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Chapter 5   Matrix Analysis 

5.1 Vector Spaces 

Definition 

 A vector space 𝑉 over a field 𝐹 is a mathematical structure composed of a set of elements called 

vectors, which adhere to specific properties. These properties ensure that vector operations are well-

defined and consistent. Below are the key properties that characterize a vector space: 

 Closure under Addition: For any two vectors 𝑢, 𝑣 ∈ 𝑉, their sum 𝑢 + 𝑣 must also be in 𝑉. 

This property ensures that adding vectors together results in another vector within the same 

space.  

 Closure under Scalar Multiplication: For any vector 𝑢 ∈ 𝑉 and any scalar 𝑐 ∈ 𝐹, the 

product 𝑐𝑢 must also be in 𝑉. This indicates that multiplying a vector by a scalar does not take 

it outside the vector space. 

 Associativity of Addition: Vector addition is associative, meaning that for any vectors 

𝑢, 𝑣, 𝑤 ∈ 𝑉: 

(𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤)        (57) 

This property ensures that the grouping of vectors during addition does not affect the outcome. 

 Commutativity of Addition: Addition of vectors is commutative, so for any vectors 𝑢, 𝑣 ∈ 𝑉: 

𝑢 + 𝑣 = 𝑣 + 𝑢         (58) 

This means the order in which vectors are added does not change the result. 

 Identity Element of Addition: There exists a zero vector 0 ∈ 𝑉 such that for any vector 

𝑢 ∈ 𝑉: 

𝑢 + 0 = 𝑢           (59) 

The zero vector serves as the additive identity. 

 Inverse Elements of Addition: For every vector 𝑢 ∈ 𝑉, there exists a vector −𝑢 ∈ 𝑉 such 

that: 

𝑢 + (−𝑢) = 0          (60) 

This property guarantees that for every vector, there is a corresponding "opposite" vector that 

sums to the zero vector. 

 Distributive Property: Scalar multiplication distributes over vector addition and scalar 

addition: 

𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣 

(𝑐 +  𝑑)𝑢 =  𝑐𝑢 +  𝑑𝑢        (61) 
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This means that scaling a sum of vectors is equivalent to scaling each vector and then adding. 

 Associativity of Scalar Multiplication: Scalar multiplication is associative, so for any scalars 

𝑐, 𝑑 ∈ 𝐹 and any vector 𝑢 ∈ 𝑉: 

𝑐(𝑑𝑢) = (𝑐𝑑)𝑢         (62) 

This ensures that the order of scalar multiplication does not affect the result. 

 Identity Element of Scalar Multiplication: The scalar multiplication by the identity scalar 

(1) yields the vector itself: 

1𝑢 = 𝑢          (63) 

This property confirms that multiplying a vector by 1 leaves it unchanged. 

Example 

Consider the vector space 𝑅2  over the field of real numbers 𝑅. Elements of this vector space are 

vectors of the form (
𝑥
𝑦)where 𝑥, 𝑦 ∈ 𝑅. 

 Closure under Addition: If 𝑢 = (
𝑥1

𝑦1
) and 𝑣 = (

𝑥2

𝑦2
), then 𝑢 + 𝑣 = (

𝑥1 + 𝑥2

𝑦1 + 𝑦2
) in 𝑅2. 

 Closure under Scalar Multiplication: For 𝑐 ∈ 𝑅  and 𝑢 = (
𝑥
𝑦), the product  𝑐𝑢 =

(
𝑐𝑥
𝑐𝑦) remains in 𝑅2. 

This foundational structure provides the basis for many areas in mathematics, including linear algebra, 

functional analysis, and beyond. 

 

5.2 Matrices 

Definition 

A matrix is a rectangular array of numbers arranged in rows and columns. It is commonly used to 

represent linear transformations or systems of linear equations. Each element in the matrix 

corresponds to a specific position defined by its row and column indices. 

