
Chapter 3  Iterative Methods for Solving Linear Systems 

3.1 General Considerations 

Direct and iterative methods offer two distinct approaches to solving systems of linear equations. 

Direct methods, such as Gaussian elimination or LU decomposition, compute the exact solution in a 

finite number of steps but can be computationally expensive and memory-intensive for large systems. 

In contrast, iterative methods, like the Jacobi method or conjugate gradient, approximate the solution 

iteratively, refining an initial guess. While they do not guarantee an exact solution in a finite number 

of iterations, they are often more efficient in terms of computational time and memory usage, 

especially for sparse systems. The choice between a direct and iterative method depends on the size of 

the system, the structure of the matrix, the desired accuracy, and the available computational 

resources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 1: 

An iterative method for solving the linear system Ax=b is a systematic approach that generates 

a sequence 𝑋(𝑘)  𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝐼𝑁. Each iterate 𝑋(𝑘) is computed based on the previous 

iterates 𝑋(0),…, 𝑋(𝑘−1), with the goal of converging to the solution 𝑋 of the linear system. 

Typically, the construction of the sequence follows a recurrence relation of the form shown in 

Equation (23): 

𝑋(𝑘) = 𝑩𝑋(𝑘−1) + 𝐶         (23) 

In this equation, 𝑩 represents the iteration matrix derived from 𝐴, and 𝐶 is a vector that 

depends on 𝑏. This formulation allows for flexibility in how the iterates are generated. By 

examining the limit as 𝑘 approaches infinity (𝑘 → +∞), we observe that the solution 𝑋 must 

satisfy Eq.(24): 

𝑋 = 𝐵𝑋 + 𝐶         (24) 

This reveals an important relationship between the solution and the matrices involved. Since 

we know that 𝑋 = 𝐴−1𝑏, it follows that 𝐶 can be expressed in Eq. (25) as: 

𝐶 = (𝐼𝑑 − 𝑏) 𝐴−1𝑏        (25) 

This leads to the conclusion that the iterative method is fundamentally defined by the iteration 

matrix 𝑩. Thus, understanding the structure and properties of 𝑩 is crucial for analyzing the 

convergence and efficiency of the iterative method in solving the linear system 𝐴𝑋 = 𝑏. 

Definition 2: 

Splitting, A general technique for constructing the matrix 𝑩 is based on a decomposition (or 

splitting) of the matrix A in the form: 

𝐴 = 𝑃 − 𝑁          (26) 

Where 𝑃 is an invertible matrix that is easy to invert, such as a diagonal or triangular matrix. 

The matrix 𝑃 is referred to as the conditioning matrix. This approach is fundamental in 

iterative methods because it simplifies the process of finding solutions to linear systems.  

 



 

 

 

 

 

 

 

 

 

 

In practice, the most common splittings are based on the representation: 

𝐴 = 𝐷− 𝐸− 𝐹           (28) 

𝐷 = (

𝑎11
0
⋮
0

0
𝑎22
⋮
0

…
…
   …

0
0
⋮

  𝑎𝑛𝑛

)         − 𝐸 = (

0
𝑎21
⋮
𝑎𝑛2

0
0
⋮
𝑎𝑛2

…
…
   …

0
0
⋮
0

)            − 𝐹 = (

0
0
⋮
0

   𝑎12
0
⋮
0

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮
0

) 

Where 𝐷 is the diagonal part of 𝐴, 𝐸 is the strictly lower triangular part (with zeros on the 

diagonal), and 𝐹 is the strictly upper triangular part (also with zeros on the diagonal) as shown 

in Eq. (28). 

 

3.2  Jacobi and Relaxation Methods 

3.2.1 Jacobi  Method 

The Jacobi method is an iterative technique for solving systems of linear equations of the form 𝐴𝑋 =
𝑏. This method is particularly useful for large and sparse matrices, where direct methods may be 

inefficient. There are two primary approaches to implementing the Jacobi method: the classical format 

based on explicit equations and the alternative format utilizing matrix splitting. 

Both approaches have their advantages and applications, and understanding them provides a 

comprehensive view of how the Jacobi method operates in practice. In this course, we will delve into 

both methods, starting with the classical formulation before exploring the benefits of the splitting 

technique. 

3.2.1.1 Equations-Based Formula 
To implement the corresponding algorithm, consider the following system of linear 

equations in Eq. (29). This method involves directly manipulating the equations to derive 

the iterative formula. 

𝑃𝑋(𝑘+1) = 𝑁𝑋(𝑘) + 𝑏 →  𝑋(𝑘+1) = 𝑃−1𝑁𝑋(𝑘) + 𝑃−1𝑏                    
𝑤ℎ𝑒𝑟𝑒 𝐵 = 𝑃−1𝑁 𝑎𝑛𝑑  𝐶 = 𝑃−1𝑏            (27) 

In this context, the matrix 𝑃 plays a critical role as it dictates the stability and convergence 

properties of the iterative algorithm. The idea is to isolate the more easily manageable part of 

the matrix 𝐴 (represented by 𝑃) from the more complex part (represented by 𝑁). By 

rearranging 𝐴 in this way, we can define an iterative algorithm that can be expressed in a 

recurrence relation, allowing us to compute the next iterate based on the previous one. 

The iterative algorithm can then be written as Eq. ’23) (𝑋(𝑘) = 𝑩𝑋(𝑘−1) + 𝐶). 

where 𝑩 is derived from the decomposition, and 𝐶 incorporates the vector 𝑏. This formulation 

allows us to systematically update our estimates of the solution 𝑋 in each iteration. The 

flexibility of choosing 𝑃 allows for various strategies to optimize convergence, depending on 

the characteristics of the specific linear system being solved. 

Overall, the splitting technique is a powerful tool in numerical linear algebra, providing a 

structured method to analyze and implement iterative methods effectively. 

 



𝐴𝑋 = 𝑏 → {

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

       (29) 

 Therefore, by isolating 𝑥1 from the first equation, 𝑥2 from the second equation, ..., and 𝑥𝑛 

from the 𝑛𝑡ℎ equation, we obtain the expression given by Eq. (30). Each variable is 

isolated and expressed in terms of the other variables, leading to a straightforward 

computation in each iteration. 

{
 
 

 
 𝑥1 =

(𝑏1−𝑎12𝑥2−⋯−𝑎1𝑛𝑥𝑛)

𝑎11

𝑥2 =
(𝑏2−𝑎21𝑥1−⋯−𝑎2𝑛𝑥𝑛)

𝑎22
……………………………………

𝑥𝑛 =
(𝑏𝑛−𝑎𝑛1𝑥1−⋯−𝑎𝑛(𝑛−1)𝑥𝑛−1)

𝑎𝑛𝑛

→ ∀𝑖 = 1. . 𝑛, 𝑥𝑖 =
1

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑖

𝑛
𝑖=1
𝑖≠𝑗

)  (30) 

Derivation of the Iterative Formula 

Starting from a given initial vector 𝑋(0), we construct the sequence of vectors (𝑋(𝑘))𝑘≥0, 

defined by Eq. (31). 

