
Université des Sciences et de la Technologie d'Oran Faculté de Génie Electrique 2^{ème} Année Licence 2023/2024 Electronique Fondamentale 2

Travaux Dirigés Série N°1 (Transistor bipolaire)

Exercice 1

Dessinez une famille idéale de courbes caractéristiques du collecteur pour le circuit de la figure 1 pour $I_B = 5~\mu A$ à 25 μA par tranche de 5 μA . supposez que $\beta_{cc} = 100$ et que V_{CE} n'excède pas le claquage. Avec : $R_B = 10 k \Omega$ et $R_C = 1 k \Omega$.

Exercice 2

A la figure 2, déterminez si le transistor est en état de saturation, supposez que V_{CE(sat)=}0.2 V.

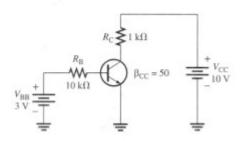


Figure (2)

Exercice 3

Le circuit de polarisation par la base au montage de la figure 3 subit une hausse de température de 25° C à 75° C.Si β cc=100 à 25° C et 150 à 75° C, déterminez le pourcentage de variation des valeurs du point Q(I_C, V_{CE}) en fonction de l'échelle des températures .négligez toute variation en V_{BE} et l'éffet de tout courant de fuite.

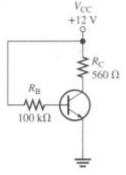


Figure (3)

Exercice 4

Déterminez la variation du point Q à la figure 4 pour l'échelle des températures où β_{cc} augmente de 85 à 100 Et où V_{BE} diminue de 0.7 V à 0.6 V.

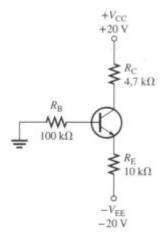


Figure (4)

Exercice 5

Déterminez VCE et IC de la figure 5 si β_{cc} =100.

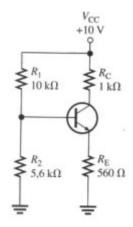


Figure (5)