
Chapter 2 Direct Methods for Solving Linear Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑏 

{

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

{

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
               𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

                                       𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

{

                                     𝑎1𝑛𝑥𝑛 = 𝑏1
              𝑎2(𝑛−1)𝑥𝑛−1+𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

Definitions 

Definition 1:  
A linear equation is an equation that can be expressed in the form: 

Where 𝑎1, 𝑎2, … , 𝑎𝑛 are coefficients, 𝑥1, 𝑥2, … , 𝑥𝑛 are variables, and 𝑏 is a constant. 

 

Definition 2:  
A linear system of equations consists of two or more linear equations involving the same set of 

variables. 

 

where 𝑥1, 𝑥2, … , 𝑥𝑛 are the unknowns, 𝑎11, 𝑎12, … , 𝑎𝑛𝑛 are the coefficients of the system, 

and 𝑏1, 𝑏2, … , 𝑏𝑛 are the constant terms. 

There are three possible behaviors of a linear system: infinitely many solutions, a single unique 

solution ( 𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇
, and no solution. 

Understanding the possible behaviors of linear systems—infinitely many solutions, a single 

unique solution, and no solution—is crucial in both theoretical and practical contexts. Each 

behavior has distinct implications for how we approach solving systems of equations and 

understanding the relationships between variables. By identifying the nature of a linear system, 

we can apply the appropriate methods for analysis and solution. 

 

Definition 3:  
Triangular and diagonal systems are special cases of linear systems that offer the advantage of 

being very easy to solve. They form an important foundation for understanding and 

implementing more general methods for solving linear systems. 

 

1) Upper triangular system, each equation has the form: 

 

Here, all coefficients below the main diagonal are zero (∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 > 𝑗 ∶ 𝑎𝑖𝑗 = 0). 

 

2) Lower triangular system, the arrangement is inverted: 

Where (∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 < 𝑗 ∶ 𝑎𝑖𝑗 = 0). 

3) In a diagonal system of linear equations, the arrangement of the coefficients is such 

that all non-zero elements lie on the main diagonal of the coefficient matrix. 

4) {

𝑎11𝑥1 = 𝑏1
 𝑎22𝑥2 = 𝑏2
…………

  𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 

Where (∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 ≠ 𝑗 ∶ 𝑎𝑖𝑗 = 0 𝑎𝑛𝑑  𝑎𝑖𝑖 ≠ 0). 

 



2.1 Remarks on Solving Triangular Systems 

One of the fundamental principles in linear algebra is that any system of linear equations can be 

transformed into a triangular system. This is typically achieved through a process called Gaussian 

elimination or LU decomposition. By manipulating the equations using row operations such as 

swapping rows, multiplying rows by non-zero constants, and adding multiples of one row to another 

one can systematically eliminate variables to achieve either an upper or lower triangular form. 

2.1.1 Solving Upper Triangular System 

To solve an upper triangular system, we use back substitution. The idea is to start from the last 

equation and substitute backward. The process is: 

1) Solve for 𝑥𝑛: 

 𝑥𝑛 =
𝑏𝑛

𝑎𝑛𝑛
                       (10) 

2) Substitute 𝑥𝑛 into the previous-to-First equation and Solve for  i = n − 1…1, 𝑥𝑖 :   

 𝑥𝑖 =
𝑏𝑖−∑ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=𝑖+1

𝑎𝑖𝑖
           (11) 

Example: 

{

2𝑥1 + 3𝑥2 + 𝑥3 = 7
           4𝑥2 + 2𝑥3 = 10
                       5𝑥3 = 15

    → {

2𝑥1 + 3𝑥2 + 𝑥3 = 7
4𝑥2 + 2𝑥3 = 10

𝒙𝟑 =
𝟏𝟓

𝟓
= 𝟑

  → {

2𝑥1 + 3𝑥2 + 𝑥3 = 7

𝒙𝟐 =
𝟏𝟎 − 𝟐(𝟑)

𝟒
= 𝟏

𝒙𝟑 = 𝟑

   → {
𝒙𝟏 =

𝟕 − 𝟑(𝟏) − (𝟑)

𝟐
=
𝟏

𝟐
𝒙𝟐 = 𝟏
𝒙𝟑 = 𝟑

       

The solution x is (
𝟏

𝟐
, 1,3)