 

∀𝑖 = 1…𝑛, 𝑥𝑖
(𝑘+1) =

1

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑖

(𝑘)𝑛
𝑖=1
𝑖≠𝑗

)      (31) 

Thus, by juxtaposing Eq. (31) with Eq. (23): ( 𝑋(𝑘) = 𝑩𝑋(𝑘−1) + 𝐶), we obtain the 

iteration matrix 𝑩𝒋 for the Jacobi method and a vector 𝐶 in Eq. (32) 

𝑩𝒋 =

(

 
 

0

−
𝑎21

𝑎22

⋮

−
𝑎1𝑛

𝑎𝑛𝑛

−
𝑎12

𝑎11

0
⋮

−
𝑎𝑛2

𝑎𝑛𝑛

…
…
   …

−
𝑎1𝑛

𝑎11

−
𝑎2𝑛

𝑎22

⋮
0 )

 
 
          𝑎𝑛𝑑             𝐶 =

(

 
 
 

𝑏1

𝑎11
𝑏2
𝑎22
⋮
𝑏𝑛

𝑎𝑛𝑛)

 
 
 

    (32) 

 

3.2.1.2 Splitting-Based Formula 

This technique involves decomposing the matrix 𝐴 into its components: specifically the 

diagonal part 𝐷, the strictly lower triangular part 𝐸, and the strictly upper triangular part 𝐹. 

This decomposition simplifies the iteration process and enhances the clarity of the 

algorithm, as shown in Eq. (28). 

Derivation of the Iterative Formula 

Given the equation 𝐴𝑋 = 𝑏, we can rewrite it using our decomposition: 

𝐷𝑋 = 𝑏 + (𝐸 + 𝐹)𝑋           (33) 

 

Rearranging this leads to Eq. ’34): 

 

𝑋 = 𝐷−1(𝑏 + (𝐸 + 𝐹)𝑋)         (34) 

 

To derive the iterative formula, we isolate 𝑋 in Eq. (35). 

𝑋(𝑘) = 𝐷−1(𝑏 + (𝐸 + 𝐹)𝑋(𝑘−1))        (35) 



This formula indicates that the new iterate 𝑋(𝑘) is computed based on the previous iterate 

𝑋(𝑘−1)and the contributions from the off-diagonal elements, represented by 𝐸 and 𝐹. 

By substituting Eq. (35) into Eq. (23), we obtain the iteration matrix for the Jacobi 
method, as given in Eq. (36). 

𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹)          𝑎𝑛𝑑             𝐶 = 𝐷−1𝑏     (36) 

3.2.1.3 Iterative Algorithm Steps 

 

The iterative process of the Jacobi method begins with the initialization step, where an 

initial guess for the solution is selected. This initial guess is often a zero vector, although 

any reasonable approximation can be used. The choice of initial values can influence the 

speed of convergence, but the method is generally robust enough to work with various 

starting points. 

Once the initial guess is established, the process moves into the iteration phase. For each 

iteration, a new estimate is calculated based on the previous iterate. This step refines the 

approximation of the solution, incorporating the contributions from other variables in the 

system. 

After computing the new estimate, it is essential to perform a convergence check to 

determine if the iterative process should continue. This is typically done by evaluating a 

stopping criterion, such as checking whether the difference between consecutive 

estimates is less than a predetermined small tolerance value. If this difference is 

sufficiently small, it indicates that the solution has stabilized, and the method can be 

terminated. This systematic approach ensures that the Jacobi method converges 

efficiently toward the true solution of the linear system. 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

Example:  

Consider the following system of equations: 

{

3𝑥1 + 𝑥2 − 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = 17
2𝑥1 − 𝑥2 ± 6𝑥3 = −18

 

𝑋(𝑘) = 𝑩𝒋𝑋
(𝑘−1) + 𝐶 

‖𝑋(𝑘) − 𝑋(𝑘−1)‖ < 𝜀 

1. Initialization: Choose an initial guess 𝑋(0) (often a zero vector). 

2. Iteration: For each iteration 𝑘: 

Calculate 𝑋(𝑘)using the formula 

3. Convergence Check: Determine if the method has converged by 

evaluating the stopping criterion, such as: 

where 𝜀 epsilonϵ is a small tolerance value. 

 

 

 

 

 



1) Equations-Based Formula 

{
  
 

  
 𝑥1 =

(𝑏1 − 𝑎12𝑥2 − 𝑎13𝑥3)

𝑎11

𝑥2 =
(𝑏2 − 𝑎21𝑥1 − 𝑎23𝑥3)

𝑎22

𝑥3 =
(𝑏3 − 𝑎31𝑥1 − 𝑎32𝑥2)

𝑎11

 →  

{
 
 

 
 𝑥1 =

(2 − 𝑥2 + 𝑥3)

3

𝑥2 =
(17 − 𝑥1 − 2𝑥3)

5

𝑥3 =
(−18 − 2𝑥1 + 𝑥2)

6

 

Iterative Formula based on equation 

{
  
 

  
 𝑥1

(𝑘+1) =
  (2 − 𝑥2

(𝑘) + 𝑥3
(𝑘))    

3

𝑥2
(𝑘+1) =

(17 − 𝑥1
(𝑘) − 2𝑥3

(𝑘))  

5

𝑥3
(𝑘+1) =

(−18 − 2𝑥1
(𝑘) + 𝑥2

(𝑘))

6

 

𝑩𝒋 = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

)           𝑎𝑛𝑑             𝐶 = (
2/3
17/5
−3

)  

The iterative process of the Jacobi method: 

If 𝑋(0) = (

2

3
17

5

−3

)    →  

{
 
 

 
 𝑥1

(1) =
  (2−𝑥2

(0)+𝑥3
(0))    

3

𝑥2
(1) =

(17−𝑥1
(0)−2𝑥3

(0))  

5

𝑥3
(1) =

(−18−2𝑥1
(0)+𝑥2

(0))

6

     →  

{
 
 

 
 𝑥1

(1) =
  (2−(

17

5
)+(−3))    

3
= 0,5333

𝑥2
(1) =

(17−(
2

3
)−2(−3)) 

5
= 2,0666

𝑥3
(1) =

(−18−2(
2

3
)+(

17

5
)

6
= 2,6555

   

NB: The result is computed with 4 significant digits (or 3 exact decimal places). So, probably, ε 

=0,5.10
-3

. 

‖𝑋(1) − 𝑋(0)‖ < 0.5. 10−3 →  ‖𝑋(1) − 𝑋(0)‖ = ‖
‖
0.5333 −

2

3

2.0666 −
17

5
2.6555 − 3

‖
‖ = ‖

‖
0.5333 −

2

3

2.0666 −
17

5
2.6555 − 3

‖
‖ = ‖

1.1999
1.3334
0.3445

‖ 

‖
1.1999
1.3334
0.3445

‖ > (
0.5. 10−3

0.5. 10−3

0.5. 10−3
)  So we should continue to process and calculate 𝑋(1) . 

