. AT is an invertible matrix.

First, we need some notation. If the truth of statement (a) always implies that state-
ment (j) is true, we say that (a) implies (j) and write (a) = (j). The proof will establish
the “circle” of implications shown in Figure 1. If any one of these five statements is
true, then so are the others. Finally, the proof will link the remaining statements of the
theorem to the statements in this circle.

PROOF If statement (a) is true, then A~ works for C in (j),so (a) = (j).Next, (j) = (d)
by Exercise 23 in Section 2.1. (Turn back and read the exercise.) Also, (d) = (c) by
Exercise 23 in Section 2.2. If A is square and has n pivot positions, then the pivots
must lie on the main diagonal, in which case the reduced echelon form of A is 7,,. Thus
(c) = (b). Also, (b) = (a) by Theorem 7 in Section 2.2. This completes the circle in
Figure 1.

Next, (a) = (k) because A~ works for D. Also, (k) = (g) by Exercise 24 in Sec-
tion 2.1, and (g) = (a) by Exercise 24 in Section 2.2. So (k) and (g) are linked to
the circle. Further, (g), (h), and (i) are equivalent for any matrix, by Theorem 4 in
Section 1.4 and Theorem 12(a) in Section 1.9. Thus, (h) and (i) are linked through (g) to
the circle.

Since (d) is linked to the circle, so are (¢) and (f), because (d), (e), and (f) are all
equivalent for any matrix A.(See Section 1.7 and Theorem 12(b) in Section 1.9.) Finally,
(a) = (1) by Theorem 6(c) in Section 2.2, and (1) = (a) by the same theorem with A and
AT interchanged. This completes the proof. |

Because of Theorem 5 in Section 2.2, statement (g) in Theorem 8 could also be
written as “The equation Ax = b has a unique solution for each b in R”.” This statement
certainly implies (b) and hence implies that A is invertible.

The next fact follows from Theorem 8 and Exercise 8 in Section 2.2.

Let A and B be square matrices. If AB = I, then A and B are both invertible,
with B =A"'and 4 = B~!.
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The Invertible Matrix Theorem divides the set of all n X n matrices into two disjoint
classes: the invertible (nonsingular) matrices, and the noninvertible (singular) matrices.
Each statement in the theorem describes a property of every n x n invertible matrix.
The negation of a statement in the theorem describes a property of every n x n singular
matrix. For instance, an n x n singular matrix is not row equivalent to /,,, does not have
n pivot positions, and has linearly dependent columns. Negations of other statements
are considered in the exercises.

EXAMPLE 1 Use the Invertible Matrix Theorem to decide if A is invertible:

1 0 =2
A=| 3 1 =2
-5 -1 9
SOLUTION
1 0 —2 1 0 —2
A~|0 1 4|~|0 1 4
0 —1 —1 0 0 3

So A has three pivot positions and hence is invertible, by the Invertible Matrix Theorem,
statement (c). |

The power of the Invertible Matrix Theorem lies in the connections it provides
among so many important concepts, such as linear independence of columns of a matrix
A and the existence of solutions to equations of the form Ax = b. It should be empha-
sized, however, that the Invertible Matrix Theorem applies only to square matrices. For
example, if the columns of a 4 x 3 matrix are linearly independent, we cannot use the
Invertible Matrix Theorem to conclude anything about the existence or nonexistence of
solutions to equations of the form Ax = b.

Invertible Linear Transformations

Recall from Section 2.1 that matrix multiplication corresponds to composition of linear
transformations. When a matrix A is invertible, the equation A~ Ax = x can be viewed
as a statement about linear transformations. See Figure 2.

Multiplication

/m

xe o Ax

Multiplication

by A™!
FIGURE 2 A~! transforms Ax back to x.

A linear transformation 7" : R” — R” is said to be invertible if there exists a func-
tion S : R” — R” such that

S(T(x)) =x forall xin R" (1)
T(S(x)) =x forall xin R" 2)

The next theorem shows that if such an S exists, it is unique and must be a linear
transformation. We call S the inverse of 7 and write it as 7!,



116 CHAPTER 2 Matrix Algebra

THEOREM 9

Let 7 : R” — R” be a linear transformation and let A be the standard matrix for
T.Then T is invertible if and only if A is an invertible matrix. In that case, the
linear transformation S given by S(x) = A~!x is the unique function satisfying
equations (1) and (2).

Remark: See the comment on the proof of Theorem 7.

PROOF Suppose that 7 is invertible. Then (2) shows that 7" is onto R”, for if b is in
R” and x = S(b), then T'(x) = T(S(b)) = b, so each b is in the range of 7. Thus 4 is
invertible, by the Invertible Matrix Theorem, statement (i).

Conversely, suppose that A is invertible, and let S(x) = A7'x. Then, S is a linear
transformation, and S obviously satisfies (1) and (2). For instance,

S(T(x)) = S(Ax) = A~ '(4x) = x

Thus T is invertible. The proof that S is unique is outlined in Exercise 39. [ |

EXAMPLE 2 What can you say about a one-to-one linear transformation 7" from
R" into R"?

SOLUTION The columns of the standard matrix A of T are linearly independent (by
Theorem 12 in Section 1.9). So A is invertible, by the Invertible Matrix Theorem, and
T maps R" onto R". Also, T is invertible, by Theorem 9. [ |

— NUMERICAL NOTES

In practical work, you might occasionally encounter a “nearly singular” or ill-
conditioned matrix—an invertible matrix that can become singular if some of
its entries are changed ever so slightly. In this case, row reduction may produce
fewer than n pivot positions, as a result of roundoff error. Also, roundoff error
can sometimes make a singular matrix appear to be invertible.

Some matrix programs will compute a condition number for a square
matrix. The larger the condition number, the closer the matrix is to being singular.
The condition number of the identity matrix is 1. A singular matrix has an
infinite condition number. In extreme cases, a matrix program may not be able to
distinguish between a singular matrix and an ill-conditioned matrix.

Exercises 41-45 show that matrix computations can produce substantial
error when a condition number is large.

PRACTICE PROBLEMS

2 3 4
1. Determineif A = | 2 3 4 | isinvertible.
2 3 4

2. Suppose that for a certain n x n matrix A, statement (g) of the Invertible Matrix

Theorem is not true. What can you say about equations of the form Ax = b?

3. Suppose that A and B are n x n matrices and the equation ABx = 0 has a nontrivial

solution. What can you say about the matrix AB?
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Unless otherwise specified, assume that all matrices in these
exercises are n X n. Determine which of the matrices in Exercises
1-10 are invertible. Use as few calculations as possible. Justify
your answers.

1.

10.

5 7 -4 6
] 2% )
5.0 0 -7 0 4
3 -7 0 4. 3 0o -1
8 5 -1 L2 0 9
0o 3 -5 1 -5 —4
10 2 6. | 0 3 4
|4 -9 7 |3 6 0
-1 -3 0 1 (13 7 4
305 8 3| |0 5 9 6
2 -6 3 2|%]o 0o 2 8
Lo -1 2 1 L0 0 0 10
4 0 -7 =77
-6 1 11 9
MIT 7 5 10 19
-1 2 3 -1
53 1 7 9
6 4 2 8 -8
MI|7 5 3 10 9
9 6 4 -9 -5
18 5 2 11 4

In Exercises 11 and 12, the matrices are all n x n. Each part of
the exercises is an implication of the form “If “statement 17,
then “statement 2”.” Mark an implication as True if the truth of
“statement 2” always follows whenever “statement 1~ happens
to be true. An implication is False if there is an instance in
which “statement 2" is false but “statement 1” is true. Justify each

answer.

11.

12.

a.

If the equation Ax = 0 has only the trivial solution, then
A is row equivalent to the n x n identity matrix.

If the columns of A span R”, then the columns are linearly
independent.

If A is an n x n matrix, then the equation Ax = b has at
least one solution for each b in R”.

. If the equation Ax = 0 has a nontrivial solution, then A

has fewer than n pivot positions.

If A7 is not invertible, then A is not invertible.

If there is an n x n matrix D such that AD = I,then there
is also an n x n matrix C such that CA = I.

. If the columns of A are linearly independent, then the

columns of A span R”.

If the equation Ax = b has at least one solution for each
b in R”, then the solution is unique for each b.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.

d. If the linear transformation (x) — Ax maps R” into R”,
then A has n pivot positions.

e. If there is a b in R” such that the equation Ax = b is
inconsistent, then the transformation x — Ax is not one-
to-one.

An m x n upper triangular matrix is one whose entries
below the main diagonal are 0’s (as in Exercise 8). When
is a square upper triangular matrix invertible? Justify your
answer.

An m x n lower triangular matrix is one whose entries
above the main diagonal are 0’s (as in Exercise 3). When
is a square lower triangular matrix invertible? Justify your
answer.

Can a square matrix with two identical columns be invert-
ible? Why or why not?

Is it possible for a 5 x 5 matrix to be invertible when its
columns do not span R*? Why or why not?

If A is invertible, then the columns of A~! are linearly
independent. Explain why.

If C is 6 x 6 and the equation Cx = v is consistent for every
v in RO, is it possible that for some v, the equation Cx = v
has more than one solution? Why or why not?

. If the columns of a 7 x 7 matrix D are linearly independent,

what can you say about solutions of Dx = b? Why?

If n x n matrices E and F have the property that EF = 1,
then £ and F commute. Explain why.

If the equation Gx = y has more than one solution for some
y in R”, can the columns of G span R"? Why or why not?

If the equation Hx = c is inconsistent for some ¢ in R”, what
can you say about the equation Hx = 0?7 Why?

If an n x n matrix K cannot be row reduced to /,,, what can
you say about the columns of K? Why?

If Lis n x n and the equation Lx = 0 has the trivial solution,
do the columns of L span R"? Why?

Verify the boxed statement preceding Example 1.

Explain why the columns of A2 span R” whenever the
columns of A are linearly independent.

Show that if AB is invertible, so is A. You cannot use Theorem
6(b), because you cannot assume that A and B are invertible.
[Hint: There is a matrix W such that ABW = I. Why?]

Show that if AB is invertible, so is B.

If Ais ann x n matrix and the equation Ax =b has more than
one solution for some b, then the transformation x +— Ax is
not one-to-one. What else can you say about this transforma-
tion? Justify your answer.
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30. If A is an n x n matrix and the transformation x > AX is
one-to-one, what else can you say about this transformation?
Justify your answer.

31. Suppose A is an n x n matrix with the property that the
equation Ax = b has at least one solution for each b in R”.
Without using Theorems 5 or 8, explain why each equation
Ax = b has in fact exactly one solution.

32. Suppose A is an n x n matrix with the property that the equa-
tion Ax = 0 has only the trivial solution. Without using the
Invertible Matrix Theorem, explain directly why the equation
Ax = b must have a solution for each b in R".

In Exercises 33 and 34, T is a linear transformation from R? into
R?2. Show that T is invertible and find a formula for 7.

33. T(.X],Xz) = (—5X1 + 9x2,4x1 — 7.X2)
34. T(X],Xz) = (6X1 — SX2, —5X1 + 7.X2)

35. Let T : R” — R" be an invertible linear transformation. Ex-
plain why T is both one-to-one and onto R”. Use equations
(1) and (2). Then give a second explanation using one or more
theorems.

36. Let T be alinear transformation that maps R” onto R". Show
that 77! exists and maps R” onto R". Is T~! also one-to-
one?

37. Suppose T and U are linear transformations from R” to R”
such that T(Ux) = x forall xin R”.Is it true that U(T'x) = x
for all x in R”? Why or why not?

38. Suppose a linear transformation 7" : R” — R” has the prop-
erty that 7'(u) = T (v) for some pair of distinct vectors u and
vin R”. Can T map R" onto R”? Why or why not?

39. Let 7 : R" — R” be an invertible linear transformation,
and let S and U be functions from R” into R” such that
S (T'(x)) =x and U (T'(x)) = x for all x in R”. Show that
U(v) = S(v) for all v in R”. This will show that T has a
unique inverse, as asserted in Theorem 9. [Hint: Given any
v in R”, we can write v = T'(x) for some x. Why? Compute
S(v) and U(v).]

40. Suppose T and S satisfy the invertibility equations (1) and
(2), where T is a linear transformation. Show directly that
S is a linear transformation. [Hint: Given u, v in R”, let
X = S(u),y = S(v).Then T (x) = u, T (y) = v. Why? Apply
S to both sides of the equation T'(x) + T(y) = T (x +y).
Also, consider T'(cx) = ¢T(x).]

41.

[M] Suppose an experiment leads to the following system of
equations:

4.5x,+3.1x, = 19.249 3)
1.6x; + 1.1x, = 6.843

a. Solve system (3), and then solve system (4), below, in
which the data on the right have been rounded to two
decimal places. In each case, find the exact solution.
4.5x; 4+ 3.1x, = 1925 4
1.ox; + 1.1x, = 6.84

b. The entries in (4) differ from those in (3) by less than

.05%. Find the percentage error when using the solution
of (4) as an approximation for the solution of (3).

c. Use your matrix program to produce the condition num-
ber of the coefficient matrix in (3).

Exercises 42—44 show how to use the condition number of a ma-
trix A to estimate the accuracy of a computed solution of Ax = b.
If the entries of A and b are accurate to about r significant digits
and if the condition number of A is approximately 10% (with k a
positive integer), then the computed solution of Ax = b should
usually be accurate to at least r — k significant digits.

42.

43.
44.

45.

[M] Find the condition number of the matrix A in Exercise 9.
Construct a random vector x in R* and compute b = Ax.
Then use your matrix program to compute the solution x;
of Ax = b. To how many digits do x and x; agree? Find out
the number of digits your matrix program stores accurately,
and report how many digits of accuracy are lost when x; is
used in place of the exact solution x.

[M] Repeat Exercise 42 for the matrix in Exercise 10.

[M] Solve an equation Ax = b for a suitable b to find the last
column of the inverse of the fifth-order Hilbert matrix
1 /2 1/3  1/4 1/5

/2 1/3 1/4 1/5 1/6
A=|1/3 1/4 1/5 1/6 1/7

/4 1/5 1/6  1/7 1/8

/5 1/6 1/7 1/8 1/9
How many digits in each entry of x do you expect to be
correct? Explain. [Note: The exact solution is (630, —12600,
56700, —88200, 44100).]

[M] Some matrix programs, such as MATLAB, have a com-
mand to create Hilbert matrices of various sizes. If possible,
use an inverse command to compute the inverse of a twelfth-
order or larger Hilbert matrix, A. Compute AA~'. Report
what you find.

El Mastering: Reviewing and Reflecting 2-13

SOLUTIONS TO PRACTICE PROBLEMS

1. The columns of A are obviously linearly dependent because columns 2 and 3 are mul-
tiples of column 1. Hence A cannot be invertible, by the Invertible Matrix

Theorem.
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2. If statement (g) is not true, then the equation Ax = b is inconsistent for at least one
b in R”.

3. Apply the Invertible Matrix Theorem to the matrix AB in place of A. Then statement
(d) becomes: ABx = 0 has only the trivial solution. This is not true. So AB is not
invertible.

