
Chapter 1 Basics of Numerical Analysis and Scientific 

Computing 

1.1 Motivations 

 

 

In the realm of mathematics, we frequently encounter continuous problems. However, computers 

are limited to discrete representations. For example, computers can only approximate irrational 

numbers like 𝜋 or √2. Additionally, they use approximations for basic mathematical functions 

such as sine, cosine, etc. Numerical analysis bridges this gap, offering a rigorous framework for 

translating continuous mathematical problems into discrete problems that computer can handle. It 

is at the heart of many scientific and technological advances. Numerical analysis and computer 

science are inextricably linked. Advances in computing have empowered numerical methods to 

tackle increasingly complex problems. Computer scientists design efficient algorithms to 

implement these methods, while mathematicians provide the theoretical underpinnings. This 

synergistic relationship is indispensable in fields like artificial intelligence and data science, where 

numerical techniques are ubiquitous. 

 

1.2 Floating-Point Arithmetic and Rounding Errors 

Floating-point arithmetic is a numerical representation used in computers to approximate real 

numbers. Given that computers operate with finite memory, they cannot represent most real 

numbers exactly. Instead, they represent them using a finite number of bits, which leads to the 

following key concepts:: Representation of Floating-Point Numbers and  Rounding Errors 

 

1.2.1 Representation of Numbers in Machine 

1.2.1.1 Introduction 

In this section, we will introduce the concepts of mantissa, exponent, and how numbers are 

represented on a calculator or computer. 

Base 10 is the natural base we work with and the one found in calculators. A decimal number, 

or decimal, has several different representations by simply changing the position of the decimal 

point and adding a power of 10 at the end of the number's representation. The part to the left of 

the decimal point is the integer part, and the part to the right before the exponent is called the 

mantissa. For example, the number x = 1234.5678 has several representations: 

𝑥 = 1234,5678 =  1234,5678 . 100 =  1,2345678. 103 =  0,0012345678. 106     (1) 

In each representation in Eq. (1): 

 The “mantissa” is the significant part of the number, located to the left of the power of 

10. In our example, it can be 1234,5678, 1,2345678, or 0,0012345678. 

 The “exponent” is the power of 10 that shifts the decimal point: 0, 3, or 6. 

Notation: "Numerical analysis is the study of algorithms for the problems of 

continuous mathematics." — Lloyd N. Trefethen 

 



 

 

 

1.2.1.2 Representation of a Number in Machine: Floating-Point Numbers 

The binary system is the foundation of computer arithmetic. In this system, numbers are 

represented using only two digits: 0 and 1. 

Let's take the decimal number 39 and 3,625. In binary, it is represented as 100111 and 11.101, 

respectively in Eq. (2) and Eq. (3).  

39 = 32 + 4 + 2 + 1 = 25 + 22 + 21 + 20 = (100111)2         (2) 

3,625 = 21 + 20 + 2−1 + 2−3 = (11.101)2 = (1.1101)2       (3) 

In general, any real number x can be represented in a base b (b = 10 for a calculator, b = 2 for 

a computer) by: its sign “+ or –”, the “mantissa m” (also called significand), the “base b”, and 

an “exponent e”. The mantissa is usually normalized to have a leading non-zero digit. By 

varying e, the decimal point is made to 'float'. However, due to the finite nature of computer 

memory, only a finite subset of real numbers can be exactly represented. Consequently, a 

machine-level real number or floating-point number is subject to rounding errors, which can 

lead to loss of precision in certain calculations. 

�̌� = ±𝑚. 𝑏𝑒  

𝑚 = 𝐷, 𝐷 … . 𝐷   𝑎𝑛𝑑 𝑒 = 𝐷 … 𝐷, 𝑤ℎ𝑒𝑟𝑒 𝐷 ∈ {0,1, … , 𝑏 − 1}                                               (4)       

 

Approximate representations of π are: (0.031,2), (3.142,0), (0.003,3). It can be observed that 

these representations do not yield the same level of precision. To ensure uniqueness and optimal 

precision, a normalized mantissa is employed, where the leading digit before the radix point is 

non-zero. Normalized machine numbers adhere to this convention. In base 2, the initial bit of 

the mantissa is invariably 1, and thus, it is omitted to save a bit. The exponent is constrained to a 

finite range, L <= e <= U (typically L < 0 and U > 0). Consequently, the system is defined by 

four integral parameters: the base b (usually 2), the precision t (number of digits in the 

mantissa), and the minimum and maximum exponents, L and U, respectively. 