 
2) Splitting-Based Formula 

In  our Sytem AX=b: 

𝐴 = (
3 1 −1
1 5 2
2 −1 −6

)           𝑎𝑛𝑑             𝑏 = (
2
17
−18

) 



 

 

A=D-E-F 

𝐷 = (
3 0 0
0 5 0
0 0 −6

)                    𝐸 = (
0 0 0
−1 0 0
−2 1 0

)                      𝐹 = (
0 −1 1
0 0 −2
0 0 0

)           

 Calculate 𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹) 𝑎𝑛𝑑  𝐶 = 𝐷−1𝑏  

𝐷−1 = (

1/3 0 0
0 1/5 0
0 0 −1/6

)                   Calculate 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐷−1𝑢𝑠𝑖𝑛𝑔 𝐺𝑎𝑢𝑠𝑠 𝑗𝑜𝑟𝑑𝑎𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 𝐷−1 = 
1

det  (𝐷)
× 𝑎𝑑𝑗(𝐷) 

(𝐸 + 𝐹) = (
0 −1 1
−1 0 −2
−2 1 0

) 

𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹)  → 𝑩𝒋 =

(

 
 
 

1

3
0 0

0
1

5
0

0 0 −
1

6)

 
 
 
(
0 −1 1
−1 0 −2
−2 1 0

) = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

)   

𝐶 = 𝐷−1𝑏 =

(

 
 
 

1

3
0 0

0
1

5
0

0 0 −
1

6)

 
 
 

(
2
17
−18

) = (
2/3
17/5
−3

) 

𝑩𝒋 = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

)     and    C=(
2/3
17/5
−3

) 

Iterative Formula based on matrix: 

𝑿(𝒌+𝟏) = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

)𝑿(𝒌) + (
2/3
17/5
−3

)      

 

 

 

 

Exercise: Consider the following matrix 

A= (
4 −1 0
−1 2 0
0 0 3

)  𝑎𝑛𝑑 𝐵 = (
2
5
1
) 

 

 How many iterations for jacobi method needed to get an accuracy within 10
—2

. 

 

 

 

 

 



3.2.2 Relaxation Method  

The relaxation method refers to a general family of iterative techniques that gradually refine the 

solution to a system of equations. It involves adjusting the current estimate of the solution by 

combining it with some computed corrections. 

The idea is to improve convergence by introducing a relaxation factor (usually denoted as ω). In its 

simplest form, the relaxation method updates the solution by: 

{

𝑋(0) ∈ 𝐼𝑅𝑛                                                                                                   

 𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)
+𝜔(

𝑏𝑖−−∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗
(𝑘)

𝑎𝑖𝑖
)                          

                                           

 (37) 

The relaxation parameter, usually denoted as ω\omegaω, determines the step size of the update. It lies 

in the range 0 < 𝜔 < 1  

 

3.3 Gauss-Seidel and Successive Relaxation Methods 

3.3.1 Gauss-Seidel Method 

The Gauss-Seidel method is a widely-used iterative technique for solving systems of linear equations, 

particularly advantageous for large-scale and sparse matrices. One of its key benefits is its simplicity, 

making it accessible for a variety of applications. Additionally, it often converges faster than the 

Jacobi method, providing quicker solutions, especially in scenarios involving sparse matrices where 

many elements are zero, thus minimizing computational overhead. However, while generally reliable, 

the method's convergence is not guaranteed for all systems, and it can be sensitive to the choice of 

initial guess. Understanding these advantages and limitations helps in effectively utilizing Gauss-

Seidel, especially in conjunction with techniques like Successive Over-Relaxation and in parallel 

computing environments. 

Typically, the construction of the detailed equation sequence follows a recurrence relation of the form 

shown in Equation (38): 

{
𝑋(0) ∈ 𝐼𝑅𝑛                                                                                                   

 𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
(𝑏𝑖 −∑ 𝑎𝑖𝑗𝑗<𝑖 𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗
(𝑘))                          

                                           

  (38) 

In this equation, 𝑥𝑖
(𝑘+1)

 represents the updated value of the variable 𝑥𝑖in the (𝑘 + 1)𝑡ℎiteration. The 

term 𝑏𝑖is the corresponding constant from the system of equations, while 𝑎𝑖𝑗 are the coefficients from 

the matrix 𝐴. The first summation accounts for the contributions of already updated variables, and the 

second summation includes the contributions from previous iteration values, ensuring that the most 

current data is utilized. This iterative approach allows for progressive refinement of the solution, 

showcasing the method's efficiency, particularly in handling large, sparse systems. 

Using this approach, we can represent the iterative update in Eq. (27) as: 𝑋(𝑘+1) = 𝑃−1𝑁𝑋(𝑘) +
𝑃−1𝑏  𝑤ℎ𝑒𝑟𝑒 𝐵 = 𝑃−1𝑁 𝑎𝑛𝑑  𝐶 = 𝑃−1𝑏. It consists of choosing the simplest splitting with P = D-E et 

N = F. By replacing in the equation Eq. (27), we obtain Eq. (39). 

𝑋(𝑘+1) = (𝐷 − 𝐸)−1𝐹𝑋(𝑘) + (𝐷 − 𝐸)−1𝑏 



𝑩𝑮𝑺 = (𝐷 − 𝐸)
−1𝐹          𝑎𝑛𝑑             𝐶 = (𝐷 − 𝐸)−1𝑏     (39) 

Example: 

Consider the same system of equations: 

{

3𝑥1 + 𝑥2 − 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = 17
2𝑥1 − 𝑥2 ± 6𝑥3 = −18

 

  Based on A=D-E-F 

𝐷 = (
3 0 0
0 5 0
0 0 −6

)                    𝐸 = (
0 0 0
−1 0 0
−2 1 0

)                      𝐹 = (
0 −1 1
0 0 −2
0 0 0

)           

 Calculate 𝑩𝑺𝑶𝑹 = (𝐷 − 𝐸)−1 ((
1−𝜔

𝜔
)𝐷 + 𝐹)           𝑎𝑛𝑑             𝐶 = (𝐷 − 𝐸)−1𝑏 

(𝐷 − 𝐸) = (
3 0 0
0 5 0
0 0 −6

) − (
0 0 0
−1 0 0
−2 1 0

) = (
3 0 0
1 5 0
2 −1 −6

)                   

(𝐷 − 𝐸)−1 = (
0.333 0 0
−0.066 0.2 0
0.122 −0.033 −0.166

)                  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝐷 − 𝐸)−1 𝑢𝑠𝑖𝑛𝑔 𝐺𝑎𝑢𝑠𝑠 𝑗𝑜𝑟𝑑𝑎𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 (𝐷 − 𝐸)−1 = 
1

det  (𝐷−𝐸)
×

𝑎𝑑𝑗((𝐷 − 𝐸)) 

𝑩𝒋 = (𝐷 − 𝐸)
−1𝐹 → 𝑩𝒋 = (

0.333 0 0
−0.066 0.2 0
0.122 −0.033 −0.166

) (
0. −1 1
0 0 −2
0 0 0

)

= (
0 −0.333 0.333
0 0.066 −0.466
0 −0.122 0.188

)   

 

𝐶 = (𝐷 − 𝐸)−1𝑏 = (
0.333 0 0
−0.066 0.2 0
0.122 −0.033 −0.166

)(
2
17
−18

) = (
0.666
3.58
2.86

) 

𝑩𝒋 = (
0 −0.333 0.333
0 0.066 −0.466
0 −0.122 0.188

)     and    C=(
0.666
3.208
2.671

) 

Gauss Seidal Iterative Formula based on matrix: 

𝑿(𝒌+𝟏) = (
0 −0.333 0.333
0 0.066 −0.466
0 −0.122 0.188

) 𝑿(𝒌) + (
0.666
3.208
2.671

) 



 

3.3.2 Successive Relaxation Method (SOR) 

Relaxation methods are iterative techniques used to solve systems of linear equations, particularly in 

numerical analysis and computational mathematics. In this method, we slightly modify the previous 

method by introducing a parameter w, the relaxation coefficient. This parameter is generally constant. 