Notation 

A matrix 𝐴 of size 𝑛 × 𝑚 has 𝑚 rows and 𝑛 columns, denoted as: 

𝐴 = (

𝑎11

𝑎21

⋮
𝑎𝑛1

𝑎12

𝑎22

⋮
𝑎𝑛2

…
…
   …

𝑎1𝑚

𝑎2𝑚

⋮
  𝑎𝑛𝑚

)         (64) 

Here,   𝑎𝑖𝑗  represents the element located in the 𝑖 row and 𝑗 column of matrix 𝐴. 
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Matrices are fundamental in various mathematical fields, including linear algebra, computer science, 

and statistics, where they facilitate operations such as addition, multiplication, and finding 

determinants and eigenvalues. 

 

 

5.2.1 Matrix Operations 

5.2.1.1 Addition 

Definition 

Two matrices 𝐴 ∈ 𝑅𝑛𝑥𝑚 and 𝐵 ∈ 𝑅𝑛𝑥𝑚 can be added if they have the same dimensions: The addition 

of two matrices 𝐴 and 𝐵  results in a new matrix 𝐶, where each element 𝑐𝑖𝑗 is calculated by adding the 

corresponding elements of A and B: 

𝐶 = 𝐴 + 𝐵 = [𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗]
𝑛×𝑚

 

                    = (

𝑎11 + 𝑏11

𝑎21 + 𝑏21

⋮
𝑎𝑛1 + 𝑏𝑛1

𝑎12 + 𝑏12

𝑎22 + 𝑏22

⋮
𝑎𝑛2 + 𝑏𝑛2

…
…
   …

𝑎1𝑚 + 𝑏1𝑚

𝑎2𝑚 + 𝑏2𝑚

⋮
  𝑎𝑛𝑚 + 𝑏𝑛𝑚

)       (65) 

 Example: 

1) If we have: 𝐴 = (
1 −3

−2 −1
)  𝑎𝑛𝑑 𝐵 = (

−5 3
7 2

) 

Then the sum 𝐶 = 𝐴 + 𝐵 is: 

 𝐶 =  𝐴 + 𝐵 = (
1 − 5 −3 + 3

−2 + 7 −1 + 2
) = (

−4 0
5 1

)  

2) If we have  𝐴 = (
1 −3       
0 −1      

0
5

)  𝑎𝑛𝑑 𝐵 = (
2 7
1 0

) 

Matrix 𝐴 is of size 2 × 3 and matrix 𝐵 is of size 2 × 2. Since their dimensions do not 

match, we cannot add them directly. 

5.2.1.2 Scalar Multiplication 

Definition 

 Scalar multiplication involves multiplying each element of a matrix 𝐴 by a scalar 𝑐. 

If 𝐴 is a matrix of size 𝑛 × 𝑚 given by: 

𝐴 = (

𝑎11

𝑎21

⋮
𝑎𝑛1

𝑎12

𝑎22

⋮
𝑎𝑛2

…
…
   …

𝑎1𝑚

𝑎2𝑚

⋮
  𝑎𝑛𝑚

)           (66) 



4 
 

then the result of multiplying 𝐴 by the scalar𝑐 is another matrix 𝑐𝐴defined as: 

𝑐. 𝐴 = (

𝑐. 𝑎11

𝑐. 𝑎21

⋮
𝑐. 𝑎𝑛1

    𝑐. 𝑎12

   𝑐. 𝑎22

⋮
   𝑐. 𝑎𝑛2

…
…
   …

   𝑐. 𝑎1𝑚

   𝑐. 𝑎2𝑚

⋮
     𝑐. 𝑎𝑛𝑚

)              (67) 

Notation 

Properties of Scalar Multiplication: 

1) Distributive Property: 𝑐(𝐴 + 𝐵) = 𝑐𝐴 + 𝑐𝐵 

2) Associative Property: 𝑐(𝑑𝐴) = (𝑐𝑑)𝐴 

3) Identity Element: 1𝐴 = 𝐴 

Example 

Let 𝐴 = (
1 −5
0 −1

)  and let 𝑐 = 3. 

Then, 

𝑐𝐴 = 3 (
1 −5
0 −1

)  (
3 × 1 3 × (−5)

3 × 0 3 × (−1)
) = (

3 −15
0 −3

)    . 

