Chapter 3

Matrices

3.1 Basic matrix notation

Definition 3.1.1. Suppose m and n are nonnegative integers. An m-by-n matrix A is a rectangular array of elements of \mathbb{F} with m rows and n columns:

$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

The notation $a_{j,k}$ denotes the entry in row j, column k of A.

Example 3.1.2. a_{jk} equals entry in row j, column k of A

$$A = \begin{bmatrix} 3 & 4 & 2 \\ 1 & 9 & 6 \end{bmatrix}$$

Thus a_{23} refers to the entry in the second row, third column of A, which means that $a_{23} = 6$.

Remark 3.1.3. 1. The terms a_{ij} are called coefficients of the matrix (a_{ij}) .

- 2. The matrix (a_{ij}) is said of type (m, n) if it has m rows and n columns.
- 3. The set of matrices of type (m,n) with coefficients in \mathbb{F} , is noted $\mathcal{M}_{m,n}(\mathbb{F})$.
- 4. The indexes i, j are respectively the number rows, and number of columns.
- 5. Two matrices A and B are equals if they are of same type and they have the same coefficients.

$$(a_{ij}) = (b_{ij}) iff a_{ij} = b_{ij}, \forall i, j.$$

Example 3.1.4.
$$\begin{pmatrix} 1+i & 0 \\ -i & 1 \end{pmatrix}$$
, where $i^2 = -1$ is a matrix of $\mathcal{M}_{2,2}(\mathbb{C})$.

3.2 Particular matrices

- 1. A matrix is called null matrix and it is noted 0 if all its coefficients are zeroes, $(a_{ij}) = 0$ iff $a_{ij} = 0$, $\forall i, j$.
- 2. A matrix is called row matrix of order n if it is of type (1, n).
- 3. A matrix is called column matrix of order n if it is of type (n, 1).
- 4. A matrix is called square matrix of order n if it is of type (n, n).
- 5. A square matrix is called lower triangular if all the entries above the main diagonal are zeroes, which means $a_{ij} = 0$, $\forall i < j$. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zeroes, which means $a_{ij} = 0$, $\forall i > j$.
- 6. A square matrix is called diagonal if it is upper and lower triangular.

7. The identity matrix of size n is an $n \times n$ matrix with ones on the main diagonal and zeroes elsewhere.

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{bmatrix}$$

Examples 3.2.1. $\begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$ is a matrix of $\mathcal{M}_{3,1}(\mathbb{R})$.

$$\begin{pmatrix} 1 \\ 2 & 1 & 3i & 9 \end{pmatrix} \text{ is a matrix of } \mathcal{M}_{1,4}(\mathbb{C}).$$

$$\begin{pmatrix} 2 & i & 0 \\ 4 & 0 & -2i \end{pmatrix} \text{ is a matrix of } \mathcal{M}_{2,3}(\mathbb{C}).$$

Remark 3.2.2. The coefficients of I_n the identity matrix are noted δ_{ij} , and its called the kronecker coefficients

$$\delta_{ij} = \begin{cases} 0, & i \neq j, \\ 1, & i = j. \end{cases}$$

3.2.1 Operations on matrices

3.2.1.1 Addition of matrices and scalar multiplication

Let $A = (a_{ij})$, $B = (b_{ij})$ be two matrices in $\mathcal{M}_{m,n}(F)$ and $\alpha \in \mathbb{F}$, we define A + B and $\alpha \cdot A$ by

$$A + B = (a_{ij} + b_{ij}), \quad \alpha.A = (\alpha a_{ij}).$$

Remark 3.2.3. The sum of matrices is defined if the matrices are of same size.