2.4  PARTITIONED MATRICES

A key feature of our work with matrices has been the ability to regard a matrix A4 as a list
of column vectors rather than just a rectangular array of numbers. This point of view has
been so useful that we wish to consider other partitions of A, indicated by horizontal
and vertical dividing rules, as in Example 1 below. Partitioned matrices appear in most
modern applications of linear algebra because the notation highlights essential struc-
tures in matrix analysis, as in the chapter introductory example on aircraft design. This
section provides an opportunity to review matrix algebra and use the Invertible Matrix
Theorem.

EXAMPLE 1 The matrix
30 —1]5 9] -2
A=|-5 2 4]0 -3
8 -6 3|1 7| —4

can also be written as the 2 x 3 partitioned (or block) matrix
A= A Ap A
Ay Ap  An

whose entries are the blocks (or submatrices)

3 0 -1 5 9 -2

Ay =[-8 =6 3], Ap=[1 7] Ap=[-4] o

EXAMPLE 2 When a matrix A appears in a mathematical model of a physical
system such as an electrical network, a transportation system, or a large corporation,
it may be natural to regard A as a partitioned matrix. For instance, if a microcomputer
circuit board consists mainly of three VLSI (very large-scale integrated) microchips,
then the matrix for the circuit board might have the general form

A | A | A
A= Ay A A3
A3 | Az | Az

The submatrices on the “diagonal” of A—namely, A;;, A2, and A33—concern the three
VLSI chips, while the other submatrices depend on the interconnections among those
microchips. [ ]

Addition and Scalar Multiplication

If matrices A and B are the same size and are partitioned in exactly the same way,
then it is natural to make the same partition of the ordinary matrix sum 4 + B. In this
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case, each block of A + B is the (matrix) sum of the corresponding blocks of A and B.
Multiplication of a partitioned matrix by a scalar is also computed block by block.

Multiplication of Partitioned Matrices

Partitioned matrices can be multiplied by the usual row—column rule as if the block
entries were scalars, provided that for a product AB, the column partition of A matches
the row partition of B.

EXAMPLE 3 Let

6 4
2 -3 10 —4 21
A=|1 5 =23 -1 z[jll 2‘12], B=|-3 7 =[§1}
0 —4 —2 | 7 —1 oo 1 3 .
5 2

The 5 columns of A are partitioned into a set of 3 columns and then a set of 2
columns. The 5 rows of B are partitioned in the same way—into a set of 3 rows and
then a set of 2 rows. We say that the partitions of A and B are conformable for block
multiplication. It can be shown that the ordinary product AB can be written as

5 4
4p = | A Av || Bi| _ [ AuBi+ApB | _ | ¢
Ay Axn || B> Ay By + AnB, > 1

It is important for each smaller product in the expression for AB to be written with
the submatrix from A on the left, since matrix multiplication is not commutative. For

instance,
6 4
2 -3 1 15 12
1 5 =2 3 7 2 =5

0 —47[=1 3 20 -8
A12BZ—[3 —1}[ 5 2]_[ 3 7]

Hence the top block in AB is
15 12 -20 -8 -5 4
A1131+A1232—|: 5 _51| +|: g 7i| _[—6 2:| [ |

The row—column rule for multiplication of block matrices provides the most general
way to regard the product of two matrices. Each of the following views of a product
has already been described using simple partitions of matrices: (1) the definition of Ax
using the columns of A, (2) the column definition of AB, (3) the row—column rule for
computing AB, and (4) the rows of AB as products of the rows of A and the matrix B.
A fifth view of AB, again using partitions, follows in Theorem 10 below.

The calculations in the next example prepare the way for Theorem 10. Here coly (4)
is the kth column of A, and rowy (B) is the kth row of B.

3 1 2 a b
EXAMPLE 4 LetA = [ | —4 5:| and B=| ¢ d |. Verify that
e f

AB = colj(A) row (B) + coly(A) row,(B) + colz(A) rows(B)
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SOLUTION Each term above is an outer product. (See Exercises 27 and 28 in Sec-
tion 2.1.) By the row—column rule for computing a matrix product,

—3a

coli(A) row;(B) = __i’][a b] _ |: ‘ —32]

colr(A) row,(B) = —411:|[C d]= [_4§ _4Z:|
col3(A) rows(B) = §i|[e 7= [zi §§i|
Thus
3
Zcolk (A) row,(B) = |:_a3a— ICC_:‘Sie —b3li Idd_:_sipf}
k=1

This matrix is obviously AB. Notice that the (1, 1)-entry in AB is the sum of the (1, 1)-
entries in the three outer products, the (1, 2)-entry in AB is the sum of the (1, 2)-entries
in the three outer products, and so on. |

Column-Row Expansion of AB

If Aism xnand B is n x p, then
row;(B)
row;(B)

col,(A4) ] . (1)
row, (B)

= col;(A) row;(B) + - - + col,(A) row, (B)

AB = [C011 (A) COlz(A)

PROOF For each row index i and column index j, the (i, j)-entry in coli (4) rowy (B)
is the product of a;; from coly (4) and by; from row (B). Hence the (i, j)-entry in the
sum shown in equation (1) is

apnby 4+ apby + - 4+ aiby;
k=1 (k =2) (k =n)
This sum is also the (i, j)-entry in AB, by the row—column rule. [ |

Inverses of Partitioned Matrices

The next example illustrates calculations involving inverses and partitioned matrices.

EXAMPLE 5 A matrix of the form
| A A
a=ae]

is said to be block upper triangular. Assume that Ay is p X p, Ay is g x q,and A is
invertible. Find a formula for A~".



122 CHAPTER 2 Matrix Algebra

SOLUTION Denote A~! by B and partition B so that

An Ap|[Bu Bo|_ |1, O @
0 Axn || Ba Bxn 0 I,

This matrix equation provides four equations that will lead to the unknown blocks
By, ..., By.Compute the product on the left side of equation (2), and equate each entry
with the corresponding block in the identity matrix on the right. That is, set

AuBu + AnBy =1, 3
AuBi + AnBn =0 4)
AxnBy =0 (%)
ApByn =1, (6)

By itself, equation (6) does not show that Ay, is invertible. However, since A, is
square, the Invertible Matrix Theorem and (6) together show that A5, is invertible and
By = A2_21 . Next, left-multiply both sides of (5) by Az_zl and obtain

By = A% 0=0
so that (3) simplifies to

AuB+0=1,
Since A is square, this shows that A} is invertible and By} = Al_l1 . Finally, use these
results with (4) to find that

Ay By = —ApBy = —ApAy and By = —Ajl A4y

Thus .
41— A An _ A —Af ARy -
0 Ap 0 142_21

A block diagonal matrix is a partitioned matrix with zero blocks off the main
diagonal (of blocks). Such a matrix is invertible if and only if each block on the diagonal
is invertible. See Exercises 13 and 14.

— NUMERICAL NOTES

1. When matrices are too large to fit in a computer’s high-speed memory,
partitioning permits the computer to work with only two or three submatrices
at a time. For instance, one linear programming research team simplified
a problem by partitioning the matrix into 837 rows and 51 columns. The
problem’s solution took about 4 minutes on a Cray supercomputer.!

2. Some high-speed computers, particularly those with vector pipeline architec-

ture, perform matrix calculations more efficiently when the algorithms use
partitioned matrices.?

3. Professional software for high-performance numerical linear algebra, such as
LAPACK, makes intensive use of partitioned matrix calculations.

! The solution time doesn’t sound too impressive until you learn that each of the 51 block columns contained
about 250,000 individual columns. The original problem had 837 equations and more than 12,750,000
variables! Nearly 100 million of the more than 10 billion entries in the matrix were nonzero. See Robert E.
Bixby et al., “Very Large-Scale Linear Programming: A Case Study in Combining Interior Point and
Simplex Methods,” Operations Research,40,no.5 (1992): 885-897.

2 The importance of block matrix algorithms for computer calculations is described in Matrix Computations,
3rd ed., by Gene H. Golub and Charles F. van Loan (Baltimore: Johns Hopkins University Press, 1996).
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The exercises that follow give practice with matrix algebra and illustrate typical
calculations found in applications.

PRACTICE PROBLEMS

1. Show that [1{1 ?i| is invertible and find its inverse.

2. Compute X TX , where X is partitioned as [X 1 Xo ]

2.4 EXERCISES

In Exercises 1-9, assume that the matrices are partitioned con-
formably for block multiplication. Compute the products shown
in Exercises 1-4.

1.

3.

= ille o)
o]y 7]

= [o s]le 5]

“ L 7lle 5]

In Exercises 5-8, find formulas for X, Y, and Z in terms of A, B,
and C, and justify your calculations. In some cases, you may need
to make assumptions about the size of a matrix in order to produce
a formula. [Hint: Compute the product on the left, and set it equal
to the right side.]

5.

10.

tHEERER
2 2] 21

VA

A I 0
00 =[0 1}
B I

(4 Bl[X Y Z |7 0 0
10 7 0O 0 I| |0 o0 I
Suppose A;; is an invertible matrix. Find matrices X and Y
such that the product below has the form indicated. Also,

compute By,. [Hint: Compute the product on the left, and set
it equal to the right side.]

I 0 O] Ay A Bii B
X 1 0 A21 A22 = O Bzz
I 0 O I 0 0
Theinverseof | C I O |is| Z I O
A B 1 X Y I

Find X, Y,and Z.

In Exercises 11 and 12, mark each statement True or False. Justify
each answer.

11.

13.

14.

16.

a. If A=[A, Ay]and B=[B, B;].with A, and 4,
the same sizes as B and B,, respectively, then A + B =
[A1 + By A, + Bs].

Ay Ap B, ..

and B = , then the partitions

Ay Ay B, P

of A and B are conformable for block multiplication.

b. IfA:[

. a. The definition of the matrix—vector product Ax is a special

case of block multiplication.

b. If A}, A,, By, and B, are n x n matrices, A = [jl:|, and
2

B =[B; B,],then the product BA is defined, but AB is
not.
B 0
Let A = o c| where B and C are square. Show that A

is invertible if and only if both B and C are invertible.

Show that the block upper triangular matrix A in Example 5 is
invertible if and only if both A, and A, are invertible. [Hint:
If A;; and A, are invertible, the formula for A~' given in
Example 5 actually works as the inverse of A.] This fact about
A is an important part of several computer algorithms that
estimate eigenvalues of matrices. Eigenvalues are discussed
in Chapter 5.

. Suppose Ay, is invertible. Find X and Y such that

All A]z _ 1 0 A” 0 1 Y (7)
Ay An| | X I1]]|0 S|lo [
where S = Ay — Az A]]' A12.. The matrix S is called the
Schur complement of A;,. Likewise, if Ay, is invertible,
the matrix A;; — A2 A5, Ay is called the Schur complement

of A,. Such expressions occur frequently in the theory of
systems engineering, and elsewhere.

Suppose the block matrix A on the left side of (7) is invertible
and A, is invertible. Show that the Schur complement S of
Ay is invertible. [Hint: The outside factors on the right side
of (7) are always invertible. Verify this.] When A and A4,; are
both invertible, (7) leads to a formula for A™!, using S™',
A7', and the other entries in A.
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17. When a deep space probe is launched, corrections may
be necessary to place the probe on a precisely calculated
trajectory. Radio telemetry provides a stream of vectors,
Xi, ..., Xy, giving information at different times about how
the probe’s position compares with its planned trajectory.
Let X be the matrix [x; - --X¢]. The matrix G, = X, X] is
computed as the radar data are analyzed. When x; 4 arrives,
anew Gy must be computed. Since the data vectors arrive
at high speed, the computational burden could be severe.
But partitioned matrix multiplication helps tremendously.
Compute the column-row expansions of G, and G, and
describe what must be computed in order to update Gy to
form Gy .

The probe Galileo was launched October 18,
1989, and arrived near Jupiter in early
December 1995.

18. Let X be an m x n data matrix such that X7 X is invertible,
andlet M = I, — X(XTX)7'X". Add a column x, to the
data and form

W = [X X()]

Compute WTW. The (1, 1)-entry is X7 X. Show that the
Schur complement (Exercise 15) of X7 X can be written in
the form x! Mxp. It can be shown that the quantity
(xIMxo)~" is the (2, 2)-entry in (WTW)~!. This en-
try has a useful statistical interpretation, under appropriate
hypotheses.

In the study of engineering control of physical systems, a standard
set of differential equations is transformed by Laplace transforms
into the following system of linear equations:

(< 2+

where Aisn xn,Bisn xm, Cism X n,and s is a variable. The
vector u in R™ is the “input” to the system, y in R” is the “output,”
and x in R” is the “state” vector. (Actually, the vectors x, u, and
y are functions of s, but we suppress this fact because it does not
affect the algebraic calculations in Exercises 19 and 20.)

19. AssumeA — s/, is invertible and view (8) as a system of two
matrix equations. Solve the top equation for x and substitute

20.

21.

22,

23.

24.

into the bottom equation. The result is an equation of the
form W(s)u =y, where W(s) is a matrix that depends on
s. W(s) is called the transfer function of the system because
it transforms the input u into the output y. Find W(s) and
describe how it is related to the partitioned system matrix on
the left side of (8). See Exercise 15.

Suppose the transfer function W(s) in Exercise 19 is invert-
ible for some s. It can be shown that the inverse transfer
function W (s)~!, which transforms outputs into inputs, is the
Schur complement of 4 — BC — 51, for the matrix below.
Find this Schur complement. See Exercise 15.

A—BC —sl, B
-C I,

a. Verify that A2 = [ when 4 = [; _(1)]

b. Use partitioned matrices to show that M? = [ when

1 0 0 O
3 -1 0 O
M = 1 0 -1 0
0o 1 =3 1]
Generalize the idea of Exercise 2l(a) [not 2l(b)] by con-
structing a 5 x 5 matrix M = é g such that M2 = 1.

Make C anonzero 2 x 3 matrix. Show that your construction
works.

Use partitioned matrices to prove by induction that the prod-
uct of two lower triangular matrices is also lower triangular.
[Hint: A (k + 1) x (k + 1) matrix A; can be written in the
form below, where a is a scalar, vis in R¥,and Ais a k x k
lower triangular matrix. See the Study Guide for help with
induction.]

a 0O
e[V )
Use partitioned matrices to prove by induction that for
n=2,3,..., the n x n matrix A shown below is invertible
and B is its inverse.
10 O .- 0
1 1 0 0
4=11 1 1 0 .
|1 1 1 1
0 0
- 1 0
B = -1 1 0
L O | 1
For the induction step, assume A and B are

(k + 1) x (k + 1) matrices, and partition A and B in a form
similar to that displayed in Exercise 23.



25. Without using row reduction, find the inverse of

26.

b
Il
cCo o Ww—

[M] For block operations, it may be necessary to access or
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[Note: It may not be necessary to specify the zero blocks
in B.]

