
1

Ministry of Higher Education and Scientific Research

Mohamed-Boudiaf University of Science and Technology of Oran- USTOMB

Faculty of Mathematics and Computer Science

Department of Computer Science

Numerical Methods Course

Dr. Asmaa Ourdighi.

Online Course for Students via Moodle

Octobre 2024

2

Numerical Methods Course

Aim of the course

Numerical analysis is fundamentally intertwined with computer science. The advent of

high-performance computing has revolutionized the field, enabling the solution of complex

mathematical problems that were previously intractable. Numerical methods are at the heart

of computational software, from scientific simulations to data analysis tools. Computer

scientists design efficient algorithms and data structures to implement these methods, while

numerical analysts develop the mathematical foundations. This interdisciplinary collaboration

has led to groundbreaking advancements in fields such as artificial intelligence, machine

learning, and data science, where numerical techniques are essential for tasks like training

neural networks, processing large datasets, and solving optimization problems.

3

Content of the Material:

Chapter 1 Basics of Numerical Analysis and Scientific Computing ... 5

1.1. Motivations ... 5

1.2. Floating-Point Arithmetic and Rounding Errors .. 5

1.2.1 Representation of Numbers in Machine .. 5

1.2.2 Rounding Errors .. 9

1.3. Stability and Error Analysis of Numerical Methods and Problem Conditioning 10

1.3.1 Algorithm Selection ... 10

1.3.2 Refinement and Adaptation .. 12

1.3.3 Validation and Testing ... 12

Chapter 2 Direct Methods for Solving Linear Systems .. 13

2.1 Remarks on Solving Triangular Systems .. 14

2.1.1 Solving Upper Triangular System ... 14

2.1.2 Solving Lower Triangular System .. 14

2.2 Gaussian Elimination Method ... 15

2.3 Matrix Interpretation of Gaussian Elimination: LU Factorization ... 19

Chapter 3 Iterative Methods for Solving Linear Systems ... 22

3.1 General Considerations ... 22

3.2 Jacobi and Relaxation Methods .. 23

3.2.1 Jacobi Method ... 23

3.2.2 Relaxation Method ... 28

3.3 Gauss-Seidel and Successive Relaxation Methods .. 28

3.3.1 Gauss-Seidel Method ... 28

3.3.2 Successive Relaxation Method (SOR) ... 30

3.4 Remarks on the Implementation of Iterative Methods .. 32

3.5 Convergence of Jacobi and Gauss-Seidel Methods ... 40

3.5.1 Sufficient Conditions for Convergence of Iterative Methods... 42

Chapter 4 Computation of Eigenvalues and Eigenvectors .. 46

4.1 Localization of Eigenvalues .. 46

4.1.1 Finding Eigenvalues: Analytical calculation .. 46

4.1.2 Localization Techniques ... 48

4.2 Power Method ... 51

4

Chapter 5 Matrix Analysis .. 56

5.1 Vector Spaces .. 56

5.2 Matrices ... 57

5.2.1 Matrix Operations .. 58

5.2.2 Relationships between Linear Mappings and Matrices ... 60

5.2.3 Inverse of a Matrix.. 61

5.2.4 Trace and Determinant of a Matrix .. 63

5.2.5 Eigenvalues and Eigenvectors .. 64

5.2.6 Similar Matrices .. 64

5.2.7 Some Special Matrices.. 65

5.3 Norms and Inner Products .. 66

5.3.1 Definitions .. 66

5.3.2 Inner Products and Vector Norms .. 67

5.3.3 Matrix Norms .. 67

5

Chapter 1 Basics of Numerical Analysis and Scientific

Computing

1.1. Motivations

In the realm of mathematics, we frequently encounter continuous problems. However, computers

are limited to discrete representations. For example, computers can only approximate irrational

numbers like 𝜋 or √2. Additionally, they use approximations for basic mathematical functions

such as sine, cosine, etc. Numerical analysis bridges this gap, offering a rigorous framework for

translating continuous mathematical problems into discrete problems that computer can handle. It

is at the heart of many scientific and technological advances. Numerical analysis and computer

science are inextricably linked. Advances in computing have empowered numerical methods to

tackle increasingly complex problems. Computer scientists design efficient algorithms to

implement these methods, while mathematicians provide the theoretical underpinnings. This

synergistic relationship is indispensable in fields like artificial intelligence and data science, where

numerical techniques are ubiquitous.

