Linear applications

Notations

 $\mathcal{L}(E, F)$: denotes the set of linear applications from E to F. We denote the subspace Null(f) as Kerf which is $\{x \in E, f(x) = 0_F\}$. We denote Range(f) as Imf which is $\{f(x), x \in E\}$.

0.1 Homomorphisms of Vector Spaces

Definition 0.1.1. Let E and F be \mathbb{F} -vector spaces. A linear application (or homomorphism of vector spaces) from E to F is any function $f: E \longrightarrow F$ such that for all x, y in E and for any λ in \mathbb{F} , the following hold: f(x+y) = f(x) + f(y) and $f(\lambda \bullet x) = \lambda \bullet f(x)$. A bijective linear application is called an isomorphism.

A linear application from E to itself is called an endomorphism of E. A bijective endomorphism is called an automorphism.

Proposition 0.1.2. Let E and F be two \mathbb{F} -vector spaces. An application $f: E \longrightarrow F$ is a linear application if and only if, for all x, y in E and for all $\alpha, \beta \in \mathbb{F}$, the following holds: $f(\alpha \bullet x + \beta \bullet y) = \alpha \bullet f(x) + \beta \bullet f(y)$.

Proof: 1. Suppose f is a linear application. Then, for all $x, y \in E$ and for all $\alpha, \beta \in \mathbb{F}$ $f(\alpha \bullet x + \beta \bullet y) = f(\alpha \bullet x) + f(\beta \bullet y)$.

2. Conversely, if f satisfies the given condition for all $x, y \in E$ and for all $\alpha, \beta \in \mathbb{F}$, then by choosing $(\alpha, \beta) = (1_{\mathbb{F}}, 1_{\mathbb{F}})$, then an arbitrary α and $\beta = 0$, we have:

$$f(x+y) = f(x) + f(y)f(x+y)$$
 and $f(\alpha \bullet x) = \alpha \bullet f(x)$.

Example 0.1.3. The function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by f(x,y) = x + 2y is a linear application.

For all $(x_1, y_1), (x_2, y_2)$ in \mathbb{R}^2 and for all $\alpha, \beta \in \mathbb{R}$, we have:

$$f(\alpha \bullet (x_1, y_1) + \beta \bullet (x_2, y_2)) = f(\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2)$$

$$= (\alpha x_1 + \beta y_1) + 2(\alpha x_2 + \beta y_2)$$

$$= \alpha (x_1 + 2y_1) + \beta (x_2 + 2y_2)$$

$$= \alpha f(x_1, y_2) + \beta f(x_2, y_2).$$

Example 0.1.4. The derivative function $D : \mathbb{F}[X] \longrightarrow \mathbb{F}[X]$ that associates for any polynomial P its derivative P' is a linear application, since for all $P, Q \in \mathbb{F}[X]$ and $\alpha, \beta \in \mathbb{F}$ we have

$$D(\alpha P + \beta Q) = \alpha P' + \beta Q' = \alpha D(P) + \beta D(Q).$$

D is an endomorphism that is not an automorphism (not injective).

Remark 0.1.5. If f is a linear application, then the image of a linear combination of vectors is a linear combination of their images, i.e.,

$$f(\sum_{i=1}^{n} \alpha_i x_i) = \alpha_i f(\sum_{i=1}^{n} x_i).$$

Where α_i are scalars, and x_i are vectors.

Image and kernel of linear mapping

Let the linear mapping $f: E \to F$.

• The image of f is denoted by the set f(E) or Im(f), and we write $\text{Im}(f) = \{y \in F : \exists x \in E, f(x) = y\} \subseteq F$.

• The kernel of f represents the set of elements a from E such that $f(a) = 0_F$, it's denoted as $\ker f$, so $\ker f = \{a \in E : f(a) = 0_F\} \subseteq E$.

Theorem 0.1.6. Let E and F be two \mathbb{F} -vector spaces, and $f: E \longrightarrow F$ be a linear application. Then:

- 1. $f(0_E) = 0_F$ (0_E, 0_F are zeroes of E and F respectively).
- 2. For all $x \in E$: f(-x) = -f(x).
- 3. Im f = f(E) is a vector subspace of F.
- 4. $kerf = f^{-1}0_F$ is a vector subspace of E.
- 5. f is surjective if and only if Im f = F.
- 6. f is injective, if and only, if $ker f = \{0_E\}$.

Example 0.1.7. Let the linear transformation $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by f(x, y, z) = (x + 2y, x - y + 2z).

1. $kerf = \{(x, y, z) \in \mathbb{R}^3, (x + 2y, x - y + 2z) = (0, 0)\}, then solving the system$

$$\begin{cases} x + 2y = 0 \\ x - y + 2z = 0. \end{cases}$$

Hence, $kerf = \{(-2y, y, \frac{3}{2}y), y \in \mathbb{R}\}.$

Hence, f is not one-one, since $kerf \neq \{0_{R^3}\}.$

2. Finding a basis for Imf

$$Im f = \{ f(x, y, z), (x, y, z) \in \mathbb{R}^3 \}$$

$$= \{ (x + 2y, x - y + 2z), (x, y, z) \in \mathbb{R}^3 \}$$

$$= \{ x(1, 1) + y(2, -1) + z(0, 2), x, y, z \in \mathbb{R} \}.$$

Hence, Imf is the vector subspace of \mathbb{R}^2 spanned by the family $G = \{(1,1), (2,-1), (0,2)\}$, which is not a linearly independent family, otherwise dimImf = 3, which is impossible since $dimImf \leq dim\mathbb{R}^2$.

G contains a basis, and since set $G' = \{(1,1), (2,-1)\}$ is linearly independent, there exists a basis B of Imf such that $G' \subset B \subset G$, implying G' = B and $dim_{\mathbb{R}}(Imf) = 2$, so $Imf = \mathbb{R}^2$, and consequently, f is surjective.

Theorem 0.1.8. Let E, F and G be three \mathbb{F} -vector spaces, and let $f: E \to F$ and $g: F \to G$ be two linear transformations. Then $g \circ f: E \to G$ is a linear transformation.

Proof: Let $\alpha, \beta \in \mathbb{F}$, and let $x, y \in E$, then

$$\circ f(\alpha x + \beta y) = g(f(\alpha x + \beta y))$$

$$= g(\alpha f(x) + \beta f(y))$$

$$= \alpha g(f(x)) + \beta g(f(y))$$

$$= \alpha (g \circ f)(x) + \beta (g \circ f)(y).$$

Hence, $g \circ f$ is a linear application.