𝑇
 

2.1.1 Solving Lower Triangular System 

To solve a lower triangular system, we use forward substitution. The steps are as follows: 

1) Solve for 𝑥1: 

 𝑥1 =
𝑏1

𝑎11
                       (12) 

2) Substitute 𝑥1 into the second-to-last equation and Solve for  i = 2…n, 𝑥𝑖 :   

 𝑥𝑖 =
𝑏𝑖−∑ 𝑎𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1

𝑎𝑖𝑖
                 (13) 

Example: 

{

                        2𝑥1 = 6
             4𝑥1 + 3𝑥2 = 18
5𝑥1 − 2𝑥2 +  3𝑥3 = 7

    → {
𝒙𝟏 =

𝟔

𝟐
= 𝟑

4𝑥1 + 3𝑥2 = 18
5𝑥1 − 2𝑥2 +  3𝑥3 = 7

  → {

𝒙𝟏 = 𝟑

𝒙𝟐 =
𝟏𝟖 − 𝟒(𝟑)

𝟑
= 𝟐

5𝑥1 − 2𝑥2 +  3𝑥3 = 7

   → {

𝒙𝟏 = 𝟑
𝒙𝟐 = 𝟐

𝒙𝟑 =
𝟕 − 𝟓(𝟑) + 𝟐(𝟐)

𝟑
= −

𝟒

𝟑

       



The solution x is (3,2,−
𝟒

𝟑
)
𝑇

 

Triangular systems of equations provide a structured and efficient framework for solving 

linear equations. By transforming any system into a triangular form, we can leverage back 

substitution for upper triangular systems and forward substitution for lower triangular 

systems. Understanding these concepts is crucial for advanced numerical methods and 

applications in various fields, including engineering and computer science. 

 

2.2 Gaussian Elimination Method 

Gaussian elimination is a powerful and systematic method for solving systems of linear 

equations. The primary goal of this technique is to transform a rectangular system represented 

as AX= B into an equivalent upper triangular form, denoted as UX= C. In this representation, 

A is the coefficient matrix, X is the vector of variables, and B is the constant vector. The 

matrix U is an upper triangular matrix, and C is a modified constant vector resulting from the 

elimination process. 

 

Figure 3. Gaussian Elimination Method  

In summary, the Gaussian elimination process consists of two main steps: triangularization and 

resolution. First, we express a system of linear equations in the matrix form AX= B, combining the 

coefficient matrix A and constants vector B into an augmented matrix [A∣B] The goal of 

triangularization is to transform this matrix into row echelon form, where all entries below the main 

diagonal are zeros. If a pivot is zero, we handle this by swapping with a non-zero row below it. After 

achieving row echelon form, the resolution step involves back substitution: starting from the last 

equation, we express each variable in terms of the others and substitute back up to find the values of 

all unknowns.  

Step 1:  Triangularization 

1) Writing the System in Matrix Form: To begin, we express the system of linear equations in 

the form:𝑨𝑿 = 𝑩 

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮

  𝑎𝑛𝑛

) , 𝐵 =  (

𝑏1
𝑏2
⋮
𝑏𝑛

) , 𝑋 =  (

𝑥1
𝑥2
⋮
𝑥𝑛

)         (14) 

Where:𝐴 is the coefficient matrix, 𝑋 is the vector of unknowns, 𝐵 is the constants vector. 

2) Formulating the Augmented Matrix 

Combine the matrix 𝐴 and vector 𝐵 into an augmented matrix denoted as [𝐴|𝐵]: 



[𝐴|𝐵] = [

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮

  𝑎𝑛𝑛

|

𝑏1
𝑏2
⋮
𝑏𝑛

]        (15) 

3) Transforming to Row Echelon Form 

The objective is to convert the augmented matrix into an upper triangular form (row echelon 

form), where all entries below the main diagonal are zeros. 