Examples 3.2.4. Let

$$A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 5 & 4 & 3 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 0 & 0 & 2 \\ -8 & 3 & 1 & -9 \end{pmatrix}.$$

Then

$$A + B = \begin{pmatrix} 0 & -1 & 0 & 1 \\ -3 & 7 & 4 & -7 \end{pmatrix}, \quad 2.B = \begin{pmatrix} -2 & 0 & 0 & 4 \\ -16 & 6 & 2 & -18 \end{pmatrix}.$$

3.2.2 Multiplication of matrices

Let $A = (a_{ij})$ a matrix in $\mathcal{M}_{m,n}(F)$, and $B = (b_{ij})$ be a matrix in $\mathcal{M}_{n,k}(F)$, we define the product

$$A.B = (ab_{ij}) = \sum_{p=1}^{n} a_{ip}b_{pj}$$

Remark 3.2.5. • The product of matrices is defined if the number of columns of first matrix is the number of rows of the second matrix.

• The coefficients of the matrix A.B are

$$ab_{11} = \sum_{p=1}^{n} a_{1p}b_{p1} = a_{11}b_{11} + a_{12}b_{21} + \dots + a_{1n}b_{n1}.$$

Similarly, the term ab_{nn} is given by

$$ab_{nn} = \sum_{p=1}^{n} a_{np}b_{pn} = a_{n1}b_{1n} + a_{n2}b_{2n} + \dots + a_{nn}b_{nn}.$$

Examples 3.2.6. Let

$$A = \begin{pmatrix} -2 & 0 & 0 \\ -16 & 6 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 3 & 1 \\ 1 & 1 & -1 \end{pmatrix}.$$

The product A.B is well defined and it is given by

$$AB = \begin{pmatrix} -2 & 0 & 0 \\ -20 & 20 & 4 \end{pmatrix}.$$

However, the product BA is not defined, since $B \in \mathcal{M}_{3,3}(\mathbb{R})$ and $A \in \mathcal{M}_{2,3}(\mathbb{R})$.

3.2.2.1 Properties of matrix product

Let A, B and C three matrices, the following statements are true.

- 1. Non commutativity, $A.B \neq B.A$.
- 2. Associativity, (A.B).C = A.(B.C).
- 3. Distributivity, A.(B+C) = A.B + A.C, and (A+B).C = A.C + B.C.
- 4. Identity element: $\exists I \in \mathcal{M}_n(\mathbb{F}), A.I = A = I.A.$

3.2.3 Transpose of a matrix

We call the transpose of a matrix $A \in \mathcal{M}_{m,n}(\mathbb{F})$, the matrix of $\mathcal{M}_{n,m}(\mathbb{F})$, noted tA and defined as ${}^tA = (a_{ji}), \ \forall i, j$.

Remark 3.2.7. 1. ${}^{t}A$ is a matrix, where its rows are columns of A.

- $2. \ ^t(^tA) = A.$
- 3. If ${}^{t}A = A$, A is called symmetric.

Examples 3.2.8. 1. If
$$A = \begin{pmatrix} -1 & -1 & 0 \\ 7 & 4 & -3 \\ 9 & 1 & 8 \end{pmatrix}$$
, then ${}^{t}A = \begin{pmatrix} -1 & 7 & 9 \\ -1 & 4 & 1 \\ 0 & -3 & 8 \end{pmatrix}$.

2. If
$$A = \begin{pmatrix} -1 & -1 & 0 & 3 \\ 7 & 4 & -3 & -6 \end{pmatrix}$$
, then ${}^{t}A = \begin{pmatrix} -1 & 7 \\ -1 & 4 \\ 0 & -3 \\ 3 & -6 \end{pmatrix}$.

3.2.3.1 Properties of transpose

1.
$${}^{t}(A+B) = {}^{t}A^{t}B$$
.

2.
$${}^{t}(AB) = {}^{t}B^{t}A$$
.

3.
$$t(\alpha A) = \alpha^t A$$
.

$$4. \ ^t(ABC) = ^tC^tB^tA.$$

- 5. If ${}^tA=-A,\,A$ is called skew-symmetric.
- 6. $A^t A$ is always symmetric.