This demonstrates how each element of the matrix 𝐴 is multiplied by the scalar 𝑐. 

5.2.1.3 Matrix Multiplication 

Definition 

The product of two matrices 𝐴𝐵 is defined when the number of columns in matrix 𝐴 is equal to the 

number of rows in matrix 𝐵. Specifically, if 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 ×  𝑝 matrix, then the 

resulting product 𝐴𝐵 will be an 𝑚 × 𝑝 matrix. 

Notation 

 Let 𝐴 be an 𝑚 × 𝑛 matrix:  

𝐴 = (

𝑎11

𝑎21

⋮
𝑎𝑚1

𝑎12

𝑎22

⋮
𝑎𝑚2

…
…
   …

𝑎1𝑛

𝑎2𝑛

⋮
  𝑎𝑚𝑛

)          (68) 

 Let 𝐵 be an 𝑛 × 𝑝 matrix:  

𝐵 = (

𝑏11

𝑏21

⋮
𝑏𝑛1

𝑏12

𝑏22

⋮
𝑏𝑛2

…
…
   …

𝑏1𝑝

𝑏2𝑝

⋮
  𝑏𝑛𝑝

)          (69) 

 



5 
 

Calculation of the Product 𝑨𝑩 

The product 𝐴𝐵 is calculated by taking the dot product of the rows of 𝐴 with the columns of 𝐵. The 

element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the resulting matrix 𝐶 = 𝐴𝐵 is given by: 

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1            (68) 

where: 

 𝑐𝑖𝑗 is the entry in the 𝑖𝑡ℎ row and 𝑗𝑡ℎcolumn of the matrix 𝐶. 

 𝑎𝑖𝑘 is the entry from the 𝑖𝑡ℎ row of 𝐴. 

 𝑏𝑘𝑗 is the entry from the 𝑗𝑡ℎ column of 𝐵. 

 

Notation 

Properties of Matrix Multiplication 

1) Non-Commutativity: In general, 𝐴𝐵 ≠ 𝐵𝐴. 

2) Associativity: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶). 

3) Distributive: 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶. 

Example 

Let: 

𝐴 = (
1 2
3 4

)   𝑎𝑛𝑑 𝐵 = (
5 6
7 8

)   

The product 𝐴𝐵 is calculated as follows:  𝐴𝐵 = (
1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

)  = (
19 22
43 50

) 

Matrix multiplication is a fundamental operation in linear algebra, with wide-ranging applications in 

various fields including computer science, engineering, and economics. Understanding the conditions 

for multiplication, the calculation method, and properties is essential for further exploration of linear 

transformations and systems of equations. 

 

5.2.2 Relationships between Linear Mappings and Matrices 

Definition 

Every linear mapping 𝑇: 𝑅𝑛 → 𝑅𝑚 can be represented by a matrix 𝐴 such that: 

𝑇(𝑥) = 𝐴𝑥                (69) 

for all 𝑥 ∈ 𝑅𝑛. Here, 𝐴 is an 𝑚 × 𝑛 matrix where the action of 𝑇 on a vector 𝑥 corresponds to the 

matrix multiplication of 𝐴 and 𝑥. 
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5.2.2.1 Representation of the Matrix 

If 𝑇 is defined by its effect on the standard basis vectors 𝑒1, 𝑒2, … , 𝑒𝑛of 𝑅𝑛 the columns of the matrix 𝐴 

are given by: 

𝐴 = (𝑇(𝑒1)  𝑇(𝑒2) …  𝑇(𝑒𝑛))          (70) 

where each 𝑇(𝑒2) is an 𝑚-dimensional vector. 

Notation  

The properties are : 

1) Linearity: The matrix 𝐴 captures the linearity of the mapping 𝑇, meaning: 

 𝑇(𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑇(𝑥1) + 𝑐2𝑇(𝑥2)  for any scalars 𝑐1, 𝑐2 and vectors 𝑥1, 𝑥2 ∈ 𝑅𝑛. 