Relaxation in the Jacobi method typically does not provide any significant gains (see sub-section 

3.2.2. However, when applied to the Gauss-Seidel method (see sub-section 3.3.1), it improves the 

speed of convergence. The update formula becomes: 

{
𝑋(0) ∈ 𝐼𝑅𝑛                                                                                                   

𝑥𝑖
(𝑘+1)

= (1 − 𝜔)𝑥𝑖
(𝑘) +

𝜔

𝑎𝑖𝑖
(𝑏𝑖 −∑ 𝑎𝑖𝑗𝑗<𝑖 𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗
(𝑘))

                                           

  (40) 

In Eq. (40): 

 𝑥𝑖
(𝑘+1)

 is the updated value for the 𝑖𝑡ℎ variable. 

 𝑥𝑗
(𝑘+1)

 are the most recently updated values for indices 𝑗 < 𝑖 and 𝑥𝑖
(𝑘)

 are the previous values 

for indices 𝑗 > 𝑖. 

The idea is that if the "correction" applied to a component is going in the "right direction," we benefit 

from increasing it by multiplying by a factor greater than 1 (ω>1\omega > 1ω>1: over-relaxation). 

Conversely, if there is a risk of diverging or oscillating, it is better to dampen the correction by 

multiplying by a factor less than 1 (ω<1\omega < 1ω<1: under-relaxation). A necessary but not 

sufficient condition for the convergence of these methods is that the parameter ω lies between 0 and 2. 

Given the equation 𝐴𝑋 = 𝑏 we can rewrite it using our decomposition into the components 𝐷 , 𝐸, and 

𝐹 ( 𝑤ℎ𝑒𝑟𝑒 𝐴 = 𝐷 − 𝐸 − 𝐹 𝑠𝑒𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 3.1): 

𝑋(𝑘+1) = (
𝐷

𝜔
− 𝐸)

−1

((
1−𝜔

𝜔
)𝐷 + 𝐹)𝑋(𝑘) + (

𝐷

𝜔
− 𝐸)

−1

𝑏     (41) 

By substituting Eq. (41) into Eq. (23), we obtain the iteration matrix for the SOR method, as given in 
Eq. (42). 

𝑩𝑺𝑶𝑹 = (
𝐷

𝜔
− 𝐸)

−1

((
1−𝜔

𝜔
)𝐷 + 𝐹)           𝑎𝑛𝑑             𝐶 = (

𝐷

𝜔
− 𝐸)

−1

𝑏   (42) 

The iterative process for the SOR method will remain the same as described in subsection 3.2.1.3. 

Example:  

Consider the following system of equations and = 1.1 : 

{

3𝑥1 + 𝑥2 − 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = 17
2𝑥1 − 𝑥2 ± 6𝑥3 = −18

 

  Based on A=D-E-F 



𝐷 = (
3 0 0
0 5 0
0 0 −6

)                    𝐸 = (
0 0 0
−1 0 0
−2 1 0

)                      𝐹 = (
0 −1 1
0 0 −2
0 0 0

)           

 Calculate 𝑩𝑺𝑶𝑹 = (
𝐷

𝜔
− 𝐸)

−1

((
1−𝜔

𝜔
)𝐷 + 𝐹)           𝑎𝑛𝑑             𝐶 = (

𝐷

𝜔
− 𝐸)

−1

𝑏 

(
𝐷

𝜔
− 𝐸) =

(

 
 

3

1.1
0 0

0
5

1.1
0

0 0 −
6

1.1)

 
 
− (

0 0 0
−1 0 0
−2 1 0

) = (
2,72 0 0
1 4,54 0
2 −1 −5,45

)                   

(
𝐷

𝜔
− 𝐸)

−1

= (
0.37 0 0
−0.08 0.22 0
0.15 −0.04 −0.18

)                  

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (
𝐷

𝜔
− 𝐸)

−1

𝑢𝑠𝑖𝑛𝑔 𝐺𝑎𝑢𝑠𝑠 𝑗𝑜𝑟𝑑𝑎𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 (
𝐷

𝜔
− 𝐸)

−1

= 
1

det  (
𝐷

𝜔
−𝐸)

×

𝑎𝑑𝑗((
𝐷

𝜔
− 𝐸)) 

((
1 − 𝜔

𝜔
)𝐷 + 𝐹) = ((

1 − 1.1

1.1
)𝐷 + 𝐹) = ((−0,09)𝐷 + 𝐹) = (

−0.27. −1 1
0 −0.45 −2
0 0 0.54

) 

𝑩𝒋 = (
𝐷

𝜔
− 𝐸)

−1

((
1 − 𝜔

𝜔
)𝐷 + 𝐹)  → 𝑩𝒋 = (

0.37 0 0
−0.08 0.22 0
0.15 −0.04 −0.18

)  (
−0.27. −1 1
0 −0.45 −2
0 0 0.54

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)   

 

𝐶 = (
𝐷

𝜔
− 𝐸)

−1

𝑏 = (
0.37 0 0
−0.08 0.22 0
0.15 −0.04 −0.18

)(
2
17
−18

) = (
0.74
3.58
2.86

) 

𝑩𝒋 = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)      and    C=(
0.74
3.58
2.86

) 

Iterative Formula based on matrix: 

𝑿(𝒌+𝟏) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)  𝑿(𝒌) + (
0.74
3.58
2.86

) 

𝑰𝒇 𝑿(𝟎) = (
0.00
0.00
0.00

) and In order to calculate the solution X using the Successive Over-

Relaxation (SOR) method up to the 5th iteration, I will perform the following steps: 



𝑿(𝟏) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)  𝑿(𝟎) + (
0.74
3.58
2.86

) 

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.00

0.00

0.00

) + (
0.74
3.58
2.86

) = (
0.74
3.58
2.86

) → 𝑿(𝟏) = (
0.74
3.58
2.86

) 

𝑿(𝟐) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟏) + (
0.74
3.58
2.86

) 

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.74
3.58
2.86

) + (
0.74
3.58
2.86

) = (
0.407
2.18
2.73

) → 𝑿(𝟐) ≈ (
0.407
2.18
2.73

) 

𝑿(𝟑) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟐) + (
0.74
3.58
2.86

) 

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.407
2.18
2.73

) + (
0.74
3.58
2.86

) = (
0.90
2.21
2.91

) → 𝑿(𝟑) ≈ (
0.90
2.21
2.91

) 

𝑿(𝟒) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟑) + (
0.74
3.58
2.86

) 

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
−2.14
3.96
−5.33

) + (
0.90
2.21
2.91

) = (
0.92
2.12
2.91

) → 𝑿(𝟒) ≈ (
0.92
2.12
2.91

) 

𝑿(𝟓) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟒) + (
0.74
3.58
2.86

) 

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.92
2.12
2.91

) + (
0.74
3.58
2.86

) = (
0.94
2.12
2.92

) → 𝑿(𝟓) ≈ (
0.94
2.12
2.92

) 

Thus, the result for the fifth iteration is: 

𝑿(𝟓) ≈ (
0.94
2.12
2.92

)  𝑠𝑜 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑋 → (
1.00
2.00
3.00

) 

 

3.4 Remarks on the Implementation of Iterative Methods 

When implementing iterative methods for solving linear systems, several factors can significantly 

impact their efficiency and effectiveness. Here are some key considerations: 



1. Initial Guess: 

 Choice: The initial guess can significantly influence convergence speed. A good initial 

guess can accelerate convergence, while a poor one may lead to slow convergence or 

even divergence. 