 

 

 

 

 

 

 

 

 

 

 

Why this representation?  

It offers great flexibility to represent very large or very small numbers, while using a 

fixed number of digits. 

 

Example:  Let's take the number π (Pi) and represent it in base 2 with a 5-bit mantissa and an 

exponent ranging from -2 to 2. 

Choice of an approximation for π: We will use the approximation 3.1416. 

Normalization of the mantissa: To normalize, we shift the decimal point so that there is a 1 

before the decimal. Thus, 3.1416 becomes 1.1001 × 21. 

Binary representation: 

The mantissa (without the leading 1) is: 1001 

The exponent is: 1 (which corresponds to 21 in our example) 

Therefore, the floating-point representation of π in our system is (1.1001,1). 

To summarize, the number π is represented by: 

 Sign: + (positive) 

 Mantissa: 1.1001 (normalized) 

 Exponent: 1 

 Base: 2 

 



Mathematical computations involve real numbers z drawn from a continuous interval ∈
]−∞, +∞[ . However, the finite precision of computers necessitates approximations for most 

real numbers. For instance, 
1

3
 , √2, 𝑎𝑛𝑑 𝜋 , with its infinite decimal expansion, cannot be 

exactly represented in a machine. Even the simplest calculations then become approximate. 

Practical experience shows that this limited set of representable numbers is largely sufficient 

for calculations on a computer; the numbers used in computations are machine numbers 

𝑥 ∈ ]𝑥𝑚𝑖𝑛, . . , 𝑥𝑚𝑎𝑥[. Hence, any real number 𝑥 must be mapped to a machine number 𝑥 

before it can be processed by a computer. 

 

Figure 1. Representation of real number 𝑥 ∈ 𝑅 by machine numbers 𝑥 ∈ 𝐹 

Definitions  

Definition1: Machine precision, it is described by the machine number 𝜀, 𝜀 is the smallest 

machine number such that 1 + 𝜀 > 1  on the machine. It is the distance between the integer 1 

and the closest number 𝑥 ∈ 𝐹, which is greater than 1. 

Definition2: The IEEE 754 standard is a widely adopted framework for representing floating-

point numbers in computer systems. It defines formats for both single-precision and double-

precision numbers, ensuring consistency and accuracy in numerical computations across 

different computing platforms. 

 

 

 

 

 

 

Figure 2. Representation of The IEEE 754 standard for both single-precision and double-precision 

numbers 

The IEEE 754 standard defines a framework for representing floating-point numbers in computing, 

ensuring consistency and accuracy across platforms. It includes two primary formats: single precision 

(32 bits) and double precision (64 bits). In both formats, the representation is divided into three main 

components: the sign bit, which indicates whether the number is positive or negative; the exponent, 

which is biased to allow for both positive and negative values; and the mantissa, which represents the 

significant digits of the number in a normalized form. The bias for single precision is 127, while for 

double precision, it is 1023. For single precision, the format consists of 1 sign bit, 8 exponent bits, and 

23 mantissa bits, while double precision uses 1 sign bit, 11 exponent bits, and 52 mantissa bits. This 



structure allows for efficient computation and standardized handling of special values, such as zero, 

infinity, and NaN (Not a Number), facilitating reliable numerical operations in various applications. 

Example: Here’s the representation of −6.75 in both single-precision and double-precision IEEE 754 

formats. 

1. Single Precision (32 bits) 

Step 1: Convert to Binary 

 Absolute value: 6.75 in binary is 110.11. 

Step 2: Normalize 

 Normalize to: 1011 × 22 

Step 3: Sign Bit 

 Sign (S): 1 (negative) 

Step 4: Exponent 

 Actual exponent: 2 

 Biased exponent: 2 + 127 = 129 

 In binary: 10000001 

Step 5: Mantissa 

 Mantissa (without leading 1): 10110000000000000000000 (23 bits) 

Final Representation 

 

Putting it all together: 

| 1 | 10000001 | 10110000000000000000000 | 

 

2. Double Precision (64 bits) 

Step 1: Convert to Binary 

 Absolute value: 6.75 in binary is 110.11. 