2) Composition: If 𝑇1: 𝑅𝑛 → 𝑅𝑚 and 𝑇2: 𝑅𝑛 → 𝑅𝑚 are linear mappings with matrices 𝐴1 and 𝐴2, 

respectively, then the composition 𝑇2° 𝑇1 can be represented by the matrix product 𝐴2𝐴1. 

Understanding the relationship between linear mappings and matrices allows for the translation of 

abstract linear transformations into concrete matrix operations, facilitating analysis and computation in 

various mathematical and applied contexts. 

Example 

Let 𝐴 = (
1 0 0
0 2 0
0 0 3

)   and 𝐴 = (
1
1
1

)   

Calculation: 𝑇(𝑥) = 𝐴𝑥 = (
1 0 0

0 2 0

0 0 3

) (
1

1

1

) = (
1

2

3

)   

 

5.2.3 Inverse of a Matrix 

The inverse 𝐴−1 of a matrix 𝐴 satisfies the following conditions: 

𝐴𝐴−1 = 𝐼 𝑎𝑛𝑑 𝐴−1𝐴 = 𝐼          (71) 

𝐴−1 =  
1

det  (𝐴)
× 𝑎𝑑𝑗(𝐴)  

where 𝐼  is the identity matrix and  𝑎𝑑𝑗(𝐴)𝑖𝑠 Adjugate. 

The adjugate (or adjoint) of a matrix 𝐴, is the transpose of the cofactor matrix of 𝐴. It is calculated by: 

 Finding the cofactor for each element of 𝐴. 

 Transposing the resulting matrix of cofactors. 
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Example 

For 

𝐴 = (
1 2 3
0 1 4
5 6 0

)  

Finding 𝐴−1 involves calculating the determinant and the adjugate. we will follow these steps: 

1. Calculate the Determinant of 𝐴. 

2. Find the Adjugate of 𝐴. 

3. Use the formula for the inverse. 

 

det(𝐴) = 1 |
1 4
6 0

| − 2 |
0 4
5 0

| + 3 |
0 1
5 6

| = −24 + 40 − 15 = 1  

Calculate the Cofactor Matrix 

To find the cofactor 𝐶𝑖𝑗, we calculate the determinant of the 2 × 2 matrix obtained by deleting the i 

row and j column and apply the sign based on the position. 

 𝐶𝑖𝑗 = (−1)𝑖+𝑗𝑑𝑒𝑡(𝑖, 𝑗) 

 

1. Cofactor  𝐶11 (delete row 1, column 1): 

 𝐶11 = 𝑑𝑒𝑡 (
1 4
6 0

) = −24 

2. Cofactor  𝐶12 (delete row 1, column 2): 

 𝐶12 = −𝑑𝑒𝑡 (
0 4
5 0

) = 20 

3. Cofactor  𝐶13 (delete row 1, column 3): 

 𝐶13 = 𝑑𝑒𝑡 (
0 1
5 6

) = −16 

4. Cofactor  𝐶21 (delete row 2, column 1): 

 𝐶21 = −𝑑𝑒𝑡 (
2 3
6 0

) = 18 

5. Cofactor  𝐶22 (delete row 2, column 2): 

  𝐶22 = 𝑑𝑒𝑡 (
1 4
6 0

) = −15. 

6. Cofactor  𝐶23 (delete row 2, column 3): 

 𝐶23 = −𝑑𝑒𝑡 (
1 2
5 6

) = 4 
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7. Cofactor  𝐶31 (delete row 3, column 1): 

 𝐶31 = 𝑑𝑒𝑡 (
2 3
1 4

) = 5 

8. Cofactor  𝐶32 (delete row 3, column 2): 

 𝐶32 = −𝑑𝑒𝑡 (
1 3
0 4

) = −4 

9. Cofactor  𝐶33 (delete row 3, column 3): 

 𝐶33 = −𝑑𝑒𝑡 (
1 2
0 1

) = 1 

. Putting it all together, the cofactor matrix  , and Taking the transpose of the cofactor matrix : 

 𝐶 = (
−24 20 −5
18 −15 4
5 −4 1

) →  𝒂𝒅𝒋(𝑨) =  𝑪𝑻 = (
−𝟐𝟒 𝟏𝟖 𝟓
𝟐𝟎 −𝟏𝟓 −𝟒
−𝟓 𝟒 𝟏

) 