27. [M] Suppose memory or size restrictions prevent your matrix
program from working with matrices having more than 32
rows and 32 columns, and suppose some project involves
50 x 50 matrices A and B . Describe the commands or oper-
ations of your matrix program that accomplish the following
tasks.

enter submatrices of a large matrix. Describe the functions

or commands of your matrix program that accomplish the

a. Compute A + B.

following tasks. Suppose A is a 20 x 30 matrix. b. Compute AB.

a. Display the submatrix of A from rows 15 to 20 and c. Solve Ax = b for some vector b in R, assuming that

columns 5 to 10.

b. Insert a 5 x 10 matrix B into A, beginning at row 10 and
column 20.

c. Create a 50 x 50 matrix of the form B = [

A can be partitioned into a 2 x 2 block matrix [A;;],
with Ay; an invertible 20 x 20 matrix, A, an invertible
30 x 30 matrix, and A, a zero matrix. [Hint: Describe
A4 0 appropriate smaller systems to solve, without using any
0 AT ] matrix inverses.]|

SOLUTIONS TO PRACTICE PROBLEMS

A 1

1. If |: ! O] is invertible, its inverse has the form |:I/I; )Z(:| Verify that

I 0|[W X| _ w X

A T Y Z| |AW+Y AX +Z
SoW,X,Y,and Z mustsatisfy W =1, X =0,AW +Y =0,andAX +Z = 1.
It follows that Y = —A and Z = [ . Hence

I 0 I 0| |1 O
A IT||-4 T| |0 I
The product in the reverse order is also the identity, so the block matrix is invert-

ible, and its inverse is |:_1{1 ?] (You could also appeal to the Invertible Matrix

Theorem.)

T X1T X1TX1 XlTX2 s T
XX = [Xl Xz] = . The partitions of X' and X are

x7 XIx, XI'Xx,
automatically conformable for block multiplication because the columns of X7 are
the rows of X. This partition of XX is used in several computer algorithms for
matrix computations.

2.5 | MATRIX FACTORIZATIONS

A factorization of a matrix A is an equation that expresses A4 as a product of two or more
matrices. Whereas matrix multiplication involves a synthesis of data (combining the
effects of two or more linear transformations into a single matrix), matrix factorization
is an analysis of data. In the language of computer science, the expression of A as a
product amounts to a preprocessing of the data in A, organizing that data into two or
more parts whose structures are more useful in some way, perhaps more accessible for
computation.
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Matrix factorizations and, later, factorizations of linear transformations will appear
at a number of key points throughout the text. This section focuses on a factorization
that lies at the heart of several important computer programs widely used in applica-
tions, such as the airflow problem described in the chapter introduction. Several other
factorizations, to be studied later, are introduced in the exercises.

The LU Factorization

The LU factorization, described below, is motivated by the fairly common industrial
and business problem of solving a sequence of equations, all with the same coefficient
matrix:

Ax=b;, Ax=Dby, ..., Ax=b, (1)

See Exercise 32, for example. Also see Section 5.8, where the inverse power method
is used to estimate eigenvalues of a matrix by solving equations like those in sequence
(1), one at a time.

When A4 is invertible, one could compute A~" and then compute A7 by, A7 b,
and so on. However, it is more efficient to solve the first equation in sequence (1) by
row reduction and obtain an LU factorization of A at the same time. Thereafter, the
remaining equations in sequence (1) are solved with the LU factorization.

At first, assume that 4 is an m X n matrix that can be row reduced to echelon form,
without row interchanges. (Later, we will treat the general case.) Then A can be written
in the form A = LU, where L is an m x m lower triangular matrix with 1’s on the
diagonal and U is an m x n echelon form of A. For instance, see Figure 1. Such a
factorization is called an LU factorization of A. The matrix L is invertible and is called
a unit lower triangular matrix.

* % = O
* —_= O O
—_ O O O
[N el |
=il
(=3 I
[« I

* ¥ % =

k

k

0

0

L U
FIGURE 1 An LU factorization.

Before studying how to construct L and U, we should look at why they are so

useful. When A = LU, the equation Ax = b can be written as L(Ux) = b. Writing y
for Ux, we can find x by solving the pair of equations

Ly=b

Ux—y @)

First solve Ly = b for y, and then solve Ux =y for x. See Figure 2. Each equation is
easy to solve because L and U are triangular.

Multiplication

ob

Xe

Multiplication ;; Multiplication

by U by L

FIGURE 2 Factorization of the mapping x — AX.
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EXAMPLE 1 It can be verified that

3 -7 =2 2 1 0 0 O 3 -7 =2 2
-3 5 1 0 —1 1 0 0 0o -2 -1 2
A=l 64 05| 25 1 ollo o-1 1|~V
-9 5 -5 12 -3 8 3 1 0O 0 0 -1
-9
Use this LU factorization of A to solve Ax = b, where b = g
11

SOLUTION The solution of Ly = b needs only 6 multiplications and 6 additions, be-
cause the arithmetic takes place only in column 5. (The zeros below each pivot in L are
created automatically by the choice of row operations.)

1 0 0 0 -9 1 0 0 0 —9
1 1 0 0 5 0 1 0 0 —4

[ bd]=1 5 5 1 o 7|~lo o 1 o s5|=[1 ¥l
3 8 3 1 11 0 0 0 1 1

Then, for Ux =y, the “backward” phase of row reduction requires 4 divisions, 6 mul-
tiplications, and 6 additions. (For instance, creating the zeros in column 4 of [U y]
requires 1 division in row 4 and 3 multiplication—addition pairs to add multiples of row 4
to the rows above.)

3 -7 -2 2 -9 1 0 0 0 3 3
[U y] _ 0 -2-1 2-4} |0 1 0 0 4 <= 4
0o o0 -1 1 5 0 0 1 0 -6} —6
0 0 0 -1 1 0 0 0 1 -1 -1

To find x requires 28 arithmetic operations, or “flops” (floating point operations),
excluding the cost of finding L and U . In contrast, row reductionof [A b]to[] x]
takes 62 operations. [ |

The computational efficiency of the LU factorization depends on knowing L and U .
The next algorithm shows that the row reduction of A to an echelon form U amounts to
an LU factorization because it produces L with essentially no extra work. After the first
row reduction, L and U are available for solving additional equations whose coefficient
matrix is A.

An LU Factorization Algorithm

Suppose A can be reduced to an echelon form U using only row replacements that add a
multiple of one row to another row below it. In this case, there exist unit lower triangular
elementary matrices E, ..., E, such that

E,-E/A=U 3)

Then
A=(E,--E\)"'U=LU

where
L=(E,-E)”" 4)
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It can be shown that products and inverses of unit lower triangular matrices are also unit
lower triangular. (For instance, see Exercise 19.) Thus L is unit lower triangular.

Note that the row operations in equation (3), which reduce A to U, also reduce
the L in equation (4) to I, because E,-+- E\L = (E,--- E\)(E,--- E;)”' = I. This
observation is the key to constructing L.

ALGORITHM FOR AN LU FACTORIZATION

1. Reduce A to an echelon form U by a sequence of row replacement operations,
if possible.

2. Place entries in L such that the same sequence of row operations reduces L
to I.

Step 1 is not always possible, but when it is, the argument above shows that an LU
factorization exists. Example 2 will show how to implement step 2. By construction, L
will satisfy

(Ep---E)L =1

using the same Ej, ..., E, asin equation (3). Thus L will be invertible, by the Invertible
Matrix Theorem, with (E,--- Ey) = L' From 3), L"'A=U,and A = LU. So
step 2 will produce an acceptable L.

EXAMPLE 2 Find an LU factorization of

2 4 -1 5 =2

-4 -5 3 =8 1

A= 2 -5 -4 1 8
-6 0 7 =3 1

SOLUTION Since A has four rows, L should be 4 x 4. The first column of L is the first
column of A divided by the top pivot entry:

I 0 0 O

-2 1 0 0

L= 1 I 0
-3 1

Compare the first columns of A and L. The row operations that create zeros in the
first column of A will also create zeros in the first column of L. To make this same
correspondence of row operations on A hold for the rest of L, watch a row reduction
of A to an echelon form U . That is, highlight the entries in each matrix that are used to
determine the sequence of row operations that transform A into U . [See the highlighted
entries in equation (5).]

2 4 -1 5 =2 2 4 -1 5 =2
-4 -5 3 -8 1 0 3 1 2 -3
A=1"9 5 4 1 8|~]0 -9 -3 4 10|="N ©)
6 0 7 -3 1 0 12 4 12 -5
2 4 -1 5 =2 2 4 -1 5 =2
0 3 1 2 — 0 3 1 2 -3
~h=1g 0 0 2 1|70 0o o 2 1|7V
0 0 0 4 0 0 0 0
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The highlighted entries on page 128 determine the row reduction of A to U. At each
pivot column, divide the highlighted entries by the pivot and place the result into L:

2
—4 3
2 -9 ]2
| —6 12 || 4 [5]
=2 =3 =2 =5
o ool
1 1 0 0 O
-2 1 -2 1 0 0
T T R B B R
| -3 4 2 1 -3 4 2 1
An easy calculation verifies that this L and U satisfy LU = A [ |

In practical work, row interchanges are nearly always needed, because partial piv-
oting is used for high accuracy. (Recall that this procedure selects, among the possible
choices for a pivot, an entry in the column having the largest absolute value.) To handle
row interchanges, the LU factorization above can be modified easily to produce an L
that is permuted lower triangular, in the sense that a rearrangement (called a permu-
tation) of the rows of L can make L (unit) lower triangular. The resulting permuted
LU factorization solves Ax = b in the same way as before, except that the reduction of
[L b]to[[ y]follows the order of the pivots in L from left to right, starting with
the pivot in the first column. A reference to an “LU factorization” usually includes the
possibility that L might be permuted lower triangular. For details, see the Study Guide.

— NUMERICAL NOTES

The following operation counts apply to an 7 X n dense matrix A (with most
entries nonzero) for n moderately large, say, n > 30.!

1. Computing an LU factorization of A takes about 213 /3 flops (about the same
as row reducing [ A b]), whereas finding A~ requires about 21* flops.

2. Solving Ly = b and Ux =y requires about 2n? flops, because any n x n
triangular system can be solved in about n? flops.

3. Multiplication of b by A~ also requires about 21> flops, but the result may
not be as accurate as that obtained from L and U (because of roundoff error
when computing both A~! and A~'b).

4. If A is sparse (with mostly zero entries), then L and U may be sparse, too,
whereas A~! is likely to be dense. In this case, a solution of Ax = b with an
LU factorization is much faster than using A~'. See Exercise 31.

A Matrix Factorization in Electrical Engineering

Matrix factorization is intimately related to the problem of constructing an electrical
network with specified properties. The following discussion gives just a glimpse of the
connection between factorization and circuit design.

!'See Section 3.8 in Applied Linear Algebra, 3rd ed., by Ben Noble and James W. Daniel (Englewood Cliffs,
NJ: Prentice-Hall, 1988). Recall that for our purposes, a flop is +, —, X, or =+.
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Suppose the box in Figure 3 represents some sort of electric circuit, with an input
. v . .
and output. Record the input voltage and current by |: il i| (with voltage v in volts and
1

current i in amps), and record the output voltage and current by |: 122 ] Frequently, the
2

. v v |, .. . . .
transformation [ il ] — |: i2 :| is linear. That is, there is a matrix A4, called the transfer
1 2

matrix, such that

il F------ Bl i2
1 1
1 1
input . i electric | output
; R v !
terminals "1 | circuit 2 terminals
1 1
1 1
| a4

FIGURE 3 A circuit with input and output
terminals.

Figure 4 shows a ladder network, where two circuits (there could be more) are
connected in series, so that the output of one circuit becomes the input of the next circuit.
The left circuit in Figure 4 is called a series circuit, with resistance R; (in ohms).

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 Vo | R2 1 V3
1 1 1 1
1 1 1 1
L L L L
1 1 1 1

A series circuit A shunt circuit

FIGURE 4 A ladder network.

The right circuit in Figure 4 is a shunt circuit, with resistance R,. Using Ohm’s law and
Kirchhoff’s laws, one can show that the transfer matrices of the series and shunt circuits,

respectively, are
1 —R; d 1 0
0 1 an —~1/R, 1

Transfer matrix Transfer matrix
of series circuit of shunt circuit

EXAMPLE 3

a. Compute the transfer matrix of the ladder network in Figure 4.

b. Design a ladder network whose transfer matrix is [ B ; _2 ] .

SOLUTION

a. Let A; and A, be the transfer matrices of the series and shunt circuits, respectively.
Then an input vector x is transformed first into A;x and then into A, (A;x). The series
connection of the circuits corresponds to composition of linear transformations, and
the transfer matrix of the ladder network is (note the order)

B 1 Ol[1 =Ry | _ 1 —Ry
AzAl—[_l/R2 1]|:0 1 ]_[—I/Rz 1+R1/R2] ©
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. 1 -81. . .
b. To factor the matrix [_ 5 51| into the product of transfer matrices, as in equa-

tion (6), look for R; and R, in Figure 4 to satisfy

1 —R; _ 1 -8
|:—1/R2 1+R1/R2]_|:—.5 5j|

From the (1, 2)-entries, Ry = 8 ohms, and from the (2, 1)-entries, 1/R, = .5 ohm
and R, = 1/.5 = 2 ohms. With these values, the network in Figure 4 has the desired
transfer matrix. ]

A network transfer matrix summarizes the input—output behavior (the design spec-

ifications) of the network without reference to the interior circuits. To physically build
a network with specified properties, an engineer first determines if such a network
can be constructed (or realized). Then the engineer tries to factor the transfer matrix
into matrices corresponding to smaller circuits that perhaps are already manufactured
and ready for assembly. In the common case of alternating current, the entries in the
transfer matrix are usually rational complex-valued functions. (See Exercises 19 and 20
in Section 2.4 and Example 2 in Section 3.3.) A standard problem is to find a minimal
realization that uses the smallest number of electrical components.

PRACTICE PROBLEM

2 -4 -2 3
6 -9 -5 8
Find an LU factorization of A = 2 =7 =3 9 |.[Note: It will turn out that 4
4 -2 -2 -1
-6 3 3 4

has only three pivot columns, so the method of Example 2 will produce only the first
three columns of L. The remaining two columns of L come from /5.]

In Exercises 1-6, solve the equation Ax = b by using the LU | 0 0 | 2
factorization given for A. In Exercises 1 and 2, also solve Ax = b A=| -3 1 0 :| |: 0 -3 4 :|
by ordinary row reduction. 4 - 1 0 0o 1
3 -7 =27 -7
1. A= -3 5 1 s b= 5 B 2 -2 4 0
L 6 =4 0] 2 4. 4=|1 =3 1i|,b:|:—5i|
1 0 07][3 -7 =2 |3 705 7
A= -1 1 0 |:0 -2 -1 :| B 1 0 0 2 -2 4
L 2 =5 ][0 0 -1 A=]1/2 1 oflo —=2 -1
- - 32 =5 1 0 0 -6
4 3 =5 2 -
2. A= -4 =5 7 |,b=]| -4
| 8 6 -8 | |: 6:| 1 -2 -4 -3 1
1 0 0][4 3 -5 T o I8 e
-1 2 6 4 0
A=|-1 1 0 |:0 -2 2 4 -1 9 8 3
2 0 1 0o 0 2 - -
B B 1 0 o0 o1 -2 —4 -3
2 -1 2 1 A= 2 1 0 O o -3 1 0
3. A=| -6 0 —-2(,b=]0 -1 0 1 0 0 0o 2 1
. 8 1 5 4 |4 3 =5 1]|0 0o 0 1
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T 1 3 4 0] 1

-3 -6 -7 2 -2

6 A4=1 3 3 o a|P=]

|5 3 2 9] 2
1 0 0 O0[1 3 4 o0
4|3 1 0 offo 3 5 2
1 32 1 o0{|l0 0 -2 o0
-5 4 -1 1][0 0 0 1

Find an LU factorization of the matrices in Exercises 7—16 (with
L unit lower triangular). Note that MATLAB will usually produce
a permuted LU factorization because it uses partial pivoting for
numerical accuracy.