 Strategies: Common strategies include using a zero vector, averaging previous solutions, 

or leveraging prior knowledge about the system. 

1) Zero Vector: 

 Example: For a system 𝐴𝑥 = 𝑏, starting with 𝑥 = (
0
0
0
)  is a common default. This 

can work well for many problems but may not be optimal for every system. 

2) Averaging Previous Solutions: 

This strategy can be effective in iterative algorithms where prior estimates are 

available. For instance, if previous solutions from a related problem or earlier 

iterations are known, averaging them can provide a more refined initial guess. 

Example: If past solutions were 𝑥(𝑘−1) = (
1
2
3
) and 𝑥(𝑘−2) = (

0.5
1.5
2.5
), an average can 

be 𝑥(0) =
1

2
(𝑥(𝑘−1) + 𝑥(𝑘−2)) = (

1
2
3
). 

3) Leveraging Prior Knowledge: 

If there is existing knowledge about the system or the expected solution range, this can 

guide the choice of an initial guess. For example, in physical systems modeled by 

differential equations, parameters often lie within known bounds. 

Example: If a temperature distribution in a rod is known to stabilize around a certain 

value based on physical properties, starting near that temperature can lead to faster 

convergence. 

In summary, the initial guess in iterative methods is crucial for convergence speed and 

overall effectiveness. By employing strategies such as using a zero vector, averaging 

previous solutions, or leveraging prior knowledge, one can enhance the chances of rapid 

convergence to the desired solution. 

2. Convergence Criteria: 

Defining clear criteria for determining convergence is essential in iterative methods. 

Convergence criteria help establish when the solution has sufficiently approximated the 

true answer, allowing the algorithm to terminate. 

Common Convergence Criteria 

1) Difference Between Successive Iterates: 



The most straightforward method involves comparing the difference between 

successive estimates of the solution. If the difference falls below a predefined 

tolerance level, the process can be considered converged. 

Example: For a vector 𝑥, the criterion can be expressed as: ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ < 𝜀 

where 𝜀 is a small positive number (e.g., 10−6). If the norm of the difference is 

smaller than 𝜀, the algorithm stops. 

2) Residual Norm: 

Another common approach is to check the residual of the equation 𝐴𝑥 = 𝑏. If the 

norm of the residual 𝑟 = 𝑏 − 𝐴𝑥 is sufficiently small, the solution is deemed 

converged. 

Example: If ‖𝑟‖ < 𝛿, where 𝛿 is another small tolerance (e.g., 10−6), the solution 

is considered acceptable. 

Adaptive Convergence Criteria 

Adaptive criteria involve adjusting the convergence tolerance based on the 

current progress of the solution. This approach can improve efficiency by 

allowing the algorithm to adapt to the problem's dynamics. 

Benefits of Adaptive Criteria 

1) Dynamic Adjustment: 

Instead of a fixed tolerance, the tolerance can be adjusted based on how quickly 

the solution is approaching convergence. For example, as the iterates get closer to 

the solution, the tolerance could become stricter. 

Example: If the norm of the difference ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ is decreasing rapidly, the 

algorithm could tighten the tolerance from 10−6 to 10−8. 

2) Performance Improvement: 

Adaptive criteria can lead to faster convergence in some cases, especially for 

complex or ill-conditioned problems where a static tolerance might not be 

appropriate. 

Example: In an optimization problem, if the function value decreases 

significantly in one iteration, the tolerance could be relaxed temporarily, allowing 

for faster exploration of the solution space. 

Clearly defining convergence criteria is fundamental in iterative methods, ensuring that 

the solution process is both effective and efficient. By implementing adaptive criteria, one 

can tailor the convergence process to the specific dynamics of the problem, enhancing 

performance and reducing unnecessary computations. 

3. Method Selection: 



When selecting an iterative method for solving linear systems, the properties of the 

matrix play a crucial role in determining which algorithm will be most effective. 

Different methods have strengths and weaknesses depending on the characteristics of the 

matrix involved. 

Key Matrix Properties 

1) Diagonally Dominant Matrices: 

A matrix 𝐴 is diagonally dominant if for each row, the absolute value of the diagonal 

entry is greater than or equal to the sum of the absolute values of the other entries in that 

row. 

Method Suitability: Methods like Gauss-Seidel and Jacobi perform well with diagonally 

dominant matrices due to their guaranteed convergence. 

Example: For a matrix 𝐴 = (
10 1 −5
4 −7 2
1 1 3

) 

each row satisfies the diagonal dominance condition, making it suitable for these 

methods. 

2) Symmetric Positive Definite Matrices: 

A matrix is symmetric positive definite if it is symmetric (𝐴 = 𝐴𝑇) and all its eigenvalues 

are positive. 

Method Suitability: Iterative methods like Conjugate Gradient are specifically designed 

for symmetric positive definite matrices, providing efficient convergence. 

Example: A matrix like 𝐴 = (
4 1
1 3

) 

 is symmetric positive definite, making it ideal for methods like Conjugate Gradient. 

3) Sparse Matrices: 

Many large systems are represented by sparse matrices, which contain a significant 

number of zero elements. 

Method Suitability: Iterative methods such as Krylov subspace methods (e.g., GMRES) 

are effective for sparse systems, as they can take advantage of the matrix's sparsity to 

reduce computational costs. 

Example: A sparse matrix: 𝐴 = (
0 0 1
2 0 0
0 3 0

) is well-suited for these methods. 

Hybrid Approaches 

Combining different iterative methods can leverage their strengths and mitigate their 

weaknesses, often resulting in improved convergence rates and more robust performance. 



Examples of Hybrid Approaches 

1) Using Smoothing Techniques: 

Combine a direct method (like LU decomposition) with an iterative method. For example, 

one might use LU to obtain a preliminary solution and then apply SOR to refine it. 

Example: Start with 𝑋(0)from LU decomposition and then iteratively improve it using 

SOR. 

 

 

2) Multi-Grid Methods: 

Multi-grid methods involve using different grid levels (coarse to fine) to accelerate 

convergence. They can effectively reduce errors at multiple scales. 

Example: In solving PDEs (Partial Differential Equation), one can use a coarse grid to 

solve for global features and then refine the solution on finer grids. 

3) Preconditioning: 

Preconditioning involves transforming the original problem into a more favorable form 

before applying an iterative method. This can improve convergence rates significantly. 

Example: Applying an incomplete LU decomposition as a preconditioner for methods 

like Conjugate Gradient. 

4) Adaptive Strategy: 

Employ an adaptive method that switches between different iterative techniques based on 

the convergence behavior observed during iterations. 

Example: Start with Jacobi for initial convergence and switch to Gauss-Seidel for 

refinement once closer to the solution. 

Choosing an appropriate iterative method based on matrix properties is crucial for efficient 

problem-solving. Additionally, exploring hybrid approaches can capitalize on the strengths of 

various methods, leading to faster convergence and enhanced robustness. By understanding both 

the nature of the matrix and the available methods, one can optimize the solution process 

effectively. 

