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Linear applications

Notations

L(E, F): denotes the set of linear applications from E to F.
We denote the subspace Null(f) as Kerf which is {x € E, f(z) = 0r}.
We denote Range(f) as Imf which is {f(z), = € E}.

0.1 Homomorphisms of Vector Spaces

Definition 0.1.1. Let E and F' be F-vector spaces. A linear application (or homomor-
phism of vector spaces) from E to F is any function f: E — F such that for all x,y in
E and for any X in T, the following hold: f(x+vy) = f(x)+ f(y) and f[Aex) = \e f(z).
A bijective linear application is called an isomorphism.

A linear application from E to itself is called an endomorphism of E. A bijective endo-

morphism is called an automorphism.

Proposition 0.1.2. Let E and F be two F-vector spaces. An application f : E — F
is a linear application if and only if, for all x,y in E and for all o, 3 € F, the following

holds: f(aex+ Bey)=cae f(x)+ e f(y).

Proof : 1. Suppose f is a linear application. Then, for all z,y € E and for all o, § € F
flaoez+Bey)=flaex)+ f(fey).

2. Conversely, if f satisfies the given condition for all x,y € E and for all o, € F
, then by choosing (a, 8) = (1, 1g), then an arbitrary « and f = 0, we have:
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flx+y)=f@)+ fy)flz+y) and flaez)=aef(z).
|

Example 0.1.3. The function f : R?> — R defined by f(z,y) = x + 2y is a linear
application.

For all (x1,11), (22,y2) in R? and for all o, B € R, we have:

flae(z1,y1) + B e (x2,52)) = flaxy + Pyr, axs + Pys)
= (a1 + By1) + 2(awz + By2)
= a1+ 2y1) + B2 + 2y
= af(xy,y2) + Bf (2, 42).
Example 0.1.4. The derivative function D : F[X] — F[X] thatl associales for any

polynomial P its derivative P’ is a linear application, since for all P,Q € F[X] and

a, B € F we have
D(aP + Q) = aP' + Q" = aD(P) + fD(Q).
D is an endomorphism that is not an automorphism (not injective).

Remark 0.1.5. If f is a linear application, then the image of a linear combination of

vectors is a linear combination of their images, i.e.,

f(z ;) = Oéif(z ;).

=1 i=1

Where «; are scalars, and x; are vectors.

Image and kernel of linear mapping

Let the linear mapping f: £ — F.

e The image of f is denoted by the set f(E) or Im(f), and we write Im(f) = {y €
F:3zeE f(x)=y} CF.
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e The kernel of f represents the set of elements a from E such that f(a) = Op, it’s

denoted as kerf, so kerf ={a € E: f(a) =0r} C E.

Theorem 0.1.6. Let E and F be two F-vector spaces, and f : E — F be a linear
application. Then:

1. f(0g) =0p (Og, Op are zeroes of E and F respectively).
2. Forallx € E: f(—z) = —f(x).
3. Imf = f(E) is a vector subspace of F.

. kerf = f~'0p is a vector subspace of E.

B

O

. [ is surjective if and only if Imf = F.

o

f is injective, if and only, if kerf = {0g}.
Example 0.1.7. Let the linear transformation f : R® — R? be defined by f(x,y,z) =
(x +2y,x —y+22).
1. kerf ={(z,y,2) € R3, (z+ 2y, —y+22)=(0,0)}, then solving the system
r+2y=0
r—y+22=0.
Hence, kerf = {(—2y,v, %y),y € R}.

Hence, f is not one-one, since kerf # {Ops}.

2. Finding a basis for Imf

Imf = {f(z,y,2), (v,y,2) € R’}
={(z + 2y, —y +22),(z,9,2) € R’}
={z(1,1) +y(2,—-1) + 2(0,2),z,y, z € R}.
Hence, Imf is the vector subspace of R? spanned by the family G = {(1,1), (2, —1),(0,2)},

which is not a linearly independent family, otherwise dimImf = 3, which is impos-

sible since dimImf < dimR2.
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G contains a basis, and since set G' = {(1,1),(2,—1)} is linearly independent,
there exists a basis B of Imf such that G' C B C G, implying G' = B and

dimg(Imf) =2, so Imf = R?, and consequently, [ is surjective.
Theorem 0.1.8. Let E, F' and G be three F-vector spaces, and let f : E — F and
g : F'— G be two linear transformations. Then go f : E — G is a linear transformation.

Proof : Let a, 5 € F, and let z,y € E, then

of (ax + By) = g(f(ax + By))
=glaf(x) + Bf(y))

ag(f(x)) + Bg(f(y))

=a(go f)(@) + Blgo f)y).

Hence, g o f is a linear application.



