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1.1.1 Linear Applications and Bases

Theorem 1.1.9. Let E and F' be two finite-dimensional F-vector spaces, and f be a linear
map from E to F.

f s injective if and only if the image of any linearly independent subset of E is a
linearly independent subset of F.

f is surjective if and only if the image of any spanning set of E is a spanning set of
F.

f 1s an isomorphism if and only if the image of any basis of E is a basis of F.

Proof : see (TD) O

Linear Applications and Dimensions

Theorem 1.1.10. (Fundamental theorem of linear maps) Let E and F be two finite-
dimensional vector spaces over the field F, where E be finite-dimensional spaces, and let

f i+ E — I be a linear application. Then:
dimpE = dimg(Kerf) + dimp(Imf)

Proof : The kernel Kerf is a finite-dimensional subspace. Let k = dimg(kerf), and let

{e1, ea, ..., €1} be a basis for Ker f, which we extend to a basis for E. Let {ey, e, ..., ek, €x11, .-

where n = dimpFE.

We need to show that {f(egt1),..., f(en)} is a basis for Imf.

For all ayyq, ..., € Fif agif(exs1) + ... + anf(e,) = 0, meaning f(ayii€pe1 + ..o +
ane,) = 0, then agii€pi1 + ... + e, € Kerf. Thus, we can express it as a linear com-

bination of the basis elements of Kerf: agiiepi1 + ... + ape, = arel + ... + ageg, with

ai,...,a, € F.
By gathering all terms on the left side, we get: —aje;—...—apep+agi1€p41+...+ane, = 0.
Therefore, a3 = ... = o = g1 = ... = a, = 0. Consequently, {f(exs1),..., f(en)} is a

linearly independent set in I'mf.

Let y € Imf, then y = f(x) for some x € E expressed as a linear combination of the basis
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elements of F, x = x1e1+...+xpep+ 21165101+ ... +Tpey,, where xy, ..., Xk, Tpaq, ..., Ty € F.

Hence, y = o1 f(e1)+...+ap f(er) +xpir f(era) +oFan fen) = Tpoi fepyr) + Fan f(en).
Thus, {f(exs1), ..., f(en)} is a spanning set for Imf.

In conclusion, the list {f(ext1), ..., f(en)} forms a basis for Imf, and dimgp(Imf) = k.
Thus, n = dimg(E) = dimp(Imf) + dimp(Kerf). d

Corollary 1.1.11. For finite-dimensional vector spaces E and F with a linear map f :

E — F, dimp(Imf) = dimg(E) if and only if f is injective.

Corollary 1.1.12. dimp(Kerf) = dimk(E) — dimk(F') if and only if f is surjective.
Further, if E and F are finite-dimensional F-vector spaces, then dimyp(E) = dimgp(F)
if and only if E is isomorphic to F. Additionally, dimg(E) = n if and only if E is

isomorphic to F™.

Rank of a linear map

Definition 1.1.13. We call rank of a linear application f, and we note it rk(f), the

dimension of Imf.

Remark 1.1.14. 1. The rank theorem can be written also as rk(f) + dim(Kerf) =

dim(E). In particular, the rank of f is always less or equal to the dimension of E.

2. Moreover, if F is a finite dimension space, then we have rk(f) < dim(F), since

Imf is a subspace of F.

3. If F is finite dimension, then f is surjective if and only if rk(f) = dim(F). Since
Imf is a subspace of F', and then f = Imf if and only if dim(Imf) = dim(F).

Corollary 1.1.15. Suppose that E is a finite dimension vector space, and let f be a linear

application from E to F. Then

1. The linear application f is one to one if and only if rk(f) = dim(E). Then we have
dim(E) < dim(F).



N. Belmahi 7

2. If f is onto, then F is of finite dimension and dim(F) < dim(E).
3. If f is bijective, then F is finite dimension space and dim(E) = dim(F).
Exercise 1.1.16. Let f : Ry[X| — Ry[X] defined by
f(P)=X?P —2XP.
Prove that f is a linear application and compute its rank.

Let a, f € R and Py, P, € Ry[X],

[Py + BPy) = X*(aPy + SP,) — 2X (aPy + Py)
= X*(aP] + BP) — 2X (P + BPy)
= a(X°P] —2XP)) + B(X°P) — 2X P

= af(P) + Bf(12).

Hence, f is a linear application.

rk(f) = dim(Imf). However,

Imf ={f(P), P e R[X]}
= {X*(aX?+bX +¢) —2X(aX® +bX +¢), a,b,c € R}
= {X?*(2aX +b) — 2X(aX?*+bX +¢), a,b,c € R}
= {—bX? - 2¢X, bce R}
= {b(—X?) 4+ c(-2X), b,c € R}.

Hence, Imf = span{—X? —2X}, and since {—X?, —2X} is a linearly independent list,
then it forms a basis for I'mf. Then, rk(f) = 2.