4. Relaxation Parameters: 

In iterative methods like Successive Over-Relaxation (SOR), the relaxation parameter 

ω\omegaω plays a crucial role in optimizing convergence. 

1) Tuning 𝝎 



Careful tuning of 𝜔 can significantly impact convergence speed. For instance, a value 

around 1.25 often works well for diagonally dominant matrices, enhancing convergence 

compared to standard methods. Conversely, setting 𝜔 too high or too low can lead to 

divergence or excessively slow convergence. For example, using 𝜔 = 0.5 may result in 

prolonged iterations, while 𝜔 = 3 could cause oscillations. 

2) Dynamic Adjustment of 𝝎 

Adapting 𝜔 during the iteration process can further enhance efficiency. As the solution 

approaches the true value, adjusting 𝜔 can help maintain optimal convergence. For 

example, starting with 𝜔 = 1.25 and gradually reducing it to 1.1 as the iterates stabilize 

allows for fine-tuning. Implementing a feedback mechanism that monitors convergence 

rates and adjusts ω\omegaω accordingly can lead to better performance, such as 

increasing 𝜔 when improvements are sluggish. 

By carefully tuning and dynamically adjusting the relaxation parameter 𝜔, one can significantly 

improve the performance of iterative methods like SOR, ensuring faster and more reliable 

convergence. 

5. Matrix Properties: 

1) Condition Number 

The condition number of a matrix significantly affects the convergence of iterative 

methods. A poorly conditioned matrix can lead to slow convergence and numerical 

instability. For example, a matrix with a high condition number (e.g., 1,000) may cause 

small changes in the input to produce large variations in the output, making it challenging 

to converge to an accurate solution. 

2) Sparsity 

Leveraging the sparsity of a matrix is crucial for optimizing computational cost and 

memory usage. Sparse matrices, which contain a significant number of zero elements, can 

be represented efficiently, reducing both storage requirements and computational 

complexity. For instance, using specialized algorithms like Conjugate Gradient can take 

advantage of matrix sparsity, leading to faster solutions for large-scale problems. 

In summary, understanding the condition number is essential for anticipating convergence 

behavior, while utilizing sparsity can enhance the efficiency of iterative methods, ultimately 

leading to quicker and more resource-efficient computations. 

6. Numerical Stability: 

1) Rounding Errors 

Rounding errors are a critical concern in iterative methods, as they can accumulate during 

calculations and impact the accuracy of the final solution. For example, in a sequence of 

iterative updates, small errors introduced at each step can compound, leading to 

significant deviations from the true solution. This is especially problematic in poorly 

conditioned matrices, where precision is crucial. 

2) Preconditioning 



Preconditioning techniques can significantly improve the condition number of a matrix, 

thereby accelerating convergence. By transforming the original system into a more 

favorable form, preconditioners make it easier for iterative methods to find a solution. For 

instance, applying an incomplete LU decomposition as a preconditioner can lead to faster 

convergence rates in methods like Conjugate Gradient, particularly for large, sparse 

systems. 

In conclusion, being aware of rounding errors is essential for maintaining solution accuracy, 

while employing preconditioning techniques can enhance the efficiency of iterative methods 

by improving the condition number of the matrix and facilitating quicker convergence. 

7. Parallelization: 

Parallelizing iterative methods can significantly enhance performance by utilizing modern 

multi-core and distributed computing architectures. For example, in the Jacobi method, each 

element of the solution can be updated simultaneously, allowing for independent calculations 

across processors. This parallel approach is particularly beneficial for large-scale problems, 

where sequential processing would be inefficient. 

Similarly, in methods like Conjugate Gradient, the computation of inner products and matrix-

vector multiplications can be executed in parallel, leading to faster convergence and better 

resource utilization. 

8. Implementation and Testing: 

1) Language and Libraries 

Selecting an appropriate programming language and leveraging optimized libraries is 

crucial for efficient implementation of iterative methods. For example, languages like 

Python or C++ offer powerful libraries such as NumPy and Eigen, respectively, which 

provide highly optimized functions for matrix operations. Utilizing these libraries can 

significantly enhance performance and reduce development time. 

2) Testing 

Thoroughly testing the implementation with various test cases is essential to ensure 

accuracy and identify potential issues. For instance, testing the algorithm on known 

solutions, edge cases, and larger problem sizes can help verify correctness and robustness. 

This process ensures that the method performs well across different scenarios and 

maintains stability under various conditions. 

In summary, choosing the right programming language and libraries, along with rigorous 

testing, is vital for the effective implementation of iterative methods. These practices help 

optimize performance and ensure the reliability of the solution. 

By carefully considering these factors and tailoring your implementation accordingly, you can enhance 

the performance and reliability of iterative methods for solving linear systems. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QCM 

 
Here are multiple-choice questions (MCQs) based on previous section: 

Question 1: 

What is the impact of a good initial guess in iterative methods for solving linear systems? 

A) It has no impact on convergence speed. 

B) It can lead to slow convergence or divergence. 

C) It can significantly accelerate convergence. 

D) It only affects the final solution accuracy. 

Answer: C) It can significantly accelerate convergence. 

 
Question 2: 

Which of the following is a common strategy for selecting an initial guess in iterative 

methods? 

A) Using the identity matrix. 

B) Averaging previous solutions. 

C) Randomly generating values. 

D) Always using zero as the initial guess. 

Answer: B) Averaging previous solutions. 

 
Question 3: 

What does a matrix need to be for the Jacobi and Gauss-Seidel methods to guarantee 

convergence? 

A) It must be sparse. 

B) It must be symmetric. 

C) It must be diagonally dominant or symmetric positive definite. 

D) It must have a low condition number. 

Answer: C) It must be diagonally dominant or symmetric positive definite. 

 
Question 4: 

How can the relaxation parameter ω\omegaω in Successive Over-Relaxation (SOR) be 

optimized? 

A) It should always be set to 1. 

B) It should be increased continuously throughout the iterations. 

C) It can be tuned carefully to enhance convergence speed. 

D) It is irrelevant to the convergence process. 

Answer: C) It can be tuned carefully to enhance convergence speed. 

 
Question 5: 

What is the purpose of preconditioning techniques in iterative methods? 

A) To increase the number of iterations needed for convergence. 

B) To transform the problem into a more favorable form and improve the condition number 

of the matrix. 

C) To simplify the matrix to a diagonal form. 

D) To eliminate the need for convergence criteria. 

Answer: B) To transform the problem into a more favorable form and improve the 

condition number of the matrix. 

 

 



 

 

3.5 Convergence of Jacobi and Gauss-Seidel Methods 

Definition 1 

A square matrix 𝐴 ∈ 𝐼𝑅𝑛𝑥𝑛 is said to be diagonally dominant if, for each row 𝑖, the absolute value of 

the diagonal entry is greater than or equal to the sum of the absolute values of the other entries in that 

row. Mathematically, this can be expressed in Eq. (43) as: 

∀𝑖 = 1. . 𝑛, |𝑎𝑖𝑖| ≥ ∑ |𝑎𝑖𝑗|𝑗≠𝑖,𝑗=1..𝑛         (43) 

for all 𝑖 If the inequality is strict for at least one row, the matrix is called SDD, strictly diagonally 

dominant.  

