Durée	ni	niC	ei
[0,2[20	20	2
[2,4[40	60	2
[4,6[20	80	2
[6,12[20	100	6
[12,34[100	200	22

1. la classe médiane [12,34] car car n_{5C} est le premier effectif cumulé supérieur à N/2

Me=
$$12 + \frac{\frac{N}{2} - n_{(i-1)C}}{n_i} e_i = 12 + \frac{\frac{200}{2} - 100}{100} 22 = 12 \text{ min}$$
 (1pt)

2. le quartile Q_1 , $Q_1 \in [2,4[$ car $Q_1=c_{25}$ (le $25^{ième}$ centile), $N\alpha/100=N.25/100=50$ et $n_2c=60$ est le premier effectif cumulé supérieur à $N\alpha/100$

$$Q_1 = 2 + \frac{\frac{N\alpha}{100} - n_{(i-1)C}}{n_i} e_i = 2 + \frac{50 - 20}{40} 2 = 3,5 \text{ min}$$
 (1pt)

3. le quartile Q_3 , $Q_3 \in [12,34\,[$ car $Q_3=c_{75}$ (le $75^{ième}$ centile), $N\alpha/100=N.75/100=$ 150 et $n_5c=200$ est le premier effectif cumulé supérieur à $N\alpha/100$

Q₃ =2 +
$$\frac{\frac{N\alpha}{100} - n_{(i-1)C}}{n_i} e_i = 12 + \frac{150 - 100}{100} 22 = 23 \text{ min}$$
 (1pt)

4. le centile C_{60} , $C_{60} \in [12, 34[$ car $N\alpha/100 = N.60/100 = 120$ et nsc=200 est le premier effectif cumulé supérieur à 120.

$$C_{60} = 12 + \frac{\frac{N \times}{100} - n_{(i-1)C}}{n_i} e_i = 12 + \frac{120 - 100}{100} 22 = 16,4 \text{ min}$$
 (1pt)

5. Les rangs centiles des durées d'appel 5min et 15 min?

$$rg(5)=\alpha \Leftrightarrow c_{\alpha} = 5$$

$$\mathbf{C}_{\alpha} = 5 = 4 + \frac{\frac{N\alpha}{100} - n_{(i-1)C}}{n_i} e_i$$
 donc $5 = 4 + \frac{\frac{200\alpha}{100} - 60}{20} 2$ donc $\alpha = \text{rg}(5) = 35$ (1,5 pts)

$$rg(15)=\alpha \Leftrightarrow C_{\alpha} = 15$$

$$\mathbf{C}_{\alpha} = 15 = 12 + \frac{\frac{N\alpha}{100} - n_{(i-1)C}}{n_i} e_i = 12 + \frac{\frac{200\alpha}{100} - 100}{100} 22$$
 donc $\alpha = \text{rg}(15) = 57$ (1,5 pts)

La proportion des appels de durée entre 5 et 15 minutes ?

La proportion
$$P(5 < X < 15) = rg(15) - rg(5) = 57 - 35 = 22 \%$$
 (1pt)

Exercice $n^{\circ}2$: (5 pts) $(\mathcal{A}_{n}^{p}: Arrangement \ avec \ r\'ep\'etitions)$

- 1. If y a $\mathcal{A}_9^3 = 9^3 = 729$ codes possibles. (1pt)
- 2. If y a $\mathcal{A}_9^2 \times 4 = 324$ codes se terminant par un chiffre pair. (1pt)
- 3. Il est plus facile de calculer le contraire, c'est-à-dire le nombre de codes qui ne contiennent pas le chiffre 4. Il y'en a A₈³ = 8³ = 512. (1pt)
 Donc le nombre de codes contenant au moins un chiffre 4 sont 729 512 = 217 (1pt) codes possibles.
- 4. If y a $C_3^1 \times A_8^2 = 3 \times 8^2 = 192$ codes possibles. (1pt)

Exercice n°3: (7 pts)

- I. Les deux évènements sont **indépendants** :
 - 1. $P(A \cap B) = P(A) \times P(B) = 0.3 \times 0.5 = 0.15$. (1.5 pt)
 - 2. $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.3 + 0.5 0.15 = 0.65$. (1pt)
 - 3. $P(A \cap \overline{B}) = P(A) P(A \cap B) = 0.3 0.15 = 0.15$. (1pt)
- II. Les deux évènements sont **incompatibles** :
 - 4. $P(A \cap B) = 0$. (1.5 pt)
 - 5. $P(A \cup B) = P(A) + P(B) P(A \cap B) = 0.3 + 0.5 0 = 0.8$. (1pt)
 - 6. $P(A \cap \overline{B}) = P(A) P(A \cap B) = 0.3 0 = 0.3$. (1pt)