University of science and technology Oran M-B Department of Mathematics Faculty of mathematics and computer science The 18^{th} January, 2024

Final exam of Algebra 1	(Duration 1h30)
-------------------------	-----------------

Exercice 01:(07 points)

1. Give the truth table of the following proposition

$$(R \Rightarrow \overline{P}) \land \left((\overline{Q} \Rightarrow P) \lor R \right).$$

Where P, Q and R are propositions.

2. Is the following proposition true or false? Justify.

$$\forall x \in \mathbb{R} - 1, \ \exists n \in \mathbb{N}, \ \frac{n}{x - 1} + 1 > 0.$$

- 3. Let f be an application from \mathbb{R} to \mathbb{R} defined by $f(x) = x x^2$. Is f injective? surjective? (Provide the definitions and the justification of your answer).
- 4. Let f be a group-homomorphism from (G, *) to (H, \star) , show that f is injective if and only if $Ker(f) = \{e_G\}$, where e_G is the identity element of (G, *).
- 5. Is $(\mathbb{Z} \setminus 6\mathbb{Z}, \dot{+}, \dot{\times})$ a field? Justify.

Exercice 02:(06 points) Let \mathcal{R} be a relation defined on \mathbb{R} by

$$x\mathcal{R}y \Leftrightarrow x - |x| = y - |y|.$$

- 1. Prove that \mathcal{R} is an equivalence relation.
- 2. Determine the equivalence class of a real a.
- 3. Determine the quotient set $\mathbb{R}\setminus\mathcal{R}$.

Exercice 03:(07 points) Define on \mathbb{R} the binary operation * by

$$\forall x, y \in \mathbb{R}, \ x * y = x + y - 2.$$

- 1. Show that $(\mathbb{R}, *)$ is an abelian group.
- 2. Let $H = \{x \in \mathbb{Z}, x \text{ is pair}\}$. Show that H is a subgroup of $(\mathbb{R}, *)$.
- 3. Let

$$f:(\mathbb{R},*)\to(\mathbb{R},+)$$
$$x\longmapsto kx-2.$$

Determine the values of $k \in \mathbb{R}$ for which f is a group homomorphism.

Good luck