Example:  

𝐴 = (
5 1 −1
2 3 0
3 −1 −7

) → {

|𝑎11| = 5     >    |𝑎12| + |𝑎13| = 1 + 1 = 2
|𝑎22| = 3    >    |𝑎21| + |𝑎23| = 2 + 0 = 2
|𝑎33| = 7    >    |𝑎31| + |𝑎32| = 3 + 1 = 2

→      𝑆𝑜 𝐴 𝑖𝑠 (𝑆𝐷𝐷) 

Definition 2 

The matrix 𝐴 ∈ 𝐼𝑅𝑛𝑥𝑛is symmetric, meaning 𝐴 = 𝐴𝑇 this implies that for ∀𝑖, 𝑗 = 1. . 𝑛, 𝑎𝑖𝑗 = 𝑎𝑗𝑖 

Example:  

𝐴 = (
5 2 −1
2 3 0
−1 0 −7

)  → 𝐴 𝑖𝑠 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 ∀𝑖, 𝑗 = 1. .3, 𝑎𝑖𝑗 = 𝑎𝑗𝑖  

Definition 3 

Let 𝐴 ∈ 𝐼𝑅𝑛𝑥𝑛 be a matrix. The principal minors of order 𝑘 of this matrix are the determinants of the 

truncated matrices (𝑎𝑖𝑗 )1≤𝑖,𝑗≤𝑘 for 𝑘ranging from 1 to 𝑛. 

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮

  𝑎𝑛𝑛

) →

{
  
 

  
 
𝐷1 = 𝑎11                                  

𝐷2 = 𝑑𝑒𝑡 (
𝑎11 𝑎12
𝑎21 𝑎22

)             

⋮

𝐷𝑛 = 𝑑𝑒𝑡 (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
   …

𝑎1𝑛
𝑎2𝑛
⋮

  𝑎𝑛𝑛

)  

→ ∀𝑖 = 1. . 𝑛, 𝐷𝑖 > 0       (44) 

Where 𝐷 𝑖are Leading principal minors. These are the determinants of the square submatrices located 

in the upper left corner of A. 

If all the leading principal minors of 𝐴 are strictly positive, the matrix is said to be positive definite 

 



 

Example:  

𝐴 = (
2 0 1
0 −1 1
1 0 −2

)

→

{
  
 

  
 
𝐷1 = 𝑎11 = 2  > 0                                                                                                                              

𝐷2 = 𝑑𝑒𝑡 (
2 0
0 −1

) = −𝟐 < 𝟎                                                                                                            

𝐷3 = 𝑑𝑒𝑡 (
2 0 1
0 −1 1
1 0 −2

)
= 2 |

−1 1
0 −2

| − 0 |
0 1
1 −2

| + 12 |
0 −1
1 0

| = 4 + 1 = 5 > 0

 

Since not all leading principal minors are positive. 𝐷2 = −2 < 0, the matrix 𝐴 is not positive 

definite. 

Definition 4 

Matrix norms ‖𝐴‖  provide a way to measure the size or magnitude of a matrix 𝐴. They are defined in 

terms of the elements of the matrix, denoted as 𝑎𝑖𝑗. 

1) Max Norm (Infinity Norm):  

‖𝐴‖∞ = 𝑚𝑎𝑥1≤𝑖≤𝑛∑ |𝑎𝑖𝑗|
𝑛
𝑗=1          (45) 

This norm takes the maximum absolute row sum of the matrix. 

2) 1-Norm: 

‖𝐴‖1 = 𝑚𝑎𝑥1≤𝑗≤𝑛∑ |𝑎𝑖𝑗|
𝑛
𝑖=1           (46) 

This norm takes the maximum absolute column sum of the matrix. 

Example:  

𝐴 = (
2 0 −3
0 −1 1
1 5 −2

) 

‖𝐴‖∞ = 𝑚𝑎𝑥1≤𝑖≤𝑛∑|𝑎𝑖𝑗|

𝑛

𝑗=1

= 𝑚𝑎𝑥1≤𝑖≤3(|2| + |−3|, |−1| + |1|, |1| + |5| + |−2|)

= 𝑚𝑎𝑥1≤𝑖≤3 (
5
2
7
)   →  ‖𝐴‖∞ = 7 

‖𝐴‖1 = 𝑚𝑎𝑥1≤𝑗≤𝑛∑|𝑎𝑖𝑗|

𝑛

𝑖=1

= 𝑚𝑎𝑥1≤𝑖≤3(|2| + |1|, |−1| + |5|, |−3| + |1| + |−2|)

= 𝑚𝑎𝑥1≤𝑗≤3(3,6,6)   →  ‖𝐴‖1 = 6 



 

Definition 5 

The spectral radius of a matrix 𝐴 is defined as the maximum absolute value of its eigenvalues  𝜆𝑖. It is 

denoted in Eq. (47) as: 

 𝜌(𝐴) = 𝑚𝑎𝑥|𝜆𝑖|           (47) 

where 𝜆𝑖 are the eigenvalues of the matrix 𝐴. The spectral radius provides important information about 

the stability and behavior of the matrix, particularly in applications related to dynamical systems and 

numerical analysis. 

Example 

Let's consider a simple 2x2 matrix: 

𝐴 = (
4 2
1 3

) 

To find the spectral radius, we first need to compute the eigenvalues of the matrix 𝐴. 

1) Characteristic Polynomial: The eigenvalues are found by solving the characteristic equation 

given by: 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0. 

Where 𝐼 is the identity matrix. For our matrix 𝐴: 

𝐴 − 𝜆𝐼 = (
4 − 𝜆 2
1 3 − 𝜆

) 

2) Determinant Calculation: 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = (4 − 𝜆)(3 − 𝜆) − (2)(1) = 𝜆2 − 7𝜆 + 10 = 0 

3) Solving the Quadratic Equation: 

Using the quadratic formula 𝜆 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
=

−7±√49−40

2
=

−7±3

2
 

This gives us: 𝜆1 = 5     𝑎𝑛𝑑       𝜆2 = 2 

4) Calculating the Spectral Radius: 

Now, we compute the spectral radius: 𝜌(𝐴) = 𝑚𝑎𝑥|𝜆𝑖| = 𝜌(𝐴) = max(|5|, |2|) =5 

3.5.1 Sufficient Conditions for Convergence of Iterative Methods 

Iterative methods are widely used for solving linear systems, especially when dealing with large 

matrices. Among these methods, the Gauss-Seidel method and relaxation methods are particularly 

noteworthy. Their convergence properties can be influenced by the characteristics of the coefficient 

matrix 𝐴. In this section, we will discuss the sufficient conditions for the convergence of these 

methods, particularly focusing on the case when 𝐴 is a strictly symmetric positive definite matrix. 



 

3.5.1.1 Convergence of the Jacobi Method 

The Jacobi method is another iterative approach used to solve the equation 𝐴𝑋 = 𝑏. Unlike the Gauss-

Seidel method, which updates the solution using the latest values, the Jacobi method updates all 

components simultaneously using values from the previous iteration. 

Sufficient Condition for Convergence: If 𝐴 is strictly symmetric positive definite, the Jacobi 

method converges for any initial guess 𝑋(0). The convergence can be attributed to the following 

factors: 

 Similar to the Gauss-Seidel method, the spectral radius 𝜌(𝑩𝒋) of the iteration matrix 𝑩𝒋 

associated with the Jacobi method is less than 1 ( 𝜌(𝑩𝒋) < 1). This guarantees that the error 

decreases with each iteration. 