[ 2 5 (6 9
|3 _4} s [ 5]
r3 -1 2 (-5 3 4
9. | 3 —2 10 10. | 10 -8 —9
| 9 -5 6 15 1 2
[ 3 -6 3 [ 2 -4 2
n | 6 -7 2 12. | 1 5 —4
-1 7 0 | -6 —2 4
T 1 3 =5 =37 T 1 4 -1 5
-1 -5 8 4 37 2 9
By o 5 Bl o 3 1
|2 -4 7 5] -1 6 -1 7
2 —6 6
[ 2 —4 4 =27 -4 5 -7
5. 6 9 7 -3 16. | 3 5 -1
| -1 —4 8 0] -6 4 -8
| 8 3 9

17. When A is invertible, MATLAB finds A~' by factoring A =
LU (where L may be permuted lower triangular), inverting
L and U, and then computing U ~'L~!. Use this method to
compute the inverse of A in Exercise 2. (Apply the algorithm
of Section 2.2 to L and to U.)

18. Find A~ as in Exercise 17, using A from Exercise 3.

19. Let A be alower triangular n x n matrix with nonzero entries
on the diagonal. Show that A is invertible and A~ is lower
triangular. [Hint: Explain why A can be changed into / using
only row replacements and scaling. (Where are the pivots?)
Also, explain why the row operations that reduce A to /
change / into a lower triangular matrix.]

20. Let A = LU be an LU factorization. Explain why A can be
row reduced to U using only replacement operations. (This
fact is the converse of what was proved in the text.)

21. Suppose A = BC, where B is invertible. Show that any
sequence of row operations that reduces B to I also reduces
A to C. The converse is not true, since the zero matrix may
be factored as 0 = B - 0.

Exercises 22-26 provide a glimpse of some widely used matrix
factorizations, some of which are discussed later in the text.

22.

24.

25.

26.

27.

28.

29.

(Reduced LU Factorization) With A as in the Practice Prob-
lem, find a 5 x 3 matrix B and a 3 x 4 matrix C such that
A = BC. Generalize this idea to the case where A is m x n,
A = LU, and U has only three nonzero rows.

. (Rank Factorization) Suppose an m X n matrix A admits a

factorization A = CD where Cism x 4 and D is 4 X n.

a. Show that A is the sum of four outer products. (See
Section 2.4.)

b. Let m =400 and n = 100. Explain why a computer
programmer might prefer to store the data from A in the
form of two matrices C and D.

(OR Factorization) Suppose A = QR, where Q and R are
n xn, R is invertible and upper triangular, and Q has the
property that Q7 Q = I. Show that for each b in R”, the
equation Ax = b has a unique solution. What computations
with QO and R will produce the solution?

(Singular Value Decomposition) Suppose A = UDVT,
where U and V are n x n matrices with the property that
UTU =TI and VTV = I, and where D is a diagonal matrix
with positive numbers o7, ..., 0, on the diagonal. Show that
A is invertible, and find a formula for A™".

(Spectral Factorization) Suppose a 3 X 3 matrix A admits a
factorization as A = PD P!, where P is some invertible
3 x 3 matrix and D is the diagonal matrix

1 0 0
p=|0 1,2 0
0 0 1/3

Show that this factorization is useful when computing high
powers of A. Find fairly simple formulas for A%, 43, and A*
(k a positive integer), using P and the entries in D.

Design two different ladder networks that each output 9 volts
and 4 amps when the input is 12 volts and 6 amps.

Show that if three shunt circuits (with resistances R, R,, R3)
are connected in series, the resulting network has the same
transfer matrix as a single shunt circuit. Find a formula for
the resistance in that circuit.

a. Compute the transfer matrix of the network in the figure.

4/3 —12
b. LetA—[_1/4 3
whose transfer matrix is A by finding a suitable matrix
factorization of A.

]. Design a ladder network

Y

s
=




30. Find a different factorization of the A in Exercise 29, and

31.

thereby design a different ladder network whose transfer
matrix is A.

[M] The solution to the steady-state heat flow problem for
the plate in the figure is approximated by the solution to the
equation Ax = b, where b = (5, 15,0, 10,0, 10, 20, 30) and

4 -1 -1
-1 4 0 -1
-1 0 4 -1 -1
-1 -1 4 0 -1
A= -1 0 4 -1 -1
-1 -1 4 0 -1
-1 0 4 -1
i -1 -1 4]
0° 00 0° 0
s LD I I VA P
5 2 4 6 I8 |,

10° 10° 10° 10°

(Refer to Exercise 33 of Section 1.1.) The missing entries in
A are zeros. The nonzero entries of A lie within a band along
the main diagonal. Such band matrices occur in a variety of
applications and often are extremely large (with thousands of
rows and columns but relatively narrow bands).

a. Use the method of Example 2 to construct an LU factor-
ization of A, and note that both factors are band matrices
(with two nonzero diagonals below or above the main
diagonal). Compute LU —A to check your work.

b. Use the LU factorization to solve Ax = b.

32.
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c. Obtain A™! and note that A™" is a dense matrix with no
band structure. When A is large, L and U can be stored in
much less space than A™!. This fact is another reason for
preferring the LU factorization of A to A™! itself.

[M] The band matrix A shown below can be used to estimate
the unsteady conduction of heat in a rod when the tempera-
tures at points py, ..., ps on the rod change with time .

The constant C in the matrix depends on the physical nature
of the rod, the distance Ax between the points on the rod,
and the length of time Ar between successive temperature
measurements. Suppose that for k =0, 1,2, ..., a vector t;
in R® lists the temperatures at time k Az If the two ends of the
rod are maintained at 0°, then the temperature vectors satisfy
the equation At = t,(k =0, 1,...), where

(1+2C) —-C
-C  (1420) -C
A= -C  (1420) —C
-C  (1+420) -C
—C  (1+420)

a. Find the LU factorization of A when C = 1. A matrix
such as A with three nonzero diagonals is called a tridiag-
onal matrix. The L and U factors are bidiagonal matrices.

b. Suppose C =1andt, = (10,12,12,12,10). Use the
LU factorization of A to find the temperature distributions
tl , tz, t3, and t4.

2 See Biswa N. Datta, Numerical Linear Algebra and Applications (Pacific
Grove, CA: Brooks/Cole, 1994), pp. 200-201.

SOLUTION TO PRACTICE PROBLEM

b
Il
A0 O N

-2 3 2 4 -2 3
-5 8 0 3 1 -1
-3 9] ~{0 =3 -1 6
-2 -1 0 6 2 -7
3 4 0 -9 -3 13
-2 3 2 4 -2 3
I -1 0 3 1 -1
0O 5| ~10 0 0 5|=U
0 =5 0 0 0 0
0 10 0o 0 0 O

Divide the entries in each highlighted column by the pivot at the top. The resulting
columns form the first three columns in the lower half of L. This suffices to make row
reduction of L to I correspond to reduction of A to U. Use the last two columns of /5
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to make L unit lower triangular.

2
6 3
2 -3 5
4 6 -5
—6 -9 10

) =3 =5

b
1 1 0O 0 0 O
3 3 1 0O 0 O
1 —1 1 , L= 1 —1 1 0 O
2 - 2 2 -1 1 0

| -3 -3 -3 -3 2 0 1

2.6 THE LEONTIEF INPUT-OUTPUT MODEL

Linear algebra played an essential role in the Nobel prize—winning work of Wassily
Leontief, as mentioned at the beginning of Chapter 1. The economic model described
in this section is the basis for more elaborate models used in many parts of the world.

Suppose a nation’s economy is divided into n sectors that produce goods or services,
and let x be a production vector in R” that lists the output of each sector for one
year. Also, suppose another part of the economy (called the open sector) does not
produce goods or services but only consumes them, and let d be a final demand vector
(or bill of final demands) that lists the values of the goods and services demanded
from the various sectors by the nonproductive part of the economy. The vector d can
represent consumer demand, government consumption, surplus production, exports, or
other external demands.

As the various sectors produce goods to meet consumer demand, the producers
themselves create additional intermediate demand for goods they need as inputs for
their own production. The interrelations between the sectors are very complex, and the
connection between the final demand and the production is unclear. Leontief asked if
there is a production level x such that the amounts produced (or “supplied”) will exactly
balance the total demand for that production, so that

amount intermediate final
produced ; = { demand } + { demand @)
X d

The basic assumption of Leontief’s input—output model is that for each sector, there
is a unit consumption vector in R” that lists the inputs needed per unit of output of
the sector. All input and output units are measured in millions of dollars, rather than in
quantities such as tons or bushels. (Prices of goods and services are held constant.)

As a simple example, suppose the economy consists of three sectors—manufac-
turing, agriculture, and services — with unit consumption vectors ¢;, ¢,, and ¢3, as shown
in the table that follows.
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Inputs Consumed per Unit of Output

Purchased from: Manufacturing Agriculture Services
Manufacturing S50 40 20
Agriculture 20 .30 .10
Services .10 .10 30

1 1 ?

c c c3

EXAMPLE 1 What amounts will be consumed by the manufacturing sector if it
decides to produce 100 units?

SOLUTION Compute

.50 50
100¢; = 100| .20 [ =| 20
.10 10

To produce 100 units, manufacturing will order (i.e., “demand”) and consume 50 units
from other parts of the manufacturing sector, 20 units from agriculture, and 10 units
from services. |

If manufacturing decides to produce x; units of output, then x;¢; represents the
intermediate demands of manufacturing, because the amounts in x;¢; will be consumed
in the process of creating the x; units of output. Likewise, if x, and x3 denote the planned
outputs of the agriculture and services sectors, x,¢, and x3c3 list their corresponding
intermediate demands. The total intermediate demand from all three sectors is given by

{intermediate demand} = x;¢; + x2¢; + x3¢3
=Cx 2)

where C is the consumption matrix [¢; ¢, c¢3], namely,

50 .40 20
c=|.20 30 .10 3)
10 .10 30

Equations (1) and (2) yield Leontief’s model.

THE LEONTIEF INPUT-OUTPUT MODEL, OR PRODUCTION EQUATION

X = Cx + d @)
Amount Intermediate Final
produced demand demand

Equation (4) may also be written as /x — Cx = d, or

(I-C)x=d 5)

EXAMPLE 2 Consider the economy whose consumption matrix is given by (3).
Suppose the final demand is 50 units for manufacturing, 30 units for agriculture, and
20 units for services. Find the production level x that will satisfy this demand.
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THEOREM 11

SOLUTION The coefficient matrix in (5) is

S5 04 2 S5 -4 -2

1
I-C=[0 1 -2 .7 =1
0

— o o
|
—_
Il

To solve (5), row reduce the augmented matrix

S5 -4 -2 50 5 =4 =2 500 1 0 0 226
-2 7-1 30|~|-2 7 -1 300 |~:---~[0 1 0 119
-1 -1 .7 20 -1 -1 7 200 o o 1 78

The last column is rounded to the nearest whole unit. Manufacturing must produce
approximately 226 units, agriculture 119 units, and services only 78 units. [ |

If the matrix / — C is invertible, then we can apply Theorem 5 in Section 2.2, with
A replaced by (I — C), and from the equation (I — C)x = d obtainx = (/ — C)~'d.
The theorem below shows that in most practical cases, / — C is invertible and the
production vector x is economically feasible, in the sense that the entries in X are non-
negative.

In the theorem, the term column sum denotes the sum of the entries in a column
of a matrix. Under ordinary circumstances, the column sums of a consumption matrix
are less than 1 because a sector should require less than one unit’s worth of inputs to
produce one unit of output.

Let C be the consumption matrix for an economy, and let d be the final demand.
If C and d have nonnegative entries and if each column sum of C is less than 1,
then (I — C)~! exists and the production vector

x=(I-C)"'d
has nonnegative entries and is the unique solution of

x=Cx+d

The following discussion will suggest why the theorem is true and will lead to a
new way to compute (I — C)™!.

A Formula for (I - C)~1

Imagine that the demand represented by d is presented to the various industries at the
beginning of the year, and the industries respond by setting their production levels at
x = d, which will exactly meet the final demand. As the industries prepare to produce d,
they send out orders for their raw materials and other inputs. This creates an intermediate
demand of Cd for inputs.

To meet the additional demand of Cd, the industries will need as additional inputs
the amounts in C(Cd) = C 2d. Of course, this creates a second round of intermediate
demand, and when the industries decide to produce even more to meet this new demand,
they create a third round of demand, namely, C(C?d) = C3d. And so it goes.

Theoretically, this process could continue indefinitely, although in real life it would
not take place in such a rigid sequence of events. We can diagram this hypothetical
situation as follows:
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Demand That Inputs Needed to
Must Be Met  Meet This Demand

Final demand d Cd
Intermediate demand
Ist round cd C(Cd)=Cd
2nd round Ccid Cc(C*d) =C3d

3rd round cid C(C3d) = C*d

The production level x that will meet all of this demand is

x=d+Cd+C*d+C*d+---
=I+C+C*+C*+-.)d (6)

To make sense of equation (6), consider the following algebraic identity:
(I-C)YI+C+C*>+---4C™=1-C""! @

It can be shown that if the column sums in C are all strictly less than 1,then I — C is in-
vertible, C approaches the zero matrix as m gets arbitrarily large,and I — C"+! — I.
(This fact is analogous to the fact that if a positive number ¢ is less than 1, then " — 0
as m increases.) Using equation (7), write

I-C)y'~I+C+C*+C +---+C"
when the column sums of C are less than 1.

®)

The approximation in (8) means that the right side can be made as close to (I — C)~!
as desired by taking m sufficiently large.

In actual input—output models, powers of the consumption matrix approach the zero
matrix rather quickly. So (8) really provides a practical way to compute (I —C)™'.
Likewise, for any d, the vectors C"d approach the zero vector quickly, and (6) is a
practical way to solve (I — C)x = d. If the entries in C and d are nonnegative, then (6)
shows that the entries in x are nonnegative, too.

The Economic Importance of Entries in (I — C)~1

The entries in (I — C)~! are significant because they can be used to predict how the
production x will have to change when the final demand d changes. In fact, the entries
in column j of (I — C)~! are the increased amounts the various sectors will have to
produce in order to satisfy an increase of I unit in the final demand for output from
sector j. See Exercise 8.

— NUMERICAL NOTE

In any applied problem (not just in economics), an equation Ax = b can always be
written as (I — C)x = b,with C = [ — A.If the system is large and sparse (with
mostly zero entries), it can happen that the column sums of the absolute values in
C are less than 1. In this case, C" — 0.If C" approaches zero quickly enough,
(6) and (8) will provide practical formulas for solving Ax = b and finding A~".
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PRACTICE PROBLEM

Suppose an economy has two sectors: goods and services. One unit of output from goods
requires inputs of .2 unit from goods and .5 unit from services. One unit of output from
services requires inputs of .4 unit from goods and .3 unit from services. There is a final
demand of 20 units of goods and 30 units of services. Set up the Leontief input—output
model for this situation.