[𝐴|𝐵] = [

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮

  𝑎𝑛𝑛

|

𝑏1
𝑏2
⋮
𝑏𝑛

]

𝐿1
𝐿2
⋮
𝐿𝑛

       (16) 

4) Using the Elimination Formula 

For 𝑖 = 1. . (𝑛 − 1) each pivot 𝑎𝑖𝑖, replace the entries below it using the formula: 

𝐹𝑜𝑟 𝑗 = 𝑖 + 1…𝑛,   𝐿𝑗 =   𝐿𝑗 −
  𝑎𝑗𝑖

  𝑎𝑖𝑖
×   𝐿𝑖       (17) 

Where: 

   𝐿𝑗 is the 𝑗𝑡ℎrow,  

   𝐿𝑖 is the 𝑖𝑡ℎrow (the pivot row), 
   𝑎𝑗𝑖  is the element below the pivot to reduce it to zero at position (𝑗, 𝑖) 

   𝑎𝑖𝑖  is the pivot element at position (𝑖, 𝑖). 

5) Handling Zero Pivots 

 Identifying a Zero Pivot 

If the pivot element   𝑎𝑖𝑖 is zero, we cannot proceed with elimination directly, as division by zero 

is undefined. 

 Row Swapping 

To resolve this issue, look for a non-zero entry in the same column below the current pivot row. If 

found, swap the current row with the row containing the non-zero entry:    𝐿𝑖  ↔ 𝐿𝑘 

Where   𝐿𝑘 is the row with the non-zero element: 𝑖 < 𝐾 ≤ 𝑛, 𝑎𝑘𝑖 ≠ 0. 

After swapping, continue using the elimination formula as before. 

6) Repeat the elimination process for each column until the matrix is in row echelon form 

Step 2: Resolution 

After triangularization, we obtain the following matrix system: 

𝑈 = (

𝑢11
0
⋮
0

𝑢12
𝑎22
⋮
0

…
…
  ⋱ …

𝑢1𝑛
𝑢2𝑛
⋮

  𝑢𝑛𝑛

) , 𝐶 =  (

𝑐1
𝑐2
⋮
𝑐𝑛

) 



Next, we transform the new system UX=C into a system of linear equations to solve for X, which will 

be the same solution as for the original system AX=B. 

{

𝑢11𝑥1 + 𝑢12𝑥2 +⋯+ 𝑢1𝑛𝑥𝑛 = 𝑐1
               𝑢22𝑥2 +⋯+ 𝑢2𝑛𝑥𝑛 = 𝑐2
……………………………………
                                       𝑢𝑛𝑛𝑥𝑛 = 𝑐𝑛

          (18) 

1)  Back Substitution 

 Solve for 𝑥𝑛: 

 𝑥𝑛 =
𝑐𝑛

𝑢𝑛𝑛
                       (19) 

 Substitute 𝑥𝑛 into the previous-to-First equation and Solve for  i = n − 1…1, 𝑥𝑖 :   

 𝑥𝑖 =
𝑐𝑖−∑ 𝑢𝑖𝑗𝑥𝑗

𝑛
𝑗=𝑖+1

𝑢𝑖𝑖
          (20) 

By transforming the system UX=C into a system of linear equations and solving through back 

substitution, you can effectively find the solution vector X, similar to how you would have solved 

AX=B. This process maintains the same structure and approach, ensuring consistency in solving linear 

systems. 

Example: 

Consider the following system of equations: 

{

2𝑥 + 3𝑦 + 𝑧 = 1
4𝑥 + 𝑦 + 2𝑧 = 2
−2𝑥 + 5𝑦 + 2𝑧 = 3

 

Step 1: Write the Augmented Matrix 

First, we form the augmented matrix [A∣B]: 

[
2 3 1
4 1 2
−2 5 2

|
1
2
3
]
𝐿1
𝐿2
𝐿3

 

Step 2: Triangularization 

For i=1 to (n-1)=2 

1. 𝑖 = 1 pivot 𝑎11 = 2 ≠ 0  

Eliminate the first column below the pivot by following Eq. (17): 

  𝐿𝑗 =   𝐿𝑗 −
  𝑎𝑗𝑖

  𝑎𝑖𝑖
×   𝐿𝑖 

 For 𝐿2 = 𝐿2 −
4

2
𝐿1 = 𝐿2 − 2𝐿1 

 For 𝐿3 = 𝐿3 −
(−2)

2
𝐿1 = 𝐿3 + 𝐿1 

The calculations for 𝐿2 and 𝐿3  are as follows: 



𝐿2 = (4  1  2|2) − 2( 2 3 1|1) =(4  1  2|2) − ( 4 6 2|2) =(0 − 5  0|0) 
𝐿3 = (−2  5 2|3) + ( 2 3 1|1) =( 0 8 3|4) 