3.5.1.2 Convergence of the Gauss-Seidel Method 

The Gauss-Seidel method is an iterative approach that updates each component of 𝑥 based on the 

most recent values, leveraging previously computed results. 

Sufficient Condition for Convergence: If 𝐴 is strictly symmetric positive definite, the Gauss-Seidel 

method converges for any initial guess 𝑋(0). This is due to: 

 The spectral radius 𝜌(𝑩𝑮𝑺) of the iteration matrix 𝑩𝑮𝑺 being less than 1 ( 𝜌(𝑩𝑮𝑺) < 1), 
ensuring that the error diminishes with each iteration. 

3.5.1.3 Convergence of the Relaxation Method 

The relaxation method is a generalization of the Gauss-Seidel method that introduces a relaxation 

factor ω. 

Sufficient Condition for Convergence: For the relaxation method to converge, the relaxation factor 

ω must satisfy:  0<ω<2 

When 𝐴 is strictly symmetric positive definite, choosing ω\omegaω within the range (0,2) enhances 

the convergence speed. Specifically: 

 When ω=1, the method reduces to Gauss-Seidel. 

 When 0<ω<1, the method may converge more slowly but still guarantees convergence. 

 When 1<ω<2, the method often converges more quickly than standard Gauss-Seidel. 

In summary, the conditions for convergence of the Jacobi method, Gauss-Seidel method, and the 

relaxation method are closely linked to the properties of the coefficient matrix 𝐴. Specifically, if 𝐴 is 

strictly symmetric positive definite, all three methods will converge. For the relaxation method, 

selecting an appropriate relaxation factor ω (where 0<ω<2) is crucial for achieving optimal 

convergence rates. These insights are fundamental in numerical analysis and provide a strong basis for 

the effective implementation of iterative methods in practical applications. 

Example: 



To compute successive approximations of the solution of a system using the Jacobi and 

Gauss-Seidel methods, let's define a system of linear equations as follows: 

𝐴 = (
𝑎 𝑏
𝑏 𝑎

)  𝑎𝑛𝑑  𝑏 = (
1
1
)  

{
𝑎𝑥 + 𝑏𝑦 = 1
𝑏𝑥 + 𝑎𝑦 = 1

→ {
𝑥𝑘+1 =

1

𝑎
(1 − 𝑏𝑦𝑘)

𝑦𝑘+1 =
1

𝑎
(1 − 𝑏𝑥𝑘)

   

Study of Convergence 

1) Let's start with the sufficient conditions. 

 ∀𝑖 = 1. .2, |𝑎𝑖𝑖| ≥ ∑ |𝑎𝑖𝑗|𝑗≠𝑖,𝑗=1..𝑛 → {
|𝑎| > |𝑏|
|𝑎| > |𝑏|

 

the matrix 𝐴 is said to be (SDD) strictly diagonally dominant if |𝑎| > |𝑏| 

The Jacobi and Gauss-Seidel methods converges if  |𝒂| > |𝒃|. 

 

 𝐴 = (
𝑎 𝑏
𝑏 𝑎

)  𝑎𝑛𝑑 𝐴𝑇 = (
𝑎 𝑏
𝑏 𝑎

) 

1) Since  𝐴 = 𝐴𝑇, A is symmetric. 

2) the matrix 𝐴 is said to be positive definite if all the leading principal minors of 

𝐴 are strictly positive ∀𝑖 = 1. .2, 𝐷𝑖 > 0. 

1. 𝐷1 = 𝑎11 = 𝑎 > 0 

2. 𝐷2 = det 𝐴 = |
𝑎 𝑏

𝑏 𝑎
| = 𝑎2 − 𝑏2 > 0 →  |𝑎| > |𝑏| 

The Gauss-Seidel method converges if |𝒂| > |𝒃|. 

2) Let's start with the Necessary & Sufficient Conditions  

𝐷 = (
𝑎 0
0 𝑎

) , 𝐸 = (
0 0
−𝑏 0

), 𝐹 = (
0 −𝑏
0 0

) 

Jacobi Method 

𝑩𝒋 = 𝐷−1(𝐸 + 𝐹) 𝑎𝑛𝑑  𝐶 = 𝐷−1𝑏 

𝐷−1 = (
1/𝑎 0
0 1/𝑎

)  𝑎𝑛𝑑 (𝐸 + 𝐹) = (
0 −𝑏
−𝑏 0

) 

𝑩𝒋 = (
0 −𝑏/𝑎

−𝑏/𝑎 0
)  𝑎𝑛𝑑  𝐶 = (

1/𝑎
1/𝑎

) 



𝑋(𝐾+1) = 𝐷−1(𝐸 + 𝐹) 𝑋(𝐾) + 𝐷−1𝑏 

 𝑑𝑒𝑡( 𝑩𝒋 − 𝜆𝐼) = det(
−𝜆 −

𝑏

𝑎

−
𝑏

𝑎
−𝜆
) = (𝜆−

𝑏

𝑎
) (𝜆+

𝑏

𝑎
) = 0 

𝑑𝑒𝑡( 𝑩𝒋 − 𝜆𝐼) = 0 → 𝜆1 =
𝑏

𝑎
 𝑎𝑛𝑑 𝜆2 = −

𝑏

𝑎
 

The Jacobi method converges when  𝜌(𝑩𝒋) = 𝑚𝑎𝑥|𝜆𝑖| < 1  

𝜌(𝑩𝒋) = max(|𝜆1|, |𝜆2|) = |
𝑏

𝑎
| < 1 → |𝑏| < |𝑎| 

The Jacobi method converges if |𝒂| > |𝒃|. 

Gauss Seidel Method 

𝑩𝑮𝑺 = (𝐷 − 𝐸)−1(𝐹) 𝑎𝑛𝑑  𝐶 = (𝐷 − 𝐸)−1𝑏 

(𝐷 − 𝐸)−1 = (
1/𝑎 0

−𝑏/𝑎2 1/𝑎
)  𝑎𝑛𝑑 𝐹 = (

0 −𝑏
0 0

) 

𝑩𝑮𝑺 = (
0 −𝑏/𝑎

0 𝑏2/𝑎2
)   

𝑋(𝐾+1) = (𝐷 − 𝐸)−1(𝐹) 𝑋(𝐾) + (𝐷 − 𝐸)−1𝑏 

 𝑑𝑒𝑡( 𝑩𝑮𝑺 − 𝜆𝐼) = det (
−𝜆 −𝑏/𝑎

0 𝑏2/𝑎2 − 𝜆
) = (−𝜆) (

𝑏2

𝑎2
− 𝜆) = 0 

𝑑𝑒𝑡( 𝑩𝑮𝑺 − 𝜆𝐼) = 0 → 𝜆1 = 0 𝑎𝑛𝑑 𝜆2 =
𝑏2

𝑎2
 

The Jacobi method converges when  𝜌(𝑩𝑮𝑺) = 𝑚𝑎𝑥|𝜆𝑖| < |
𝑏2

𝑎2
|  

𝜌(𝑩𝑮𝑺) = max(|𝜆1|, |𝜆2|) = |
𝑏2

𝑎2
| < 1 → |𝑏| < |𝑎| 

The Gauss Seidel method converges if |𝒂| > |𝒃|. 

 

 

 

 