2.6 EXERCISES

v 3

Agriculture Manufacturing Services

Exercises 1-4 refer to an economy that is divided into three 4. Determine the production levels needed to satisfy a final de-
sectors—manufacturing, agriculture, and services. For each unit mand of 18 units for manufacturing, 18 units for agriculture,
of output, manufacturing requires .10 unit from other companies and O units for services.

in that sector, .30 unit from agriculture, and .30 unit from services.

For each unit of output, agriculture uses .20 unit of its own output, 5. Consider the production model x = Cx + d for an economy

.60 unit from manufacturing, and .10 unit from services. For each
unit of output, the services sector consumes .10 unit from services,

. . . .0 5 50
.60 unit from manufacturing, but no agricultural products. C = , d=

with two sectors, where

6 2 30

Use an inverse matrix to determine the production level
necessary to satisfy the final demand.

1. Construct the consumption matrix for this economy, and de-
termine what intermediate demands are created if agriculture
plans to produce 100 units.

1

2. Determine th duction level ded to satisfy a final
etermine the production levels needed to satisfy a final 6. RepeatExerciseSwithCz[S 'g],anddz[i?]

demand of 18 units for agriculture, with no final demand for
the other sectors. (Do not compute an inverse matrix.)

3. Determine the production levels needed to satisfy a final 7. Let C and d be as in Exercise 5.
demand of 18 units for manufacturing, with no final demand a. Determine the production level necessary to satisfy a final
for the other sectors. (Do not compute an inverse matrix.) demand for 1 unit of output from sector 1.



8.

10.

11.

b. Use an inverse matrix to determine the production level

necessary to satisfy a final demand of [ gé ]

51 50 1 .
c. Use the fact that |:30:| = [30] + [O] to explain how

and why the answers to parts (a) and (b) and to Exercise
5 are related.

Let C be an n x n consumption matrix whose column sums

are less than 1. Let x be the production vector that satisfies

a final demand d, and let Ax be a production vector that

satisfies a different final demand Ad.

a. Show that if the final demand changes fromd tod + Ad,
then the new production level must be x + Ax. Thus Ax
gives the amounts by which production must change in
order to accommodate the change Ad in demand.

b. Let Ad be the vector in R” with 1 as the first entry and
0’s elsewhere. Explain why the corresponding production
AX is the first column of (I — C)™". This shows that the
first column of (I — C)™! gives the amounts the various
sectors must produce to satisfy an increase of 1 unit in the
final demand for output from sector 1.

Solve the Leontief production equation for an economy with
three sectors, given that

2 2 0 40
cC=|3 .1 3 and d=| 60
1 0 2 80

The consumption matrix C for the U.S. economy in 1972
has the property that every entry in the matrix (I — C)~! is
nonzero (and positive).! What does that say about the effect
of raising the demand for the output of just one sector of the
economy?

The Leontief production equation, x = Cx + d, is usually
accompanied by a dual price equation,

p=Clp+v

where p is a price vector whose entries list the price per unit
for each sector’s output, and v is a value added vector whose
entries list the value added per unit of output. (Value added
includes wages, profit, depreciation, etc.) An important fact
in economics is that the gross domestic product (GDP) can
be expressed in two ways:

{gross domestic product} = p’d = v'x

Verify the second equality. [Hint: Compute p’x in two

ways.]

1 Wassily W. Leontief, “The World Economy of the Year 2000,”
Scientific American, September 1980, pp. 206-231.

12.

13.

14.

15.
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Let C be a consumption matrix such that C” — 0 as
m— oo, and form=1,2,...,let D, =1 +C+---+
C'™. Find a difference equation that relates D,, and D,, 4, and
thereby obtain an iterative procedure for computing formula
(8) for (I —C)™!.

[M] The consumption matrix C below is based on input—
output data for the U.S. economy in 1958, with data for 81
sectors grouped into 7 larger sectors: (1) nonmetal household
and personal products, (2) final metal products (such as motor
vehicles), (3) basic metal products and mining, (4) basic
nonmetal products and agriculture, (5) energy, (6) services,
and (7) entertainment and miscellaneous products.? Find the
production levels needed to satisfy the final demand d. (Units
are in millions of dollars.)

1588 .0064 .0025 .0304 .0014 .0083 .15947
0057 2645 .0436 .0099 .0083 .0201 .3413
0264 1506 .3557 .0139 .0142 .0070 .0236
3299 0565 .0495 .3636 .0204 .0483 .0649 |,
0089 .0081 .0333 .0295 .3412 .0237 .0020
1190 .0901 .0996 .1260 .1722 .2368 .3369
| 0063 .0126 .0196 .0098 .0064 .0132 .0012 |
T 74,000 ]
56,000
10,500
d=| 25000
17,500
196,000
5,000 |

[M] The demand vector in Exercise 13 is reasonable for
1958 data, but Leontief’s discussion of the economy in the
reference cited there used a demand vector closer to 1964
data:

d = (99640, 75548, 14444, 33501, 23527, 263985, 6526)

Find the production levels needed to satisfy this demand.

[M] Use equation (6) to solve the problem in Exer-
cise 13. Set x® =d, and for k = 1,2, ..., compute
x® =d 4+ Cx*D. How many steps are needed to obtain
the answer in Exercise 13 to four significant figures?

2 Wassily W. Leontief, “The Structure of the U.S. Economy,”
Scientific American, April 1965, pp. 30-32.
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SOLUTION TO PRACTICE PROBLEM

The following data are given:

Inputs Needed per Unit of Output

Purchased from: Goods Services External Demand
Goods 2 4 20
Services 5 3 30

The Leontief input—output model is x = Cx + d, where

c=[7 4] a=|%]

2.7 APPLICATIONS TO COMPUTER GRAPHICS

1

FIGURE 1
Regular N.

2

Computer graphics are images displayed or animated on a computer screen. Applica-
tions of computer graphics are widespread and growing rapidly. For instance, computer-
aided design (CAD) is an integral part of many engineering processes, such as the
aircraft design process described in the chapter introduction. The entertainment industry
has made the most spectacular use of computer graphics—from the special effects in
Amazing Spider-Man 2 to PlayStation 4 and Xbox One.

Most interactive computer software for business and industry makes use of com-
puter graphics in the screen displays and for other functions, such as graphical display
of data, desktop publishing, and slide production for commercial and educational pre-
sentations. Consequently, anyone studying a computer language invariably spends time
learning how to use at least two-dimensional (2D) graphics.

This section examines some of the basic mathematics used to manipulate and dis-
play graphical images such as a wire-frame model of an airplane. Such an image (or
picture) consists of a number of points, connecting lines or curves, and information
about how to fill in closed regions bounded by the lines and curves. Often, curved lines
are approximated by short straight-line segments, and a figure is defined mathematically
by a list of points.

Among the simplest 2D graphics symbols are letters used for labels on the screen.
Some letters are stored as wire-frame objects; others that have curved portions are stored
with additional mathematical formulas for the curves.

EXAMPLE 1 The capital letter N in Figure 1 is determined by eight points, or
vertices. The coordinates of the points can be stored in a data matrix, D.

Vertex:
1 2 3 4 5 6 7 8
x-coordinate |:0 5 ) 6 6 55 5.5 0] -D
0O 0 642 0 8 8 1.58 8

In addition to D, it is necessary to specify which vertices are connected by lines, but we
omit this detail. |

y-coordinate

The main reason graphical objects are described by collections of straight-line seg-
ments is that the standard transformations in computer graphics map line segments onto
other line segments. (For instance, see Exercise 27 in Section 1.8.) Once the vertices
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FIGURE 2
Slanted M.

FIGURE 3

6 5

Composite transformation of N.

Translation by [ g ] .
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that describe an object have been transformed, their images can be connected with the
appropriate straight lines to produce the complete image of the original object.

1 25
0 1

tion X > Ax on the letter N in Example 1.

EXAMPLE 2 Given 4 = [ ], describe the effect of the shear transforma-

SOLUTION By definition of matrix multiplication, the columns of the product AD
contain the images of the vertices of the letter N.

12 3 4 5 6 7 8
0 5 2105 6 8 75 589 2}
0

AD = |:O 6420 0 8 8 1.580 8

The transformed vertices are plotted in Figure 2, along with connecting line segments
that correspond to those in the original figure. [ |

The italic N in Figure 2 looks a bit too wide. To compensate, shrink the width by a
scale transformation that affects the x-coordinates of the points.

EXAMPLE 3 Compute the matrix of the transformation that performs a shear trans-
formation, as in Example 2, and then scales all x-coordinates by a factor of .75.

SOLUTION The matrix that multiplies the x-coordinate of a point by .75 is

750
=7 1]

So the matrix of the composite transformation is

g5 0|1 .25
=[5 Wl 7
|75 1875
10 1
The result of this composite transformation is shown in Figure 3. [ |

The mathematics of computer graphics is intimately connected with matrix multi-
plication. Unfortunately, translating an object on a screen does not correspond directly
to matrix multiplication because translation is not a linear transformation. The standard
way to avoid this difficulty is to introduce what are called homogeneous coordinates.

Homogeneous Coordinates

Each point (x, y) in R? can be identified with the point (x, y, 1) on the plane in R3
that lies one unit above the xy-plane. We say that (x, y) has homogeneous coordinates
(x, y, 1). For instance, the point (0, 0) has homogeneous coordinates (0, 0, 1). Homo-
geneous coordinates for points are not added or multiplied by scalars, but they can be
transformed via multiplication by 3 x 3 matrices.

EXAMPLE 4 A translation of the form (x, y) + (x + &, y + k) is written in ho-
mogeneous coordinates as (x, y,1) — (x + h,y + k, 1). This transformation can be
computed via matrix multiplication:

1 0 & X x+h
0 1 % yi=|y+k ]
0o o0 1 1 1
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Original Figure

After Scaling

After Rotating

After Translating

EXAMPLE 5 Any linear transformation on R? is represented with respect to homo-

Oi|,whereAisa2><2

geneous coordinates by a partitioned matrix of the form [ 0 1

matrix. Typical examples are

cosp —sing 0 0O 1 0 s 0 0
sing cosgp O |, 1 0 0], 0 ¢t O
0 0 1 0O 0 1 0O 0 1
Counterclockwise Reflection Scale x by s
rotation about the through y = x and y by ¢
origin, angle ¢ |

Composite Transformations

The movement of a figure on a computer screen often requires two or more basic trans-
formations. The composition of such transformations corresponds to matrix multiplica-
tion when homogeneous coordinates are used.

EXAMPLE 6 Find the 3 x 3 matrix that corresponds to the composite transforma-
tion of a scaling by .3, a rotation of 90° about the origin, and finally a translation that
adds (—.5, 2) to each point of a figure.

SOLUTION If ¢ = /2, then sing = 1 and cos ¢ = 0. From Examples 4 and 5, we
have

* Scale 8 (3) 0 ;
1 [0 0 1 1
[0 -1 07[3 0 o07[x
Rotate
e 0 oflo 3 ofly
(0 0 1]LO0 0 1 1
Translate 1 0 —-57[0 -1 07][3 0 O7[x
—= |0 1 2|1 0 o0 0 3 y
(0 0 1]|0 0 1 0 0 1 1

The matrix for the composite transformation is

1 0-57[0 =1 07[.3 0
0 1 21 0o of]o 0
o 0o 1[lo o 1][o0 1
0—1—5 3 0 0 0 -3 -5
=1 0 3 0[=[3 0 2| m
0 0 0 1 0 0 1
3D Computer Graphics

Some of the newest and most exciting work in computer graphics is connected with
molecular modeling. With 3D (three-dimensional) graphics, a biologist can examine a
simulated protein molecule and search for active sites that might accept a drug molecule.
The biologist can rotate and translate an experimental drug and attempt to attach it to the
protein. This ability to visualize potential chemical reactions is vital to modern drug and
cancer research. In fact, advances in drug design depend to some extent upon progress
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in the ability of computer graphics to construct realistic simulations of molecules and
their interactions.!

Current research in molecular modeling is focused on virtual reality, an environ-
ment in which a researcher can see and feel the drug molecule slide into the protein. In
Figure 4, such tactile feedback is provided by a force-displaying remote manipulator.

S . —

FIGURE 4 Molecular modeling in virtual reality.

Another design for virtual reality involves a helmet and glove that detect head, hand, and
finger movements. The helmet contains two tiny computer screens, one for each eye.
Making this virtual environment more realistic is a challenge to engineers, scientists,
and mathematicians. The mathematics we examine here barely opens the door to this
interesting field of research.

Homogeneous 3D Coordinates

By analogy with the 2D case, we say that (x, y, z, 1) are homogeneous coordinates for
the point (x, y,z) in R3. In general, (X, Y, Z, H) are homogeneous coordinates for
(x,y,z)if H # 0 and

Z

and 7z = — (1)

X
_X{':—7 = —,
H YT H

Each nonzero scalar multiple of (x, y,z,1) gives a set of homogeneous coordinates
for (x, y, z). For instance, both (10, —6, 14, 2) and (—15, 9, —21, —3) are homogeneous
coordinates for (5, -3, 7).

The next example illustrates the transformations used in molecular modeling to
move a drug into a protein molecule.

EXAMPLE 7 Give 4 x 4 matrices for the following transformations:

a. Rotation about the y-axis through an angle of 30°. (By convention, a positive angle
is the counterclockwise direction when looking toward the origin from the positive
half of the axis of rotation—in this case, the y-axis.)

b. Translation by the vector p = (—6,4,5).

SOLUTION

a. First, construct the 3 x 3 matrix for the rotation. The vector e; rotates down toward
the negative z-axis, stopping at (cos 30°, 0, —sin 30°) = (\/3/2, 0, —.5). The vector

I Robert Pool, “Computing in Science,” Science 256, 3 April 1992, p. 45.
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FIGURE 5

e, on the y-axis does not move, but e3 on the z-axis rotates down toward the positive
x-axis, stopping at (sin 30°, 0, cos 30°) = (.5, 0, +/3/2). See Figure 5. From Section
1.9, the standard matrix for this rotation is

V32 0 5
0 1 0
-5 0 32

So the rotation matrix for homogeneous coordinates is

V3/2 0 5 0

Al o 1 0 0
Tl =5 0 V32 0

0 0 0 1

. We want (x,y,z,1) tomap to (x — 6,y + 4,z + 5, 1). The matrix that does this is

oo o~
oo =0
o= oo
— B

Perspective Projections

A three-dimensional object is represented on the two-dimensional computer screen by
projecting the object onto a viewing plane. (We ignore other important steps, such as
selecting the portion of the viewing plane to display on the screen.) For simplicity, let
the xy-plane represent the computer screen, and imagine that the eye of a viewer is
along the positive z-axis, at a point (0,0, d). A perspective projection maps each point
(x, y,z) onto an image point (x*, y*,0) so that the two points and the eye position,
called the center of projection, are on a line. See Figure 6(a).

