Exercice:1

Les applications suivantes de E dans F sont elles linéaires?

1.
$$E = \mathbb{R}^3$$
, $F = \mathbb{R}^3$, $\forall (x, y, z) \in E$, $f_1(x, y, z) = (x + 2y - 5z, x - 5y + z, y - z)$.

2.
$$E = \mathbb{R}^3$$
, $F = \mathbb{R}^3$, $\forall (x, y, z) \in E$, $f_2(x, y, z) = (x + 2y + 1, 2y, z)$

3.
$$E = \mathbb{R}^3$$
, $F = \mathbb{R}^3$, $\forall (x, y, z) \in E$, $f_3(x, y, z) = (x + 2y + z, 2yz, x + z)$

4.
$$E = \mathbb{R}^2$$
, $F = \mathbb{R}$, $\forall (x, y) \in E$, $f_4(x, y) = (2x - y + 3)$

Exercice2:

Soit f l'application linéaire définie par :

$$\begin{array}{cccc} f & \vdots & \mathbb{R}^3 & \to & \mathbb{R}^3 \\ & (x,y,z) & \mapsto & (x+y+z,x-y+z,x+3y+z) \end{array}$$

- 1. Montrer que f est linéaire .
- 2. Déterminer le noyau de f , donner une base de Kerf , f est-elle injective?
- 3. Déterminer Imf ainsi que rg(f) f est-elle surjective?
- 4. Mêmes questions pour l'application suivante :

$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
$$(x,y) \mapsto (x,y,x+y)$$

Exercice3: On considère l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^3$ définie par :

 $f(e_1) = e_1 + e_2 + e_3$; $f(e_2) = 2e_1 - e_2 + 2e_3$; $f(e_3) = 4e_1 + e_2 + 4e_3$ avec $\{e_1, e_2, e_3\}$ la base canonique de \mathbb{R}^3 .

- 1. Déterminer f(x,y,z).
- 2. Déterminer Kerf et Imf
- 3. Kerf et Imf sont ils supplémentaires? Justifier votre réponse .

Exercice4:

Soit f l'application linéaire définie par : $f : \mathbb{R}^3 \to \mathbb{R}^3$ $(x, y, z) \mapsto (2y - z, -x + 3y - z, -2x + 4y - z)$

- 1. Déterminer le noyau de f , donner une base de Kerf ; Déterminer le rang de ${\bf f}$
- 2. Montrer que la famille B= $\{f(e_1), f(e_2), f(e_3)\}$ n'est pas libre .
- 3. Déterminer une sous famille de B qui soit libre , écrire les autres vecteurs en fonction de ceux ${\rm ci}$.
- 4. Donner une base de Imf.

Exercice5:

- 1-Existe-t-il des applications linéaires injectives de \mathbb{R}^2 dans \mathbb{R} ?
- 2-1-Existe-t-il des applications linéaires surjectives de \mathbb{R} dans \mathbb{R}^2 ?