The augmented matrix is now: 

[
2 3 1
0 −5 0
0 8 3

|
1
0
4
]
𝐿1
𝐿2
𝐿3

 

2. 𝑖 = 2 pivot 𝑎22 = −5 ≠ 0  

Eliminate the first column below the next pivot 

 For 𝐿3 = 𝐿3 −
8

(−5)
𝐿1 = 𝐿3 + 𝐿1 

𝐿3 = (0 − 8  3|4) +
8

5
(0 − 5  0|0) = (0  0  3|4) 

Finally, the augmented matrix is now: 

[
2 3 1
0 −5 0
0 0 3

|
1
0
4
] 

Step 3: Back Substitution 

From the final augmented matrix, we can write the equations: 

{
2𝑥 + 3𝑦 + 𝑧 = 1

−5𝑦 = 0
3𝑧 = 4

→

{
 
 

 
 𝑥 = −

1

6
𝑦 = 0

𝑧 =
4

3

 

Final Solution 

The solution to the system AX=B is: 𝑥 = (−
1

6
, 0,

4

3
)
𝑇

 

 

 

 

 

 

 

 

{

2𝑦 + 𝑧 = 4
𝑥 + 3𝑦 + 2𝑧 = 5
2𝑥 + 𝑦 + 𝑧 = 3

 

 

Exercise 
 

Consider the following system of linear equations represented by: 

 

1. Form the augmented matrix [A∣B] and perform Gaussian elimination. 

2. Then, deduce the determinant of A. 

NB: 𝐝𝐞𝐭(𝑨) = (−𝟏)𝒑. ∏ 𝒖𝒊𝒊
𝒏
𝒊=𝟏  

Where p is the number of permutations performed during the triangularization 

of A and U is an upper triangular matrix. 



2.3 Matrix Interpretation of Gaussian Elimination: LU Factorization 

LU Factorization is a method used to decompose a given matrix A into two matrices: a lower 

triangular matrix L and an upper triangular matrix U. This decomposition is particularly useful for 

solving systems of linear equations, calculating determinants, and performing matrix inversions 

efficiently (as shown in Figure.4).  

 

Figure 4. Representation of LU Factorization 

For a matrix A to be decomposed into its LU factorization, it must satisfy several conditions: First, A 

must be a square matrix. Second, it must be non-singular, meaning that its determinant is non-zero 

(det(A)≠0). Lastly, if zero pivots are encountered during the elimination process, the use of 

permutation matrices may be necessary to enable the factorization. These conditions collectively 

ensure that the LU factorization can be performed without issues. 

Steps to Obtain LU Factorization from Gaussian Elimination: 

1) Initial Matrix: Consider a square matrix A of size n×n. 

2) Form of the Decomposition: We seek to express: 

                                                            A= LU 

 

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮

  𝑎𝑛𝑛

) = (

1
𝑙21
⋮
𝑙𝑛2

0
1
⋮
𝑙𝑛2

…
…
   …

0
0
⋮
1

)

⏟        
𝐿

(

𝑢11
0
⋮
0

𝑢12
𝑢22
⋮
0

…
…
   …

𝑢1𝑛
𝑢2𝑛
⋮

  𝑢𝑛𝑛

)

⏟          
𝑈

     (21) 

Where L is a lower triangular matrix with ones on the diagonal and U is an upper triangular 

matrix. 

3) Gaussian Elimination: 

Apply Gaussian elimination to transform A into an upper triangular matrix U. 

At each step of elimination, as you eliminate the entries below the diagonal of A, note the 

multipliers used to zero out the elements in the current column. These multipliers will form 

the elements of L. 

4) Constructing L and U: 

For each non-zero element   𝑎𝑖𝑗 used for elimination, record the multiplier   𝑚𝑖𝑗 =
  𝑎𝑖𝑗

  𝑎𝑗𝑗
 and 

place this multiplier in the position (𝑖, 𝑗)of matrix L. 

The matrix U will be the resulting matrix after all elimination steps. 