Using the formula for the inverse: 

𝐴−1 =  
1

det  (𝐴)
× 𝑎𝑑𝑗(𝐴)  

Since  𝑑𝑒𝑡 (𝐴) = 1, The inverse of the matrix 𝐴 is: 

𝐴−1 = (
−24 18 5
20 −15 −4
−5 4 1

) 

 

5.2.4 Trace and Determinant of a Matrix 

Definition 1 

The trace of a square matrix 𝐴, denoted 𝑡𝑟(𝐴), is defined as the sum of the diagonal elements: 

𝒕𝒓(𝑨) = 𝒂𝟏𝟏 + 𝒂𝟐𝟐 + ⋯ + 𝒂𝒏𝒏         (72) 

Properties of the Trace 

1) Linearity: 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵) for any two square matrices 𝐴 and 𝐵 of the same size. 

2) Scalar Multiplication: 𝑡𝑟(𝑐𝐴) = 𝑐𝑡𝑟(𝐴) for any scalar 𝑐. 

3) Transpose  𝑡𝑟(𝐴𝑇) = 𝑡𝑟(𝐴). 

Definition 2 

The determinant of a square matrix 𝐴, denoted  𝑑𝑒𝑡(𝐴), is a scalar value that provides important 

properties regarding the matrix, including whether it is invertible. 

Properties of the Determinant 

1) Multiplicative:  𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴). 𝑑𝑒𝑡(𝐵) for any two square matrices 𝐴 and 𝐵. 

2) Invertibility: A matri𝑥 𝐴 is invertible if and only if det (𝐴) ≠ 0. 

3) Effect of Row Operations: 
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 Swapping two rows multiplies the determinant by −1. 

 Multiplying a row by a scalar 𝑐 multiplies the determinant by 𝐶. 

 Adding a multiple of one row to another does not change the determinant. 

 

5.2.5 Eigenvalues and Eigenvectors 

Definition 

For a square matrix 𝐴, a non-zero vector 𝑣 is called an eigenvector and the corresponding scalar 𝜆 is 

called an eigenvalue if ( see chapter 4): 

𝐴𝑣 = 𝜆𝑣           (73) 

5.2.5.1 Finding Eigenvalues 

To find the eigenvalues of  𝐴, solve the characteristic equation: 

𝑑𝑒𝑡 (𝐴 − 𝜆𝐼) = 0          (74) 

where 𝐼 is the identity matrix of the same size as 𝐴. 

5.2.5.2  Finding Eigenvectors 

Once the eigenvalues are determined, substitute each eigenvalue 𝜆 back into the equation (𝐴 − 𝜆𝐼)𝑣 =
0 to find the corresponding eigenvectors. 

Properties 

1) Sum of Eigenvalues: The sum of the eigenvalues of 𝐴 equals the trace of 𝐴. 

2) Product of Eigenvalues: The product of the eigenvalues equals the determinant of 𝐴. 

 

5.2.6 Similar Matrices 

Definition 

Two square matrices 𝐴 and 𝐵 are said to be similar if there exists an invertible matrix 𝑃 such that: 

𝐵 = 𝑃−1𝐴𝑃           (75) 

Properties of Similar Matrices 

1) Same Eigenvalues: Similar matrices share the same eigenvalues. 

2) Same Determinant and Trace: If 𝐴 and 𝐵 are similar, then 𝑑𝑒 𝑡(𝐴) = 𝑑𝑒 𝑡(𝐵) 𝑎𝑛𝑑 𝑡 𝑟(𝐴) =
𝑡𝑟(𝐵)). 

3) Invariant under Similarity: Many properties of matrices, such as rank and characteristic 

polynomial, are invariant under similarity. 
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5.2.7 Some Special Matrices 

Definition 1 

A diagonal matrix is a square matrix in which all elements outside the main diagonal are zero. It can 

be represented as: 

𝐷 = (

𝑑1 0 … 0
0 𝑑2 ⋱ ⋮
⋮
0

⋱
…

⋱ 0
0 𝑑𝑛

) 

where 𝑑1, 𝑑2, . . 𝑑𝑛 are the diagonal entries. 