1.2. Floating-Point Arithmetic and Rounding Errors

Floating-point arithmetic is a numerical representation used in computers to approximate real

numbers. Given that computers operate with finite memory, they cannot represent most real

numbers exactly. Instead, they represent them using a finite number of bits, which leads to the

following key concepts:: Representation of Floating-Point Numbers and Rounding Errors

1.2.1 Representation of Numbers in Machine

1.2.1.1 Introduction

In this section, we will introduce the concepts of mantissa, exponent, and how numbers are

represented on a calculator or computer.

Base 10 is the natural base we work with and the one found in calculators. A decimal number,

or decimal, has several different representations by simply changing the position of the decimal

point and adding a power of 10 at the end of the number's representation. The part to the left of

the decimal point is the integer part, and the part to the right before the exponent is called the

mantissa. For example, the number x = 1234.5678 has several representations:

𝑥 = 1234,5678 = 1234,5678 . 100 = 1,2345678. 103 = 0,0012345678. 106 (1)

In each representation in Eq. (1):

Notation: "Numerical analysis is the study of algorithms for the problems of

continuous mathematics." — Lloyd N. Trefethen

6

 The “mantissa” is the significant part of the number, located to the left of the power of

10. In our example, it can be 1234,5678, 1,2345678, or 0,0012345678.

 The “exponent” is the power of 10 that shifts the decimal point: 0, 3, or 6.

1.2.1.2 Representation of a Number in Machine: Floating-Point Numbers

The binary system is the foundation of computer arithmetic. In this system, numbers are

represented using only two digits: 0 and 1.

Let's take the decimal number 39 and 3,625. In binary, it is represented as 100111 and 11.101,

respectively in Eq. (2) and Eq. (3).

39 = 32 + 4 + 2 + 1 = 25 + 22 + 21 + 20 = (100111)2 (2)

3,625 = 21 + 20 + 2−1 + 2−3 = (11.101)2 = (1.1101)2 (3)

In general, any real number x can be represented in a base b (b = 10 for a calculator, b = 2 for

a computer) by: its sign “+ or –”, the “mantissa m” (also called significand), the “base b”, and

an “exponent e”. The mantissa is usually normalized to have a leading non-zero digit. By

varying e, the decimal point is made to 'float'. However, due to the finite nature of computer

memory, only a finite subset of real numbers can be exactly represented. Consequently, a

machine-level real number or floating-point number is subject to rounding errors, which can

lead to loss of precision in certain calculations.

�̌� = ±𝑚. 𝑏𝑒
𝑚 = 𝐷,𝐷… .𝐷 𝑎𝑛𝑑 𝑒 = 𝐷…𝐷, 𝑤ℎ𝑒𝑟𝑒 𝐷 ∈ {0,1,… , 𝑏 − 1} (4)

Approximate representations of π are: (0.031,2), (3.142,0), (0.003,3). It can be observed that

these representations do not yield the same level of precision. To ensure uniqueness and optimal

precision, a normalized mantissa is employed, where the leading digit before the radix point is

non-zero. Normalized machine numbers adhere to this convention. In base 2, the initial bit of

the mantissa is invariably 1, and thus, it is omitted to save a bit. The exponent is constrained to a

finite range, L <= e <= U (typically L < 0 and U > 0). Consequently, the system is defined by

four integral parameters: the base b (usually 2), the precision t (number of digits in the

mantissa), and the minimum and maximum exponents, L and U, respectively.

Why this representation?

It offers great flexibility to represent very large or very small numbers, while using a

fixed number of digits.

7

Mathematical computations involve real numbers z drawn from a continuous interval ∈
]−∞,+∞[. However, the finite precision of computers necessitates approximations for most

real numbers. For instance,
1

3
 , √2, 𝑎𝑛𝑑 𝜋 , with its infinite decimal expansion, cannot be

exactly represented in a machine. Even the simplest calculations then become approximate.

Practical experience shows that this limited set of representable numbers is largely sufficient

for calculations on a computer; the numbers used in computations are machine numbers

𝑥 ∈]𝑥𝑚𝑖𝑛, . . , 𝑥𝑚𝑎𝑥[. Hence, any real number 𝑥 must be mapped to a machine number 𝑥

before it can be processed by a computer.

Figure 1. Representation of real number 𝑥 ∈ 𝑅 by machine numbers 𝑥 ∈ 𝐹

Definitions

Definition1: Machine precision, it is described by the machine number 𝜀, 𝜀 is the smallest

machine number such that 1 + 𝜀 > 1 on the machine. It is the distance between the integer 1

and the closest number 𝑥 ∈ 𝐹, which is greater than 1.