 

When we have a linear system represented by the matrix equation: AX=B And we have a LU 

decomposition of matrix A, meaning A = LU, we can substitute LU for A in the original equation, as 

shown in Eq. (22): 
𝐴𝑋 = 𝐵 → (𝐿𝑈)𝑋 = 𝐵 → 𝐿(𝑈𝑋) = 𝐵 → 𝐿𝑌 = 𝐵       

𝑤ℎ𝑒𝑟𝑒 {
𝐿𝑌 = 𝐵                    𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒
𝑈𝑋 = 𝑌               𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒

    (22) 

By introducing a new variable Y, we can break down the problem into two simpler triangular systems: 



1. To solve for Y, we start by defining Y=UX. This transforms our equation into LY=B. Given 

that L is a lower triangular matrix, we can apply forward substitution to efficiently solve for 

Y. 

2. After obtaining Y, we proceed to solve the equation UX= Y. Since U is an upper triangular 

matrix, we can efficiently find X using backward substitution. 

 

By factoring A into LU, we transform a potentially complex linear system into two simpler triangular 

systems, which can be solved efficiently using forward and backward substitution. 

Example: 

Consider the following matrix A: 

𝐴 = [
1 1 1
4 3 −1
3 5 3

] 

𝐴 = 𝐿𝑈 = [
1 1 1
4 3 −1
3 5 3

] = [
1 0 0
𝑙12 1 0
𝑙13 𝑙32 1

] * [
𝑢11 𝑢12 𝑢13
0 𝑢22 𝑢23
0 0 𝑢33

] 

Using Gaussian elimination on A 

For i=1 to (n-1) =2 

 Calculate 𝒊𝒕𝒉 column of L 

 Calculate 𝒊𝒕𝒉 row of U 

1) For L:  𝑖 = 1 𝑎𝑛𝑑 𝑘 = 2. . 𝑛,   𝑙𝑘𝑖 =
𝑎𝑘𝑖
(𝑖−1)

𝑎
𝑖𝑖
(𝑖−1) 

𝑳 =

[
 
 
 
 
 

1 0 0

𝑙12 =
𝑎(0)12
𝑎(0)11

=
4

1
= 4 1 0

𝑙13 =
𝑎(0)13
𝑎(0)11

=
3

1
= 3 𝑙32 1

]
 
 
 
 
 

 

 

For U: Eliminate Entries Below the Pivot i=1: 𝑎11 = 1 ≠ 0 

𝐹𝑜𝑟 𝑗 = 𝑖 + 1…𝑛,   𝐿𝑗 =   𝐿𝑗 −
  𝑎𝑗𝑖

  𝑎𝑖𝑖
×   𝐿𝑖 

𝐴(0) = [
1 1 1
4 3 −1
3 5 3

]
𝐿2 = 𝐿2 −

4

1
𝐿1

𝐿3 = 𝐿32 −
3

1
𝐿1
→ 𝐴(1) = [

1 1 1
0 −1 −5
0 2 0

]  

2) For L:  𝑖 = 2 𝑎𝑛𝑑 𝑘 = 2. . 𝑛,   𝑙𝑘𝑖 =
𝑎𝑘𝑖
(𝑘−1)

𝑎
𝑖𝑖
(𝑘−1) 



𝑳 = [

1 0 0
4 1 0

3 𝑙32 =
𝑎(1)32
𝑎(1)22

=
2

−1
= −2 1

] 

Eliminate Entries Below the Pivot 2: 𝑎22 = −1 ≠ 0 

𝐴(1) = [
1 1 1
0 −1 −5
0 2 0

] 𝐿3 = 𝐿32 −
2

(−1)
𝐿1 = 𝐿3 + 2𝐿1 → 𝐴

(2) [
1 1 1
0 −1 −5
0 0 −10

] = 𝑈 

The obtained matrix is the upper triangular matrix U 

𝑈 = [
1 1 1
0 −1 −5
0 0 −10

] 

𝐿 = [
1 0 0
4 1 0
3 −2 1

] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

{

2𝑥 + 3𝑦 + 𝑧 = 1
4𝑥 + 7𝑦 + 2𝑧 = 2
6𝑥 + 18𝑦 + 5𝑧 = 3

 

 

Exercise 
 

Consider the following system of linear equations:: 

 

1. Perform LU decomposition of the coefficient matrix 𝐴 

2. Solve the system using the LU decomposition method. 
3. Then, deduce the determinant of A. 

 