Properties 

1) Eigenvalues: The eigenvalues of a diagonal matrix are simply its diagonal entries: 

Eigenvalues=𝑑1, 𝑑2, . . 𝑑𝑛 

2) Determinant: The determinant of a diagonal matrix is the product of its diagonal entries: 

det(𝐴) = 𝑑1 × 𝑑2 ×, .× 𝑑𝑛 

3) Inverse: If 𝑑𝑖 ≠ 0 for all 𝑖, the inverse of a diagonal matrix 𝐷 is also a diagonal matrix: 

𝐷−1 = (

1/𝑑1 0 … 0
0 1/𝑑2 ⋱ ⋮
⋮
0

⋱
…

⋱ 0
0 1/𝑑𝑛

) 

Definition 2 

A matrix 𝑄 is orthogonal if its transpose is equal to its inverse: 

𝑄𝑇𝑄 = 𝐼 

Properties 

1) Orthonormal Vectors: The columns (and rows) of 𝑄 are orthonormal vectors. This means: 

- Each column vector has a length of 1. 

- Any two different columns are orthogonal to each other. 

2) Determinant: The determinant of an orthogonal matrix is either +1 or −1: 

𝑑𝑒𝑡(𝑄) = ±1 

3) Inverse: The inverse of an orthogonal matrix is its transpose: 
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𝑄−1 = 𝑄 

Definition 3 

A matrix 𝐴 is symmetric if it is equal to its transpose: 

𝐴 = 𝐴𝑇 

Properties 

1) Real Eigenvalues: All eigenvalues of a symmetric matrix are real. 

2) Diagonalization: There exists an orthogonal matrix 𝑄 such that: 

𝐴 = 𝑄𝛬𝑄𝑇 

where 𝛬 is a diagonal matrix containing the eigenvalues of 𝐴. 

 

3) Quadratic Form: For any vector x: 𝑥𝑇𝐴  𝑥  is a vreal number. 

 

 

5.3 Norms and Inner Products 

Norms and inner products are fundamental concepts in linear algebra that provide a way to measure 

the size of vectors and the angle between them. These tools are essential for various applications in 

mathematics, physics, and engineering. 

 
5.3.1 Definitions 

Vector Norms 

A norm is a function that assigns a non-negative length or size to vectors in a vector space. It is 

denoted as ∥ 𝑥 ∥\for a vector 𝑥. 

Properties of Norms 

For any vector 𝑥 and scalar 𝑐: 

1) Non-negativity: ∥ 𝑥 ∥≥ 0 and  ∥ 𝑥 ∥= 0 if and only if  𝑥 = 0. 

2) Scalar multiplication: ∥ 𝑐𝑥 ∥=∣ 𝑐 ∣∥ 𝑥 ∥. 

3) Triangle inequality: ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦∥. 

Common Norms 

1. 1-Norm (Manhattan Norm): ‖𝑥‖1 = ∑ |𝑥𝑖|𝑛
𝑖=1    

2. 2-Norm (Euclidean Norm): ‖𝑥‖2 = √∑ |𝑥𝑖|2𝑛
𝑖=1  
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3. Infinity Norm: ‖𝑥‖∞ = max𝑖|𝑥𝑖| 

5.3.2 Inner Products and Vector Norms 

Inner Product 

An inner product is a generalization of the dot product that allows us to define angles and 

lengths in a vector space. For two vectors 𝑥, 𝑦 ∈ 𝑅𝑛, the inner product is denoted as ⟨𝑥, 𝑦⟩. 

Properties of Inner Products 

1) Conjugate symmetry: ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩̅̅ ̅̅ ̅̅ ̅ 

2) Linearity: ⟨𝑐𝑥 + 𝑧, 𝑦⟩ = 𝑐⟨𝑥, 𝑦⟩ + ⟨𝑧, 𝑦⟩ 
3)  Positive definiteness: ⟨𝑥, 𝑥⟩ ≥ 0 and ⟨𝑥, 𝑥⟩ = 0 if x=0. 