Step 2: Normalize 

 Normalize to: 1011 × 22 

Step 3: Sign Bit 

 Sign (S): 1 (negative) 

Step 4: Exponent 

 Actual exponent: 2 

 Biased exponent: 2 + 1023 = 1025 

 In binary: 10000001001 (11 bits) 

Step 5: Mantissa 

 Mantissa (without leading 1): 

101100000000000000000000000000000000000000000000 (52 bits) 

Final Representation 

 

Putting it all together: 

| 1 | 10000001001 | 101100000000000000000000000000000000000000000000 | 

 

1.2.2 Rounding Errors 

Rounding errors occur when numbers are approximated to fit within the finite precision of a 

computer's numerical representation. These errors arise because many real numbers cannot be 

represented exactly in a binary format, leading to discrepancies between the true value and its 

computed representation. When performing arithmetic operations, results may require more 

precision than can be accommodated, necessitating rounding to fit the format. As a result, 

rounding errors can accumulate in iterative calculations, potentially leading to significant 

inaccuracies in the final output. 



1.2.2.1 Absolute Error 

The absolute error measures the difference between the exact value and the approximate value 

obtained through computation. It is defined as: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 =  |Exact Value − Approximate Value|                (5) 

For example, if the exact value of a number is 3.14159 and the computed value is 3.14, the 

absolute error is: ∣3.14159−3.14∣=0.00159 

1.2.2.2 Relative Error 

Relative error provides a measure of the absolute error in relation to the size of the exact value, 

allowing for a better understanding of the error's significance in context. It is calculated as: 

Relative Error =
|Exact Value−Approximate Value|

|Approximate Value|
                             (5) 

Using the previous example, the relative error for the values 3.14159 (exact) and 3.14 

(approximate) would be: 

Relative Error =
|0.00159|

|3.14159|
≈ 0.000506              (6) 

Rounding errors can significantly impact the accuracy of numerical computations due to limited 

precision in representing real numbers. Absolute error quantifies the direct difference between 

exact and approximate values, while relative error contextualizes this difference by comparing it 

to the size of the exact value. Understanding both types of errors is crucial for assessing the 

reliability of numerical results in various applications. 

 1.3 Stability and Error Analysis of Numerical Methods and Problem Conditioning 

To develop reliable and accurate numerical algorithms, it is essential to integrate error 

analysis, stability analysis, and considerations of problem conditioning: 

1.3.1 Algorithm Selection:  

Algorithm selection in numerical analysis is a multi-faceted process that involves 

understanding the problem, analyzing errors, evaluating stability and complexity, and 

considering problem conditioning. By systematically evaluating these factors, one can 

choose the most appropriate numerical method that balances accuracy, efficiency, and 

reliability, ensuring that the chosen approach yields trustworthy results in practice. This 

careful selection process is essential for successfully solving complex mathematical 

problems across various scientific and engineering disciplines. Here’s a detailed 

breakdown of the factors to consider when selecting an algorithm. 

1.3.1.1 Understanding the Problem 

Before selecting an appropriate algorithm, it is crucial to thoroughly understand the 

nature of the problem at hand. First, identify the “type of problem” you are dealing 

with, whether it involves linear systems, nonlinear equations, optimization tasks, 

differential equations, or integration. Each type requires specific algorithms that 

leverage their unique characteristics and properties. Additionally, consider the 



“dimensionality” of the problem, as the number of variables can significantly impact 

algorithm performance. Some algorithms may excel in lower-dimensional spaces but 

encounter challenges as dimensionality increases—a phenomenon often referred to as 

the "curse of dimensionality." This understanding lays the groundwork for making 

informed choices about which numerical methods will yield the most accurate and 

efficient results for your specific context. 

1.3.1.2 Error Analysis 

Understanding the error characteristics of different algorithms is vital for selecting the 

most suitable method for a given problem. “Truncation error” refers to the error 

introduced when an algorithm approximates a solution, which can be assessed based on 

the method’s step size h. For example, numerical differentiation methods exhibit 

truncation errors that depend on the step size, typically expressed as Eq. (7):  

𝐸trunc~𝑂(ℎ𝑝)                                                       (7) 

Where p denotes the order of the method.  

In addition to truncation errors, it is essential to analyze “round-off error”, which 

results from the limitations of numerical precision during calculations. Algorithms 

requiring numerous arithmetic operations, particularly iterative methods, can 

accumulate significant round-off errors.  

To achieve a comprehensive understanding of overall accuracy, one must consider the 

“total error”, which can be expressed as Eq. (8): 

𝐸total = 𝐸trunc + 𝐸𝒓𝒐𝒖𝒏𝒅−𝒐𝒇𝒇                                 (8) 

 Recognizing how these error components interact and combine is crucial for selecting 

an algorithm that maintains a manageable total error, ensuring reliable and accurate 

numerical results. 