(x*, y*,0)

(a) (b)
FIGURE 6 Perspective projection of (x, y, z) onto (x™, y™*,0).



S under the perspective
transformation.
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The triangle in the xz-plane in Figure 6(a) is redrawn in part (b) showing the lengths
of line segments. Similar triangles show that

x* X P dx X
_——= ans = =
d d—z * d—z 1-z/d

Similarly,

e_ Y
1—z/d

y

Using homogeneous coordinates, we can represent the perspective projection by a ma-

X y
1—z/d 1—z/d’
coordinates by 1 — z/d ,we can also use (x, y,0, 1 — z/d) as homogeneous coordinates
for the image. Now it is easy to display P. In fact,

trix, say, P. We want (x, y, z, 1) to map into ( 0, 1) . Scaling these

X 1 0 0 0 X X
plY| = 0 1 0 0 y| y

Z 0 0 0 0 Z 0

1 0 0 —-1/d 1 1 1—-2z/d

EXAMPLE 8 Let S be the box with vertices (3, 1,5), (5,1, 5), (5,0,5), (3.0,5),
(3,1,4),(5,1,4),(5,0,4),and (3, 0, 4). Find the image of S under the perspective pro-
jection with center of projection at (0, 0, 10).

SOLUTION Let P be the projection matrix, and let D be the data matrix for S using
homogeneous coordinates. The data matrix for the image of S is

Vertex:
4 5 6 7 8
i 0 0 3 3 5 5 3
0 0 0 1 1 0 O
PD = 0 0 5 4 4 4 4
1 1 1 1 1 1

1

h o —mw @00
N =y @O

|

—_

~

—

=

3
1
0
.6

To obtain R? coordinates, use equation (1) before Example 7, and divide the top three
entries in each column by the corresponding entry in the fourth row:

N oW — O W W

NO — WL — =W —
o == RO R R )

oo wm
oo w

Vertex:
1 2 3 4 5 6 7 8
6 10 10 6 5 83 83 5
2 2 0 0o 17 1.7 0 0
0 0 0 0 0 0 0 0 |

This text’s web site has some interesting applications of computer graphics, includ-
ing a further discussion of perspective projections. One of the computer projects on the
web site involves simple animation.
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— NUMERICAL NOTE

Continuous movement of graphical 3D objects requires intensive computation
with 4 x 4 matrices, particularly when the surfaces are rendered to appear
realistic, with texture and appropriate lighting. High-end computer graphics
boards have 4 x 4 matrix operations and graphics algorithms embedded in their
microchips and circuitry. Such boards can perform the billions of matrix multipli-
cations per second needed for realistic color animation in 3D gaming programs.?

Further Reading

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes, Computer
Graphics: Principles and Practice, 3rd ed. (Boston, MA: Addison-Wesley, 2002),

Chapters 5 and 6.

PRACTICE PROBLEM

Rotation of a figure about a point p in R? is accomplished by first translating the figure
by —p, rotating about the origin, and then translating back by p. See Figure 7. Construct
the 3 x 3 matrix that rotates points —30° about the point (—2, 6), using homogeneous

coordinates.
X2 X2 X2
° ° /’j4 M‘\“zo
p p RPN U

Z\j r\é

b3 QU

n o A % i X
(a) Original figure. (b) Translated to (¢) Rotated about (d) Translated

origin by —p. the origin. back by p.

FIGURE 7 Rotation of figure about point p.

2.

7 EXERCISES

1.

What 3 x 3 matrix will have the same effect on homogeneous
coordinates for R? that the shear matrix A has in Example 2?

Use matrix multiplication to find the image of the triangle
5 2 4
0o 2 3
tion that reflects points through the y-axis. Sketch both the
original triangle and its image.

with data matrix D = under the transforma-

In Exercises 3-8, find the 3 x 3 matrices that produce the de-
scribed composite 2D transformations, using homogeneous coor-
dinates.

3.
4.

Translate by (3, 1), and then rotate 45° about the origin.

Translate by (—2,3), and then scale the x-coordinate by
.8 and the y-coordinated by 1.2.

e ® 2

10.

Reflect points through the x-axis, and then rotate 30° about
the origin.

Rotate points 30°, and then reflect through the x-axis.
Rotate points through 60° about the point (6, 8).
Rotate points through 45° about the point (3, 7).

A 2 x200 data matrix D contains the coordinates of 200
points. Compute the number of multiplications required
to transform these points using two arbitrary 2 X 2 ma-
trices A and B. Consider the two possibilities A(BD) and
(AB) D. Discuss the implications of your results for computer
graphics calculations.

Consider the following geometric 2D transformations: D, a
dilation (in which x-coordinates and y-coordinates are scaled

2 See Jan Ozer, “High-Performance Graphics Boards,” PC Magazine 19, 1 September 2000, pp. 187-200.
Also, “The Ultimate Upgrade Guide: Moving On Up,” PC Magazine 21, 29 January 2002, pp. 82-91.



11.

12.

13.

14.

15.

16.

17.

by the same factor); R, a rotation; and 7', a translation. Does
D commute with R? That is, is D (R(x)) = R (D(x)) for all
x in R2? Does D commute with 7? Does R commute with 7°?

A rotation on a computer screen is sometimes implemented
as the product of two shear-and-scale transformations, which
can speed up calculations that determine how a graphic image
actually appears in terms of screen pixels. (The screen con-
sists of rows and columns of small dots, called pixels.) The
first transformation A, shears vertically and then compresses
each column of pixels; the second transformation A, shears
horizontally and then stretches each row of pixels. Let

1 0 0
Ay =|sing cose O [,
0 0 1
seco —tang O
Ay = 0 1 0
0 0 1

Show that the composition of the two transformations is a
rotation in R2.

T
i

A rotation in R? usually requires four multiplications. Com-
pute the product below, and show that the matrix for a rota-
tion can be factored into three shear transformations (each of
which requires only one multiplication).

1 —tang/2 0 1 0o 0
0 1 0 sin @ 1 0
0 0 1 0 0 1

1 —tang/2 0

0 1 0

0 0 1

The usual transformations on homogeneous coordinates for
2D computer graphics involve 3 x 3 matrices of the form

[(;i Il):| where A is a 2 x 2 matrix and p is in R?. Show

that such a transformation amounts to a linear transformation
on R? followed by a translation. [Hint: Find an appropriate
matrix factorization involving partitioned matrices.]

Show that the transformation in Exercise 7 is equivalent to
a rotation about the origin followed by a translation by p.
Find p.
What vector in R?
(l _11 L)‘)

2° 74080 24)°
Are (1,-2,3,4) and (10, —20, 30, 40) homogeneous coordi-
nates for the same point in R3? Why or why not?

has homogeneous coordinates

Give the 4 x 4 matrix that rotates points in R? about the
x-axis through an angle of 60°. (See the figure.)

18.

19.
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Give the 4 x 4 matrix that rotates points in R about the
z-axis through an angle of —30°, and then translates by
p=(5-2,1).

Let S be the triangle with vertices (4.2,1.2,4),(6,4,2),
(2,2, 6). Find the image of S under the perspective projection
with center of projection at (0, 0, 10).

. Let S be the triangle with vertices (9,3, -5),(12,8,2),

(1.8,2.7,1). Find the image of S under the perspective pro-
jection with center of projection at (0, 0, 10).

Exercises 21 and 22 concern the way in which color is specified
for display in computer graphics. A color on a computer screen
is encoded by three numbers (R, G, B) that list the amount of
energy an electron gun must transmit to red, green, and blue
phosphor dots on the computer screen. (A fourth number specifies
the luminance or intensity of the color.)

21.

22.

[M] The actual color a viewer sees on a screen is influenced
by the specific type and amount of phosphors on the screen.
So each computer screen manufacturer must convert between
the (R, G, B) data and an international CIE standard for color,
which uses three primary colors, called X, Y, and Z. A typical
conversion for short-persistence phosphors is

.61 29 150 R X
35 .59 .063 G|=|Y
.04 12 787 B Z

A computer program will send a stream of color information
to the screen, using standard CIE data (X, Y, Z). Find the
equation that converts these data to the (R, G, B) data needed
for the screen’s electron gun.

[M] The signal broadcast by commercial television describes
each color by a vector (Y, I, Q). If the screen is black and
white, only the Y-coordinate is used. (This gives a better
monochrome picture than using CIE data for colors.) The
correspondence between Y/Q and a “standard” RGB color is
given by

Y 299 .587 114 R
I |=1].5% =275 =321 G
0 212 =528 311 B

(A screen manufacturer would change the matrix entries to
work for its RGB screens.) Find the equation that converts
the YIQ data transmitted by the television station to the RGB
data needed for the television screen.
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SOLUTION TO PRACTICE PROBLEM

Assemble the matrices right-to-left for the three operations. Using p = (—2,6),
c0s(—30°) = +/3/2, and sin(—30°) = —.5, we have

Translate Rotate around Translate
back by p the origin by —p
1 0 —27[+V3/2 1/2 o1 o0 2
0 1 6| -1/2 3/2 0[]0 1 —6
0 0 1 0 0 1 0 0 1

V3/2 1/2 V3-5
=| —-1/2 3/2 -3/3+5
0 0 1

2.8 SUBSPACES OF R”

FIGURE 1

Span {v, v,} as a plane through
the origin.

This section focuses on important sets of vectors in R” called subspaces. Often sub-
spaces arise in connection with some matrix A, and they provide useful information
about the equation Ax = b. The concepts and terminology in this section will be used
repeatedly throughout the rest of the book.!

A subspace of R” is any set H in R” that has three properties:

a. The zero vectoris in H .
b. Foreachuandvin H,the sumu + visin H.
c. For each u in H and each scalar c, the vector cu is in H .

In words, a subspace is closed under addition and scalar multiplication. As you will
see in the next few examples, most sets of vectors discussed in Chapter 1 are subspaces.
For instance, a plane through the origin is the standard way to visualize the subspace in
Example 1. See Figure 1.

EXAMPLE 1 1Ifv, and v, are in R” and H = Span{vy, v,}, then H is a subspace
of R”. To verify this statement, note that the zero vector is in H (because Ov; + 0v; is
a linear combination of v; and v,). Now take two arbitrary vectors in H , say,

u=s5vy+sv, and v=1£1v|+HLV

Then
ut+v=_(s1+60)vi+ (s +0)v,

which shows that u + v is a linear combination of v and v, and hence is in H . Also, for
any scalar ¢, the vector cu is in H , because cu = c(s;V] + 52V2) = (¢51)v] + (¢52) V2.
|

If v; is not zero and if v, is a multiple of v, then v, and v, simply span a line
through the origin. So a line through the origin is another example of a subspace.

! Sections 2.8 and 2.9 are included here to permit readers to postpone the study of most or all of the next two
chapters and to skip directly to Chapter 5, if so desired. Omit these two sections if you plan to work through
Chapter 4 before beginning Chapter 5.
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EXAMPLE 2 A line L not through the origin is nor a subspace, because it does not
contain the origin, as required. Also, Figure 2 shows that L is not closed under addition
or scalar multiplication. [ |

u + visnotonL 2w is noton L

FIGURE 2

EXAMPLE 3 Forvy,...,v, in R”, the set of all linear combinations of v,..., v,
is a subspace of R”. The verification of this statement is similar to the argument given
in Example 1. We shall now refer to Span{vy,...,v,} as the subspace spanned (or
generated) by vi,...,v,. |

Note that R” is a subspace of itself because it has the three properties required for
a subspace. Another special subspace is the set consisting of only the zero vector in R”.
This set, called the zero subspace, also satisfies the conditions for a subspace.

Column Space and Null Space of a Matrix

Subspaces of R” usually occur in applications and theory in one of two ways. In both
cases, the subspace can be related to a matrix.

The column space of a matrix A is the set Col A of all linear combinations of the
columns of A.

If A=[a; --- a,], with the columns in R”, then Col A is the same as
Span{ay,...,a,}. Example 4 shows that the column space of an m x n matrix is a
subspace of R"”. Note that Col A equals R™ only when the columns of A span R".
Otherwise, Col A4 is only part of R"™.

1 -3 —4 3
EXAMPLE 4 letA=| -4 6 —2 |andb = 3 |.Determine whether b is
-3 7 6 —4

in the column space of 4.

SOLUTION The vector b is a linear combination of the columns of A if and only if
b can be written as Ax for some x, that is, if and only if the equation Ax = b has a
solution. Row reducing the augmented matrix [4 b],

1 -3 -4 3 1 -3 -4 3 1 -3 -4 3
-4 6 -2 3|~|0 -6 —18 I5|~|0 —6 —18 15
-3 7 6 —4 0 -2 -6 5 0 0 0 0

we conclude that Ax = b is consistent and b is in Col 4. |
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THEOREM 12

X3

€3
S %2
/ €
/e1

X1

FIGURE 3
The standard basis for R3.

The solution of Example 4 shows that when a system of linear equations is written
in the form Ax = b, the column space of A is the set of all b for which the system has
a solution.

The null space of a matrix A is the set Nul A of all solutions of the homogeneous
equation Ax = 0.

When A has n columns, the solutions of Ax = 0 belong to R”, and the null space
of A is a subset of R”. In fact, Nul A has the properties of a subspace of R”".

The null space of an m x n matrix A is a subspace of R” . Equivalently, the set of all
solutions of a system Ax = 0 of m homogeneous linear equations in # unknowns
is a subspace of R”.

PROOF The zero vector is in Nul A (because A0 = 0). To show that Nul A satisfies the
other two properties required for a subspace, take any u and v in Nul 4. That is, suppose
Au = 0 and Av = 0. Then, by a property of matrix multiplication,

Au+v)=Au+Av=0+0=0

Thus u + v satisfies Ax = 0, and so u + v is in Nul A. Also, for any scalar ¢, A(cu) =
¢(Au) = ¢(0) = 0, which shows that cu is in Nul 4. [ |

To test whether a given vector v is in Nul A, just compute Av to see whether Av is
the zero vector. Because Nul 4 is described by a condition that must be checked for each
vector, we say that the null space is defined implicitly. In contrast, the column space is
defined explicitly, because vectors in Col A can be constructed (by linear combinations)
from the columns of A. To create an explicit description of Nul 4, solve the equation
Ax = 0 and write the solution in parametric vector form. (See Example 6, below.)?

Basis for a Subspace

Because a subspace typically contains an infinite number of vectors, some problems
involving a subspace are handled best by working with a small finite set of vectors that
span the subspace. The smaller the set, the better. It can be shown that the smallest
possible spanning set must be linearly independent.

A basis for a subspace H of R” is a linearly independent set in H that spans H .

EXAMPLE 5 The columns of an invertible n X n matrix form a basis for all of R”
because they are linearly independent and span R”, by the Invertible Matrix Theorem.

One such matrix is the n x n identity matrix. Its columns are denoted by ey, ..., e,:
1 0 0
0 1 :
CE=(-1, =1 -1, .., €=
0 0 1
The set {ey, ..., e,} is called the standard basis for R". See Figure 3. ]

2 The contrast between Nul A and Col A4 is discussed further in Section 4.2.
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The next example shows that the standard procedure for writing the solution set of
Ax = 0 in parametric vector form actually identifies a basis for Nul A. This fact will be
used throughout Chapter 5.