Relationship Between Norms and Inner Products 

The norm of a vector can be derived from the inner product: 

‖𝑥‖ = √(𝑥, 𝑥) 

Examples of Inner Products 

1) Standard Inner Product: ⟨𝑥, 𝑦⟩ = ∑ 𝑥𝑖
𝑛
𝑖=1 𝑦𝑖 

2) Weighted Inner Product: ⟨𝑥, 𝑦⟩ = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 𝑦𝑖 where wi>0w_i > 0wi>0 are weights. 

 
5.3.3 Matrix Norms 

Definition  

A matrix norm is a function that assigns a non-negative size to matrices, analogous to vector norms. It 

is denoted as ∥ 𝐴 ∥ for a matrix 𝐴. 

Properties of Matrix Norms 

For any matrices 𝐴 and 𝐵 of appropriate dimensions and scalar 𝑐: 

1) Non-negativity: ∥ 𝐴 ∥≥ 0 and ∥ 𝐴 ∥= 0 if and only if 𝐴 is the zero matrix. 

2) Scalar multiplication: ∥ 𝑐𝐴 ∥=∣ 𝑐 ∣∥ 𝐴 ∥∥. 

3) Triangle inequality: ∥ 𝐴 + 𝐵 ∥≤∥ 𝐴 ∥ +∥ 𝐵 ∥. 

Common Matrix Norms 

1. Frobenius Norm: 

∥ 𝐴 ∥𝐹= √∑ |𝑎𝑖𝑗|
2

𝑖,𝑗 = √𝑡𝑟(𝐴∗𝐴)  

where 𝐴∗∗ is the conjugate transpose of 𝐴. 
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2. 1-Norm: 

∥ 𝐴 ∥1= max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

 

This norm is the maximum absolute column sum of the matrix. 

3. Infinity Norm: 

∥ 𝐴 ∥∞= max
1≤𝑗≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑖=1

 

This norm is the maximum absolute row sum of the matrix. 

4. 2-Norm (Spectral Norm): 

∥ 𝐴 ∥2= 𝜎𝑚𝑎𝑥 

where 𝜎𝑚𝑎𝑥 is the largest singular value of 𝐴. 

Applications of Norms and Inner Products 

 Stability Analysis: In control theory, norms are used to analyze the stability of systems. 

 Optimization: In machine learning, norms help in regularization techniques to prevent 

overfitting. 

 Numerical Analysis: Norms measure error and convergence rates of numerical methods. 
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QCM 

 
Here are multiple-choice questions (MCQs) based on previous section: 

Question 1: 

1. Which of the following is NOT a property of a vector space? 

A) Closure under addition 

B) Existence of a zero vector 

C) Commutativity of multiplication 

D) Closure under scalar multiplication 

Answer: C) Commutativity of multiplication 

 
Question 2: 

What is the result of the matrix multiplication 𝐴 = (
1 2
3 4

)  𝑎𝑛𝑑 𝐵 = (
5 6
7 8

)?. 

A) (
19 22
43 50

) 

B) (
31 52
15 24

) 

C) (
14 12
11 3

) 

D) (
26 7
19 32

) 

Answer: (
19 22
43 50

). 

 
Question 3: 

If 𝐴 is a matrix representing a linear mapping, which of the following statements is true? 

A) The matrix has the same dimensions as the vector space it maps to. 

B) The rank of the matrix is always equal to its dimension. 

C) Every linear mapping can be represented by a matrix. 

D) The inverse of a matrix always represents a linear mapping.   

Answer: C) Every linear mapping can be represented by a matrix. 

 
Question 4: 

What is the determinant of the matrix 𝑀 = (
1 2
3 4

)? 

A) -2. 

B) 2. 

C) 4. 

D) 1. 

Answer: A) -2. 

 
Question 5: 

Which of the following is a property of inner products in vector spaces? 

A) It is commutative but not associative. 

B) It can produce a scalar result. 

C) It requires at least three vectors. 

D) It can be negative.  

Answer: B) It can produce a scalar result. 

 