1.3.1.3 Stability Analysis 

The stability of an algorithm is a critical factor that indicates how errors propagate 

during computations. Stable algorithms are designed to avoid significant amplification 

of errors throughout the calculation process.  

For instance, direct methods like Gaussian elimination are typically stable; however, 

they can encounter large truncation errors, particularly when applied to ill-conditioned 

problems. In contrast, iterative methods, such as the Jacobi method, may be unstable, 

especially if their convergence heavily relies on the initial guess or the conditioning of 

the problem. The “condition number” of a matrix A, denoted as κ(A), serves as a 

measure of sensitivity to input variations and numerical errors. It is defined as Eq. (9) 

κ(A) = ‖𝐴‖‖𝐴−1‖                                                                                (9) 

A high condition number indicates potential instability, suggesting that small changes in 

the input can lead to large variations in the output. Therefore, selecting algorithms that 

effectively mitigate the effects of high condition numbers is essential for ensuring 

reliable numerical results, particularly in sensitive computational scenarios. 



1.3.1.4  Complexity and Efficiency 

When selecting an algorithm, it's important to evaluate both its computational 

complexity and efficiency. “Time complexity” measures how the execution time 

increases with the size of the input. For instance, solving a system of linear equations 

using Gaussian elimination has a time complexity of 𝑂(𝑛3), which can be 

computationally expensive for large systems.  

In contrast, iterative methods like the Conjugate Gradient algorithm often offer 

improved performance, particularly for large sparse systems, as they can converge faster 

and require fewer operations. Additionally, “space complexity” should be assessed to 

understand the memory requirements of the algorithm. Some methods necessitate extra 

space for storing intermediate results, which can pose challenges in resource-

constrained environments. Balancing time and space complexity is crucial for selecting 

efficient algorithms that meet the demands of specific problems while optimizing 

resource usage.  

1.3.1.5  Specific Characteristics of Algorithms 

When selecting an algorithm, it is crucial to consider its “convergence behavior, as 

different methods converge at different rates. For example, Newton's method converges 

quadratically near the solution, while the Bisection method exhibits linear convergence, 

making it slower but more robust for certain problems. Additionally, the “robustness” 

of an algorithm is essential; methods sensitive to minor input changes may not be 

suitable for real-world applications. “Adaptivity” is another key feature; some 

algorithms can dynamically adjust their parameters based on problem characteristics, 

such as adaptive step-size methods in numerical integration, which modify the step size 

according to estimated errors. Evaluating these characteristics helps ensure the selection 

of algorithms that are efficient, reliable, and resilient under various conditions. 

1.3.1.6  Problem Conditioning 

Understanding the conditioning of a problem is crucial for algorithm selection, 

particularly in differentiating between “well-conditioned” and “ill-conditioned” 

problems. Ill-conditioned problems are sensitive to small input perturbations, which can 

lead to significant output variations, complicating the numerical solution. In such cases, 

it is often beneficial to use regularization techniques or select more robust algorithms 

that minimize error propagation. These strategies help stabilize the solution, ensuring 

that minor changes in input do not cause disproportionately large errors in the results. 

Recognizing the problem's conditioning enables informed decisions about which 

algorithms will provide reliable and accurate solutions. 

1.3.1.7  Availability of Libraries and Tools 

When choosing an algorithm, it's essential to consider the availability of implementation 

resources, such as libraries and tools that facilitate application. Libraries like NumPy 

and SciPy, along with specialized numerical solvers, can save significant time and effort 

by offering pre-implemented functions and optimized algorithms. Additionally, strong 

community support and comprehensive documentation are invaluable; they help users 

troubleshoot issues and provide practical insights into algorithm usage. This support 

enhances the implementation of numerical methods, ensuring effective application 

while minimizing potential challenges. 



1.3.2 Refinement and Adaptation 

Numerical methods can often be refined based on error and stability assessments. For 

instance, adaptive algorithms can adjust parameters like step size dynamically based on 

estimated errors. 

1.3.3 Validation and Testing 

Rigorous testing and validation against known solutions or benchmarks can help verify 

that the combined considerations of error, stability, and conditioning lead to reliable 

numerical results. 

 

Error analysis and stability are vital for ensuring the reliability and accuracy of numerical 

algorithms. A comprehensive understanding of these concepts, combined with an awareness of 

problem conditioning, allows developers to create robust numerical methods suitable for a 

wide range of applications. By systematically addressing these aspects, we can enhance the 

performance and trustworthiness of numerical computations in science and engineering. 

 