EXAMPLE 6 Find a basis for the null space of the matrix

-3 6 -1 1 -7
A=| 1 =2 2 3 -1
2 —4 5 8 —4

SOLUTION First, write the solution of Ax = 0 in parametric vector form:

1 2 0 -1 3 0 Xp—2x, — Xx4+3x5=0
[A 0]~ o o0 1 2 -2 0/, X3+ 2x4 —2x5=0
o 0 O 0 0 O 0=0
The general solution is x; = 2x, + x4 — 3x5, X3 = —2x4 + 2x5, with X, x4, and x5
free.
X1 2Xx7 + x4 — 3x5 2 1 -3
X2 X2 1 0 0
X3 | = —2x4 + 2X5 =x2| O | +x4| =2 | + x5 2
X4 X4 0 1 0
X5 X5 0 0 1
t t t
u A\ W
= XU + X4V + X5W (1

Equation (1) shows that Nul A coincides with the set of all linear combinations of u,
v, and w. That is, {u, v, w} generates Nul 4. In fact, this construction of u, v, and w
automatically makes them linearly independent, because equation (1) shows that 0 =
Xou + x4V + x5w only if the weights x5, x4, and x5 are all zero. (Examine entries 2, 4,
and 5 in the vector x,u + x4v 4+ x5w.) So {u, v, w} is a basis for Nul 4. [ |

Finding a basis for the column space of a matrix is actually less work than finding
a basis for the null space. However, the method requires some explanation. Let’s begin
with a simple case.

EXAMPLE 7 Find a basis for the column space of the matrix

1 0 -3 5 0
0o 1 2 -1 0
B = 0 0 0 0 1

0 0 o0 0 O

SOLUTION Denote the columns of B by by, ..., bs and note thatb; = —3b; + 2b, and
b, = 5b; — b,. The fact that b; and b, are combinations of the pivot columns means that
any combination of by, ..., bs is actually just a combination of by, b,, and bs. Indeed,
if v is any vector in Col B, say,
v = cib; + by + ¢c3bs + ¢c4by + ¢5bs
then, substituting for b; and by, we can write v in the form
v = c1b; + coby 4 ¢3(=3b; + 2by) + c4(5b; —by) + ¢5bs

which is a linear combination of by, b,, and bs. So {by, by, bs} spans Col B. Also, by,
b,, and bs are linearly independent, because they are columns from an identity matrix.
So the pivot columns of B form a basis for Col B. [ |
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THEOREM 13

Mastering: Subspace,
Col A, Nul A, Basis 2-37

The matrix B in Example 7 is in reduced echelon form. To handle a general matrix
A, recall that linear dependence relations among the columns of A can be expressed
in the form Ax = 0 for some x. (If some columns are not involved in a particular
dependence relation, then the corresponding entries in x are zero.) When A is row
reduced to echelon form B, the columns are drastically changed, but the equations
Ax = 0 and Bx = 0 have the same set of solutions. That is, the columns of 4 have
exactly the same linear dependence relationships as the columns of B.

EXAMPLE 8 It can be verified that the matrix

1 3 3 2 -9
-2 -2 2 =8 2
2 3 0 7 1
3 4 -1 11 =8

A:[a] a - 35]2

is row equivalent to the matrix B in Example 7. Find a basis for Col 4.

SOLUTION From Example 7, the pivot columns of A are columns 1, 2, and 5.
Also, by = —3b; + 2b, and by = 5b; — b,. Since row operations do not affect linear
dependence relations among the columns of the matrix, we should have

a3 = —3a; +2a, and a4 = 5a; —a,

Check that this is true! By the argument in Example 7, a3 and a4 are not needed to
generate the column space of A. Also, {a;, a5, a5} must be linearly independent, because
any dependence relation among a; , a,, and a5 would imply the same dependence relation
among by, by, and bs. Since {by, by, bs} is linearly independent, {a;, a,,as} is also
linearly independent and hence is a basis for Col A. |

The argument in Example 8 can be adapted to prove the following theorem.

The pivot columns of a matrix A form a basis for the column space of A4.

Warning: Be careful to use pivot columns of A itself for the basis of Col A. The
columns of an echelon form B are often not in the column space of A. (For instance,
in Examples 7 and 8, the columns of B all have zeros in their last entries and cannot
generate the columns of A.)

PRACTICE PROBLEMS

1 -1 5 -7
1. Let A = 2 0 7|andu= 3 |.Isuin Nul A? Is u in Col A? Justify
-3 =5 -3 2
each answer.
o 1 0
2. GivenA=|0 0 1 |,finda vectorin Nul 4 and a vector in Col A.
0O 0 O

3. Suppose an n x n matrix A is invertible. What can you say about Col A? About
Nul 4?7
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Exercises 1-4 display sets in R?. Assume the sets include the 2 -3 —4
bounding lines. In each case, give a specific reason why the set 7. Letvy=| =8 |, v, = 8 |.vs= 6.
H is not a subspace of R?. (For instance, find two vectors in H 6 =7 =7
whose sum is not in H, or find a vector in H with a scalar multiple 6
that is not in H. Draw a picture.) p=| —10 |,and A=[v; v5 v3].
11
L. a. How many vectors are in {v;, v, v3}?
b. How many vectors are in Col A?
c. Ispin Col A? Why or why not?
-3 -2 0
8. Let v| = 01, vo= 2 |,v3=| —6 |, and p=
6 3 3
1
5 14 |. Determine if p is in Col A, where A = [v; v, v3].
. -9
9. With A and p as in Exercise 7, determine if p is in Nul A.
10. Withu = (=2, 3, 1) and A as in Exercise 8, determine if u is
in Nul A.
In Exercises 11 and 12, give integers p and ¢ such that Nul A is a
subspace of R” and Col A is a subspace of RY.
3 32 1 =5
' 1. A=|-9 -4 1 7
9 2 -5 1
1 2 3
4 5 7
12. A=| _ 5 1 0
/ 2 7 1
13. For A as in Exercise 11, find a nonzero vector in Nul A and a
4 nonzero vector in Col A.
14. For A as in Exercise 12, find a nonzero vector in Nul A and a
nonzero vector in Col A.
Determine which sets in Exercises 15-20 are bases for R? or R,
Justify each answer.
2 —4 8 15. 5 ’ 10 16. —4 ’ 2
5. Let vi = 31, v,=| 5|, and w= 2 |. Deter- -2 -3 6 -3
-5 8 -9
mine if w is in the subspace of R? generated by v, and v,. 0 ] 6 1 = 7
17. | 1 |,| =71.]3 18. | 1|, | —-1],| O
1 4 5 -2 4 5 -2 2 =5
-2 =7 -8
6. Let v = 4P V2= 9 | V3= 6,andu: 37T 6
3 7 5 19. -8 |, 2
—4 L 1] L5
10 NP, 4 - o - -
7| Determine if u is in the subspace of R* generated 1 3 _2 0
_5 20. —6 [,| —4 |, 71,18
by {vi, v2, v3}. =71 L 7] > 9
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In Exercises 21 and 22, mark each statement True or False. Justify
each answer.

21.

22.

a.

o

A subspace of R” is any set H such that (i) the zero vector
isin H ,(ii) u,v,and u 4+ v are in H , and (iii) ¢ is a scalar
and cu is in H.

. Ifvy,...,v,arein R" then Span {vi,...,v,} is the same
as the column space of the matrix [v; --- v,].
The set of all solutions of a system of m homogeneous

equations in n unknowns is a subspace of R".

The columns of an invertible n X n matrix form a basis
for R".

Row operations do not affect linear dependence relations
among the columns of a matrix.

A subset H of R” is a subspace if the zero vector is in H.

b. Given vectors vi,...,v, in R", the set of all linear com-

binations of these vectors is a subspace of R”.
The null space of an m x n matrix is a subspace of R”.

The column space of a matrix A is the set of solutions of
Ax =b.

If B is an echelon form of a matrix A, then the pivot
columns of B form a basis for Col A.

Exercises 23-26 display a matrix A and an echelon form of A. Find
a basis for Col A and a basis for Nul A.

4 5 9 =2 1 2 6 -5
2.4=[6 5 1 12|~|0 1 5 -6
3 4 8 -3 0 0 0 0
(-3 9 —2 -7 1 -3 6 9
4. A= 2 -6 4 8|~ |0 0 4 5
3 9 2 2 0 0 0 0
(1 4 8 -3 -7
-1 2 7 3 4
BA4=1 5 2 9 5 5
| 3 6 9 -5 -2
1 4 8 0
0 2 5 0 -1
0 0 0 1 4
0 0 0 0 0

3 -1 7 3 9
-2 2 -2 7 5
6.4=1 5 9 3 3 4
2 6 6 3 7
3 -1 7 0 6
0 2 4 0 3
0o 0 0 1 1
(0 0 0 0 0

27. Construct a nonzero 3 x 3 matrix A and a nonzero vector b
such that b is in Col A, but b is not the same as any one of the
columns of A.

28. Construct a nonzero 3 x 3 matrix A and a vector b such that
b is not in Col A.

29. Construct a nonzero 3 x 3 matrix A and a nonzero vector b

such that b is in Nul A.

30. Suppose the columns of a matrix A = [a; --- a,] are lin-
early independent. Explain why {a;,...,a,} is a basis for
Col A.

In Exercises 31-36, respond as comprehensively as possible, and
justify your answer.

31. Suppose Fis a5 x 5 matrix whose column space is not equal
to R>. What can you say about Nul F?

32. IfRisa6 x 6 matrix and Nul R is not the zero subspace, what
can you say about Col R?

33. IfQisa4 x 4 matrix and Col Q = R*, what can you say about
solutions of equations of the form Ox = b for b in R*?

34. If Pis a 5 x 5 matrix and Nul P is the zero subspace, what
can you say about solutions of equations of the form Px = b
for b in R>?

35. What can you say about Nul B when B is a 5 X 4 matrix with
linearly independent columns?

36. What can you say about the shape of an m x n matrix A when
the columns of A form a basis for R”?

[M] In Exercises 37 and 38, construct bases for the column space
and the null space of the given matrix A. Justify your work.

3 -5 0 -1 3
-7 9 -4 9 -1
WA=\ 5 7 2 5
3 -7 -3 4 0
5 2 0 -8 -8
4 1 2 -8 -9
Beod=l 5 1 3 5 1
| 8 -5 6 8 5

Column Space and Null Space
A Basis for Col A
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SOLUTIONS TO PRACTICE PROBLEMS

1. To determine whether u is in Nul 4, simply compute

1 -1 5 =7 0
Au = 2 0 7 31=160
-3 -5 3 2 0

The result shows that u is in Nul A. Deciding whether u is in Col 4 requires more
work. Reduce the augmented matrix [A u] to echelon form to determine whether
the equation Ax = u is consistent:

1 -1 5 =7 1 -1 5 =7 1 -1 5 =7
2 0 7 3|~({0 2 -3 17|~]0 2 =3 17
-3 -5 -3 2 0 -8 12 —19 0 0 0 49

The equation Ax = u has no solution, so u is not in Col 4.

2. In contrast to Practice Problem 1, finding a vector in Nul A requires more work
than testing whether a specified vector is in Nul A. However, since A4 is already
in reduced echelon form, the equation Ax = 0 shows that if x = (xy, x2, x3), then
x; =0, x3 =0, and x; is a free variable. Thus, a basis for Nul 4 is v = (1,0, 0).
Finding just one vector in Col 4 is trivial, since each column of A4 is in Col A. In
this particular case, the same vector v is in both Nul A and Col A. For most n X n
matrices, the zero vector of R” is the only vector in both Nul 4 and Col A.

3. If A is invertible, then the columns of A span R”, by the Invertible Matrix Theorem.
By definition, the columns of any matrix always span the column space, so in this
case Col A4 is all of R”. In symbols, Col A = R". Also, since 4 is invertible, the
equation Ax = 0 has only the trivial solution. This means that Nul 4 is the zero
subspace. In symbols, Nul 4 = {0}.

2.9 | DIMENSION AND RANK

This section continues the discussion of subspaces and bases for subspaces, beginning
with the concept of a coordinate system. The definition and example below should make
a useful new term, dimension, seem quite natural, at least for subspaces of R3.

Coordinate Systems

The main reason for selecting a basis for a subspace H, instead of merely a spanning
set, is that each vector in A can be written in only one way as a linear combination of
the basis vectors. To see why, suppose B = {by,...,b,} is a basis for H, and suppose
a vector x in H can be generated in two ways, say,

x=cb+:+c,b, and x=db;+---+d,b, (1)
Then, subtracting gives
O0=x—x=(c;—d)by+---+(c, —d,)b, 2)

Since B is linearly independent, the weights in (2) must all be zero. That is, ¢; = d; for
1 < j < p, which shows that the two representations in (1) are actually the same.
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Suppose the set B = {b;,...,b,} is a basis for a subspace H . For each x in H ,
the coordinates of x relative to the basis 5 are the weights ¢y, ..., ¢, such that
X = ¢iby +--- + ¢,b,, and the vector in R”

C]
[x]s =
Cp
is called the coordinate vector of x (relative to 3) or the 3-coordinate vector
of x.!
3 -1 3
EXAMPLE 1 Letvi=|6|,v, = 0 |,x=1 12 |,and B = {vy, v,}. Then
2 1 7

B is a basis for H = Span{vy, v,} because v; and v, are linearly independent. Deter-
mine if x is in H , and if it is, find the coordinate vector of x relative to 1.

SOLUTION Ifxisin H, then the following vector equation is consistent:

3 —1 3
ci| 6|+ O] =112
2 1 7
The scalars c¢; and c;, if they exist, are the B-coordinates of x. Row operations show
that
3 -1 3 1 0 2
6 0 12| ~(0 1 3
2 1 7 0O 0 O
Thus ¢; = 2,¢; = 3,and [x] 5= |:§:| The basis B determines a “coordinate system”
on H , which can be visualized by the grid shown in Figure 1. |
X3

FIGURE 1 A coordinate system on a plane
H in R3,

!t is important that the elements of /3 are numbered because the entries in [x]5 depend on the order of the
vectors in B.
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Notice that although points in H are also in R?, they are completely determined
by their coordinate vectors, which belong to R2. The grid on the plane in Figure 1
makes H “look” like R?. The correspondence X > [ x | ;5 1s aone-to-one correspondence
between H and R? that preserves linear combinations. We call such a correspondence
an isomorphism, and we say that H is isomorphic to R?.

In general, if B = {b;,...,b,} is a basis for H, then the mapping x > [x]z is a
one-to-one correspondence that makes H look and act the same as R? (even though the
vectors in H themselves may have more than p entries). (Section 4.4 has more details.)

The Dimension of a Subspace

It can be shown that if a subspace H has a basis of p vectors, then every basis of H must
consist of exactly p vectors. (See Exercises 27 and 28.) Thus the following definition
makes sense.

The dimension of a nonzero subspace H , denoted by dim H , is the number of
vectors in any basis for H . The dimension of the zero subspace {0} is defined to
be zero.?

The space R” has dimension 7. Every basis for R” consists of n vectors. A plane
through 0 in R? is two-dimensional, and a line through 0 is one-dimensional.