Definition2: The IEEE 754 standard is a widely adopted framework for representing floating-

point numbers in computer systems. It defines formats for both single-precision and double-

precision numbers, ensuring consistency and accuracy in numerical computations across

different computing platforms.

Example: Let's take the number π (Pi) and represent it in base 2 with a 5-bit mantissa and an

exponent ranging from -2 to 2.

Choice of an approximation for π: We will use the approximation 3.1416.

Normalization of the mantissa: To normalize, we shift the decimal point so that there is a 1

before the decimal. Thus, 3.1416 becomes 1.1001 × 21.

Binary representation:

The mantissa (without the leading 1) is: 1001

The exponent is: 1 (which corresponds to 21 in our example)

Therefore, the floating-point representation of π in our system is (1.1001,1).
To summarize, the number π is represented by:

 Sign: + (positive)

 Mantissa: 1.1001 (normalized)

 Exponent: 1

 Base: 2

8

Figure 2. Representation of The IEEE 754 standard for both single-precision and double-precision

numbers

The IEEE 754 standard defines a framework for representing floating-point numbers in computing,

ensuring consistency and accuracy across platforms. It includes two primary formats: single precision

(32 bits) and double precision (64 bits). In both formats, the representation is divided into three main

components: the sign bit, which indicates whether the number is positive or negative; the exponent,

which is biased to allow for both positive and negative values; and the mantissa, which represents the

significant digits of the number in a normalized form. The bias for single precision is 127, while for

double precision, it is 1023. For single precision, the format consists of 1 sign bit, 8 exponent bits, and

23 mantissa bits, while double precision uses 1 sign bit, 11 exponent bits, and 52 mantissa bits. This

structure allows for efficient computation and standardized handling of special values, such as zero,

infinity, and NaN (Not a Number), facilitating reliable numerical operations in various applications.

Example: Here’s the representation of −6.75 in both single-precision and double-precision IEEE 754

formats.

1. Single Precision (32 bits)
Step 1: Convert to Binary

 Absolute value: 6.75 in binary is 110.11.

Step 2: Normalize

 Normalize to: 1011 × 22

Step 3: Sign Bit

 Sign (S): 1 (negative)

Step 4: Exponent

 Actual exponent: 2

 Biased exponent: 2 + 127 = 129

 In binary: 10000001

Step 5: Mantissa

 Mantissa (without leading 1): 10110000000000000000000 (23 bits)

Final Representation

Putting it all together:

| 1 | 10000001 | 10110000000000000000000 |

2. Double Precision (64 bits)
Step 1: Convert to Binary

 Absolute value: 6.75 in binary is 110.11.

Step 2: Normalize

 Normalize to: 1011 × 22

Step 3: Sign Bit

 Sign (S): 1 (negative)

Step 4: Exponent

 Actual exponent: 2

9

 Biased exponent: 2 + 1023 = 1025

 In binary: 10000001001 (11 bits)

Step 5: Mantissa

 Mantissa (without leading 1):

101100 (52 bits)

Final Representation

Putting it all together:

| 1 | 10000001001 | 101100 |

1.2.2 Rounding Errors

Rounding errors occur when numbers are approximated to fit within the finite precision of a

computer's numerical representation. These errors arise because many real numbers cannot be

represented exactly in a binary format, leading to discrepancies between the true value and its

computed representation. When performing arithmetic operations, results may require more

precision than can be accommodated, necessitating rounding to fit the format. As a result,

rounding errors can accumulate in iterative calculations, potentially leading to significant

inaccuracies in the final output.

1.2.2.1 Absolute Error

The absolute error measures the difference between the exact value and the approximate value

obtained through computation. It is defined as:

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = |Exact Value − Approximate Value| (5)

For example, if the exact value of a number is 3.14159 and the computed value is 3.14, the

absolute error is: ∣3.14159−3.14∣=0.00159

1.2.2.2 Relative Error

Relative error provides a measure of the absolute error in relation to the size of the exact value,

allowing for a better understanding of the error's significance in context. It is calculated as:

Relative Error =
|Exact Value−Approximate Value|

|Approximate Value|
 (5)

Using the previous example, the relative error for the values 3.14159 (exact) and 3.14

(approximate) would be:

Relative Error =
|0.00159|

|3.14159|
≈ 0.000506 (6)

Rounding errors can significantly impact the accuracy of numerical computations due to limited

precision in representing real numbers. Absolute error quantifies the direct difference between

exact and approximate values, while relative error contextualizes this difference by comparing it

to the size of the exact value. Understanding both types of errors is crucial for assessing the

reliability of numerical results in various applications.

