N. Belmahi 5

1.1.1 Linear Applications and Bases

Theorem 1.1.9. Let E and F be two finite-dimensional \mathbb{F} -vector spaces, and f be a linear map from E to F.

f is injective if and only if the image of any linearly independent subset of E is a linearly independent subset of F.

f is surjective if and only if the image of any spanning set of E is a spanning set of F.

f is an isomorphism if and only if the image of any basis of E is a basis of F.

 $\mathbf{Proof}: \mathbf{see} (\mathbf{TD})$

Linear Applications and Dimensions

Theorem 1.1.10. (Fundamental theorem of linear maps) Let E and F be two finite-dimensional vector spaces over the field \mathbb{F} , where E be finite-dimensional spaces, and let $f: E \longrightarrow F$ be a linear application. Then:

$$dim_{\mathbb{F}}E = dim_{\mathbb{F}}(Kerf) + dim_{\mathbb{F}}(Imf)$$

Proof: The kernel Kerf is a finite-dimensional subspace. Let $k = dim_{\mathbb{F}}(kerf)$, and let $\{e_1, e_2, ..., e_k\}$ be a basis for Kerf, which we extend to a basis for E. Let $\{e_1, e_2, ..., e_k, e_{k+1}, ..., e_n\}$, where $n = dim_{\mathbb{F}}E$.

We need to show that $\{f(e_{k+1}), ..., f(e_n)\}$ is a basis for Imf.

For all $\alpha_{k+1},...,\alpha_n \in \mathbb{F}$, if $\alpha_{k+1}f(e_{k+1}) + ... + \alpha_n f(e_n) = 0$, meaning $f(\alpha_{k+1}e_{k+1} + ... + \alpha_n e_n) = 0$, then $\alpha_{k+1}e_{k+1} + ... + \alpha_n e_n \in Kerf$. Thus, we can express it as a linear combination of the basis elements of Kerf: $\alpha_{k+1}e_{k+1} + ... + \alpha_n e_n = \alpha_1 e_1 + ... + \alpha_k e_k$, with $\alpha_1,...,\alpha_n \in \mathbb{F}$.

By gathering all terms on the left side, we get: $-\alpha_1 e_1 - ... - \alpha_k e_k + \alpha_{k+1} e_{k+1} + ... + \alpha_n e_n = 0$. Therefore, $\alpha_1 = ... = \alpha_k = \alpha_{k+1} = ... = \alpha_n = 0$. Consequently, $\{f(e_{k+1}), ..., f(e_n)\}$ is a linearly independent set in Imf.

Let $y \in Imf$, then y = f(x) for some $x \in E$ expressed as a linear combination of the basis

N. Belmahi

elements of E, $x = x_1e_1 + ... + x_ke_k + x_{k+1}e_{k+1} + ... + x_ne_n$, where $x_1, ..., x_k, x_{k+1}, ..., x_n \in \mathbb{F}$. Hence, $y = x_1f(e_1) + ... + x_kf(e_k) + x_{k+1}f(e_{k+1}) + ... + x_nf(e_n) = x_{k+1}f(e_{k+1}) + ... + x_nf(e_n)$. Thus, $\{f(e_{k+1}), ..., f(e_n)\}$ is a spanning set for Imf.

In conclusion, the list $\{f(e_{k+1}),...,f(e_n)\}$ forms a basis for Imf, and $dim_{\mathbb{F}}(Imf) = k$. Thus, $n = dim_{\mathbb{F}}(E) = dim_{\mathbb{F}}(Imf) + dim_{\mathbb{F}}(Kerf)$.

Corollary 1.1.11. For finite-dimensional vector spaces E and F with a linear map f: $E \longrightarrow F$, $dim_{\mathbb{F}}(Imf) = dim_{\mathbb{F}}(E)$ if and only if f is injective.

Corollary 1.1.12. $dim_{\mathbb{F}}(Kerf) = dimk(E) - dimk(F)$ if and only if f is surjective. Further, if E and F are finite-dimensional \mathbb{F} -vector spaces, then $dim_{\mathbb{F}}(E) = dim_{\mathbb{F}}(F)$ if and only if E is isomorphic to F. Additionally, $dim_{\mathbb{F}}(E) = n$ if and only if E is isomorphic to \mathbb{F}^n .

Rank of a linear map

Definition 1.1.13. We call rank of a linear application f, and we note it rk(f), the dimension of Im f.

- **Remark 1.1.14.** 1. The rank theorem can be written also as rk(f) + dim(Kerf) = dim(E). In particular, the rank of f is always less or equal to the dimension of E.
 - 2. Moreover, if F is a finite dimension space, then we have $rk(f) \leq dim(F)$, since Imf is a subspace of F.
 - 3. If F is finite dimension, then f is surjective if and only if rk(f) = dim(F). Since Imf is a subspace of F, and then f = Imf if and only if dim(Imf) = dim(F).

Corollary 1.1.15. Suppose that E is a finite dimension vector space, and let f be a linear application from E to F. Then

1. The linear application f is one to one if and only if rk(f) = dim(E). Then we have $dim(E) \leq dim(F)$.

N. Belmahi 7

- 2. If f is onto, then F is of finite dimension and $dim(F) \leq dim(E)$.
- 3. If f is bijective, then F is finite dimension space and dim(E) = dim(F).

Exercise 1.1.16. Let $f: R_2[X] \longrightarrow R_2[X]$ defined by

$$f(P) = X^2 P' - 2XP.$$

Prove that f is a linear application and compute its rank.

Let $\alpha, \beta \in \mathbb{R}$ and $P_1, P_2 \in R_2[X]$,

$$f(\alpha P_1 + \beta P_2) = X^2 (\alpha P_1 + \beta P_2)' - 2X(\alpha P_1 + \beta P_2)$$

$$= X^2 (\alpha P_1' + \beta P_2') - 2X(\alpha P_1 + \beta P_2)$$

$$= \alpha (X^2 P_1' - 2X P_1) + \beta (X^2 P_2' - 2X P_2)$$

$$= \alpha f(P_1) + \beta f(P_2).$$

Hence, f is a linear application.

rk(f) = dim(Imf). However,

$$Imf = \{f(P), P \in R_2[X]\}$$

$$= \{X^2(aX^2 + bX + c)' - 2X(aX^2 + bX + c), a, b, c \in \mathbb{R}\}$$

$$= \{X^2(2aX + b) - 2X(aX^2 + bX + c), a, b, c \in \mathbb{R}\}$$

$$= \{-bX^2 - 2cX, b, c \in \mathbb{R}\}$$

$$= \{b(-X^2) + c(-2X), b, c \in \mathbb{R}\}.$$

Hence, $Imf = span\{-X^2, -2X\}$, and since $\{-X^2, -2X\}$ is a linearly independent list, then it forms a basis for Imf. Then, rk(f) = 2.