EXAMPLE 2 Recall that the null space of the matrix A in Example 6 in Section 2.8
had a basis of 3 vectors. So the dimension of Nul 4 in this case is 3. Observe how each
basis vector corresponds to a free variable in the equation Ax = 0. Our construction
always produces a basis in this way. So, to find the dimension of Nul 4, simply identify
and count the number of free variables in Ax = 0. [ |

The rank of a matrix A, denoted by rank A, is the dimension of the column space
of A.

Since the pivot columns of A form a basis for Col A, the rank of A is just the number
of pivot columns in A.

EXAMPLE 3 Determine the rank of the matrix

2 5 -3 -4 8
4 7 —4 -3 9
A= 6 9 -5 2 4
0 -9 6 5 —6
SOLUTION Reduce A to echelon form:
2 5 -3 —4 8 2 5 -3 —4 8
4 0o -3 2 5 =7 o -3 2 5 -7
0 -6 4 14 =20 0O 0 0 4 -6
0 -9 6 5 —6 o o0 O 0 o0
Pivot columns 4+ + 1
The matrix A has 3 pivot columns, so rank A = 3. |

2 The zero subspace has no basis (because the zero vector by itself forms a linearly dependent set).
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THEOREM 14

THEOREM 15

THEOREM

The row reduction in Example 3 reveals that there are two free variables in Ax = 0,
because two of the five columns of A are not pivot columns. (The nonpivot columns
correspond to the free variables in Ax = 0.) Since the number of pivot columns plus the
number of nonpivot columns is exactly the number of columns, the dimensions of Col 4
and Nul A4 have the following useful connection. (See the Rank Theorem in Section 4.6
for additional details.)

The Rank Theorem

If a matrix A has n columns, then rank A + dimNul A = n.

The following theorem is important for applications and will be needed in
Chapters 5 and 6. The theorem (proved in Section 4.5) is certainly plausible, if you
think of a p-dimensional subspace as isomorphic to R”. The Invertible Matrix Theorem
shows that p vectors in R” are linearly independent if and only if they also span R”.

The Basis Theorem

Let H be a p-dimensional subspace of R”. Any linearly independent set of exactly
p elements in H is automatically a basis for H. Also, any set of p elements of H
that spans H is automatically a basis for H.

Rank and the Invertible Matrix Theorem

The various vector space concepts associated with a matrix provide several more
statements for the Invertible Matrix Theorem. They are presented below to follow the
statements in the original theorem in Section 2.3.

The Invertible Matrix Theorem (continued)

Let A be an n x n matrix. Then the following statements are each equivalent to
the statement that A is an invertible matrix.

m. The columns of A form a basis of R”.

ColA =R”

dimColA =n

rank A = n

Nul 4 = {0}

dimNul4 =0

SRLCEES

PROOF Statement (m) is logically equivalent to statements (e) and (h) regarding linear
independence and spanning. The other five statements are linked to the earlier ones of
the theorem by the following chain of almost trivial implications:

(@ =M= ()= ()= 0= =

Statement (g), which says that the equation Ax = b has at least one solution for each
b in R”, implies statement (n), because Col A is precisely the set of all b such that
the equation Ax = b is consistent. The implications (n) = (0) = (p) follow from the
definitions of dimension and rank. If the rank of A4 is n, the number of columns of A4,
then dim Nul A = 0, by the Rank Theorem, and so Nul A = {0}. Thus (p) = (r) = (q).
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Also, statement (q) implies that the equation Ax = 0 has only the trivial solution, which
Expanded Table is statement (d). Since statements (d) and (g) are already known to be equivalent to the
for the IMT 2-39 statement that A is invertible, the proof is complete.

EXERCISES

— NUMERICAL NOTES

Many algorithms discussed in this text are useful for understanding concepts
and making simple computations by hand. However, the algorithms are often
unsuitable for large-scale problems in real life.

Rank determination is a good example. It would seem easy to reduce a matrix
to echelon form and count the pivots. But unless exact arithmetic is performed
on a matrix whose entries are specified exactly, row operations can change the

. . . . 157
apparent rank of a matrix. For instance, if the value of x in the matrix |: 5 o ]

is not stored exactly as 7 in a computer, then the rank may be 1 or 2, depending
on whether the computer treats x — 7 as zero.

In practical applications, the effective rank of a matrix A is often determined
from the singular value decomposition of A, to be discussed in Section 7 4.

PRACTICE PROBLEMS

1. Determine the dimension of the subspace H of R? spanned by the vectors vy, vs,

and vs. (First, find a basis for H.)

2 3 —1
vV = —8 s V) = -7 s V3 = 6
6 -1 —7

2. Consider the basis

3 .
2 —
for R If [x ], = [2:|,WhatISX?

3. Could R3 possibly contain a four-dimensional subspace? Explain.

In Exercises 1 and 2, find the vector x determined by the given 3. b, = 1 ],bz _ [—2 ] X = |:—3i|
coordinate vector [x]z and the given basis B. Illustrate your | —4 7 7
answer with a figure, as in the solution of Practice Problem 2. -
NI N
tos {2 A
: N B Sl - - -
1 -3 4
S. b1: 5 ,bz— —7 , X = 10:|
o[- ] SR
=37 77 11
In Exercises 3-6, the vector x is in a subspace H with a basis 6. b, = 1],b,= 5. x= 0
B = {by, b,}. Find the B-coordinate vector of x. 4 _6 7
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7. Let b1:[3:|,b2:[_;},w:[_;],x:[?}, and

B = {by,b,}. Use the figure to estimate [w]|z and [X];.
Confirm your estimate of [x]z by using it and {b;,b,} to
compute X.

hANARY
LA
O

wion- 2o [ [3]- )

L= —1

-2.5
[x]5, [y]g, and [z] 5. Confirm your estimates of [y]z and [z]z
by using them and {b,, b,} to compute y and z.

=

, and B = {by, b,}. Use the figure to estimate

VAN

T

Exercises 9—12 display a matrix A and an echelon form of A. Find
bases for Col A and Nul A, and then state the dimensions of these
subspaces.

T 1 -3 2 —4 1 -3 2 -4
3 9 -1 5 0 0 5 -7
2A4=1 5 6 4 3|70 0o o0 5
|4 12 2 7 0 0 0 O
) 9 5 4
1 -1 6 5 -3
10 A= o 6 1
| 4 1 9 1 -9
1 =2 9 5 4
0 1 -3 0 -7
0 0 0 1 -2
L0 0 0 0 0

1 2 -5 0 -l
2 5 -8 4 3
WA=l 53 9 9 7 2
3 10 -7 117
(1 2 -5 0 -l
o 1 2 4 5
o0 0 1 2
(00 0 0 0
1 2 -4 3 3
510 -9 -7 8
oA4=14 5§ 9 2 7
|2 -4 5 0 -6
(12 -4 3 3
0o 0 1 -2 0
o0 0 0 -5
00 0 0 0

In Exercises 13 and 14, find a basis for the subspace spanned by
the given vectors. What is the dimension of the subspace?

1137 274
-3 91 | -1 5
Bt a6l al]-3
L4 Li2] | 2] 7]
T 27 o[-t 3
~1||-3 2 4| -8
Wl ol =6l |-7]] o
L siLe] L 8]l 7]L-s

15. Suppose a 3 x 5 matrix A has three pivot columns. Is Col
A = R3?1s Nul A = R?? Explain your answers.

16. Suppose a 4 x 7 matrix A has three pivot columns. Is Col
A = R*? What is the dimension of Nul A? Explain your
answers.

In Exercises 17 and 18, mark each statement True or False. Justify
each answer. Here A is an m x n matrix.

If B={vi,...,v,} is a basis for a subspace H and if
X =cVy + -+ cpv,, then ¢y,...,c, are the coordi-
nates of x relative to the basis 5.

17. a.

b. Each line in R” is a one-dimensional subspace of R”.

c. The dimension of Col A is the number of pivot columns
of A.

d. The dimensions of Col A and Nul A add up to the number
of columns of A.

e. If a set of p vectors spans a p-dimensional subspace H of
R", then these vectors form a basis for H.

18. a. If Bis a basis for a subspace H, then each vector in H can
be written in only one way as a linear combination of the

vectors in 5.
b. If B ={vy,...,V,}isabasis forasubspace H of R",then

the correspondence x — [x]z makes H look and act the
same as R”.



c. The dimension of Nul A is the number of variables in the
equation Ax = 0.

d. The dimension of the column space of A is rank A.

e. If H is a p-dimensional subspace of R”, then a linearly
independent set of p vectors in H is a basis for H.

In Exercises 19-24, justify each answer or construction.

19.

20.

21.

22,

23.

24.

25.

26.

If the subspace of all solutions of Ax = 0 has a basis con-
sisting of three vectors and if A is a 5 x 7 matrix, what is the
rank of A?

What is the rank of a 4 x 5 matrix whose null space is three-
dimensional?

If the rank of a 7 x 6 matrix A is 4, what is the dimension of
the solution space of Ax = 0?

Show that a set of vectors {v|,V,,...,Vs} in R” is linearly
dependent when dim Span {v,, vy, ..., vs} = 4.

If possible, construct a 3 x4 matrix A such that dim
Nul A = 2 and dim Col A = 2.

Construct a 4 x 3 matrix with rank 1.

Let A be an n x p matrix whose column space is p-
dimensional. Explain why the columns of A must be linearly
independent.

Suppose columns 1, 3, 5, and 6 of a matrix A are linearly
independent (but are not necessarily pivot columns) and the
rank of A is 4. Explain why the four columns mentioned must
be a basis for the column space of A.

27.

28.

29.

30.

2.9 Dimension and Rank 161

Suppose vectors by,...,b, span a subspace W, and let

{a;,....a,} be any set in W containing more than p

vectors. Fill in the details of the following argument to

show that {a,, ..., a,} must be linearly dependent. First, let

B=1b, --- b,Jand A =[a; --- a,].

a. Explain why for each vector a;, there exists a vector ¢;
in R? such thata; = Bc;.

b. Let C = [¢; --- ¢,]. Explain why there is a nonzero
vector u such that Cu = 0.

c. Use B and C to show that Au = 0. This shows that the
columns of A are linearly dependent.

Use Exercise 27 to show that if A and B are bases for a
subspace W of R”, then A cannot contain more vectors than
BB, and, conversely, B cannot contain more vectors than A.

[M] Let H = Span {v;, v,} and 3 = {v;, v,}. Show that x is
in H, and find the B-coordinate vector of x, when

11 14 19
-5 -8 —13
izl = ] i|"*7| 18
7 10 15

[M] Let H = Span{vy, v,, v3} and B = {v|, V2, v3}. Show that
B is a basis for H and x is in H, and find the B-coordinate
vector of x, when

—6 8 -9 4

4 -3 5 7

Vi = 9 s Vo = 7 , V3 = _3 X = _3
4 -3 3 3

El Mastering: Dimension and Rank 2-41

SOLUTIONS TO PRACTICE PROBLEMS

1. Construct A = [v; v, v3]so that the subspace spanned by v, v,, v3 is the column
space of A. A basis for this space is provided by the pivot columns of A.
2 3 -1 2 3 -1 2 3 —1
A=|-8 -7 6|[~|[0 5 2|~|0 5 2
6 —1 -7 0—-10 —4 0O 0 O

The first two columns of A are pivot columns and form a basis for H. Thus

X dim H = 2.
3

2. If [X]B = |:2
weights 3 and 2:

,then x is formed from a linear combination of the basis vectors using

1 2 3.4
2 c=a = 1] 2] 2]

The basis {b;,b,} determines a coordinate system for R?, illustrated by the grid in

1 the figure. Note how x is 3 units in the b;-direction and 2 units in the b,-direction.
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3. A four-dimensional subspace would contain a basis of four linearly independent
vectors. This is impossible inside R*. Since any linearly independent set in R3 has
no more than three vectors, any subspace of R? has dimension no more than 3. The
space R? itself is the only three-dimensional subspace of R3. Other subspaces of R3
have dimension 2, 1, or O.

CHAPTER 2 SUPPLEMENTARY EXERCISES

letA=|1 0 o0

1. Assume that the matrices mentioned in the statements below

have appropriate sizes. Mark each statement True or False.
Justify each answer.

a. If A and B are m x n, then both AB” and A”B are
defined.

b. If AB = C and C has 2 columns, then 4 has 2 columns.

c. Left-multiplying a matrix B by a diagonal matrix A, with
nonzero entries on the diagonal, scales the rows of B.

d. If BC = BD,thenC = D.
e. If AC =0,theneither A =0o0orC = 0.
f. If Aand B aren x n,then (4 + B)(A — B) = A> — B>.

g. An elementary n x n matrix has either n or n + 1
nonzero entries.

h. The transpose of an elementary matrix is an elementary
matrix.

i. An elementary matrix must be square.
j-  Every square matrix is a product of elementary matrices.

k. If A is a 3 x3 matrix with three pivot positions,
there exist elementary matrices Ey,..., £, such that
E,--E\A=1.

1. If AB = I,then A is invertible.

m. If A and B are square and invertible, then AB is invert-
ible,and (AB)™! = A™'B~!.

n. If AB = BA and if A4 is invertible, then A—'B = BA™!.

o. If Aisinvertible and if r # 0, then (rd)~' = rA~".

1
0 | has
0

p- If Ais a3 x 3 matrix and the equation Ax =

a unique solution, then 4 is invertible.
. . . P 4 5
. Find the matrix C whose inverse is C ' = 6 7|

0o 0 O

. Show that A* = 0. Use matrix
o 1 0

algebra to compute the product (I — A)(I + A + A?).

. Suppose A" = 0 for some n > 1. Find an inverse for / — A.

. Suppose an n xn matrix A
A>—2A+1=0. Show that
A* =44 -31.

satisfies the equation
A3 =34-21 and

6.

10.

11.

12.

. Suppose AB = |:

Let A = [ b0 o 1 i| These are Pauli spin

o —1"8=|1 o
matrices used in the study of electron spin in quantum
mechanics. Show that A> =1, B> =1, and AB = —BA.

Matrices such that AB = — BA are said to anticommute.
1 3 8 -3 5
.LletA=1(2 4 11 |and B = 1 5 |.Compute
1 2 5 3 4

A™!'B without computing A~!. [Hint: A~' B is the solution
of the equation AX = B.]

Find a matrix A such that the transformation X + Ax maps

|: ; ] and [3] into [ 1 ] and [ ? i|,respectively. [Hint: Write

a matrix equation involving A, and solve for A.]

5 4 7 3 .
5 3]and3=[2 ]].FmdA.

Suppose A is invertible. Explain why A’A is also invertible.
Then show that A~ = (ATA)7'AT.

Let xi,...,x, be fixed numbers. The matrix below, called
a Vandermonde matrix, occurs in applications such as
signal processing, error-correcting codes, and polynomial
interpolation.

I ox x2 e Xt
2 n—I1
I x x5 - X
V= . .
2 n—1
I x, x, - X,
Giveny = (y1,...,y) in R”, suppose ¢ = (co, ..., cy—1) in

R” satisfies V¢ =y, and define the polynomial
p([) =co+ it + 62[2 4+ 4 Cn_]ln_l_

a. Show 