10

1.3. Stability and Error Analysis of Numerical Methods and Problem

Conditioning

To develop reliable and accurate numerical algorithms, it is essential to integrate error

analysis, stability analysis, and considerations of problem conditioning:

1.3.1 Algorithm Selection

Algorithm selection in numerical analysis is a multi-faceted process that involves

understanding the problem, analyzing errors, evaluating stability and complexity, and

considering problem conditioning. By systematically evaluating these factors, one can

choose the most appropriate numerical method that balances accuracy, efficiency, and

reliability, ensuring that the chosen approach yields trustworthy results in practice. This

careful selection process is essential for successfully solving complex mathematical

problems across various scientific and engineering disciplines. Here’s a detailed

breakdown of the factors to consider when selecting an algorithm.

1.3.1.1 Understanding the Problem

Before selecting an appropriate algorithm, it is crucial to thoroughly understand the

nature of the problem at hand. First, identify the “type of problem” you are dealing

with, whether it involves linear systems, nonlinear equations, optimization tasks,

differential equations, or integration. Each type requires specific algorithms that

leverage their unique characteristics and properties. Additionally, consider the

“dimensionality” of the problem, as the number of variables can significantly impact

algorithm performance. Some algorithms may excel in lower-dimensional spaces but

encounter challenges as dimensionality increases—a phenomenon often referred to as

the "curse of dimensionality." This understanding lays the groundwork for making

informed choices about which numerical methods will yield the most accurate and

efficient results for your specific context.

1.3.1.2 Error Analysis

Understanding the error characteristics of different algorithms is vital for selecting the

most suitable method for a given problem. “Truncation error” refers to the error

introduced when an algorithm approximates a solution, which can be assessed based on

the method’s step size h. For example, numerical differentiation methods exhibit

truncation errors that depend on the step size, typically expressed as Eq. (7):

𝐸trunc~𝑂(ℎ
𝑝) (7)

Where p denotes the order of the method.

In addition to truncation errors, it is essential to analyze “round-off error”, which

results from the limitations of numerical precision during calculations. Algorithms

requiring numerous arithmetic operations, particularly iterative methods, can

accumulate significant round-off errors.

To achieve a comprehensive understanding of overall accuracy, one must consider the

“total error”, which can be expressed as Eq. (8):

11

𝐸total = 𝐸trunc + 𝐸𝑟𝑜𝑢𝑛𝑑−𝑜𝑓𝑓 (8)

 Recognizing how these error components interact and combine is crucial for selecting

an algorithm that maintains a manageable total error, ensuring reliable and accurate

numerical results.

1.3.1.3 Stability Analysis

The stability of an algorithm is a critical factor that indicates how errors propagate

during computations. Stable algorithms are designed to avoid significant amplification

of errors throughout the calculation process.

For instance, direct methods like Gaussian elimination are typically stable; however,

they can encounter large truncation errors, particularly when applied to ill-conditioned

problems. In contrast, iterative methods, such as the Jacobi method, may be unstable,

especially if their convergence heavily relies on the initial guess or the conditioning of

the problem. The “condition number” of a matrix A, denoted as κ(A), serves as a

measure of sensitivity to input variations and numerical errors. It is defined as Eq. (9)

κ(A) = ‖𝐴‖‖𝐴−1‖ (9)

A high condition number indicates potential instability, suggesting that small changes in

the input can lead to large variations in the output. Therefore, selecting algorithms that

effectively mitigate the effects of high condition numbers is essential for ensuring

reliable numerical results, particularly in sensitive computational scenarios.

1.3.1.4 Complexity and Efficiency

When selecting an algorithm, it's important to evaluate both its computational

complexity and efficiency. “Time complexity” measures how the execution time

increases with the size of the input. For instance, solving a system of linear equations

using Gaussian elimination has a time complexity of 𝑂(𝑛3), which can be

computationally expensive for large systems.

In contrast, iterative methods like the Conjugate Gradient algorithm often offer

improved performance, particularly for large sparse systems, as they can converge faster

and require fewer operations. Additionally, “space complexity” should be assessed to

understand the memory requirements of the algorithm. Some methods necessitate extra

space for storing intermediate results, which can pose challenges in resource-

constrained environments. Balancing time and space complexity is crucial for selecting

efficient algorithms that meet the demands of specific problems while optimizing

resource usage.

1.3.1.5 Specific Characteristics of Algorithms

When selecting an algorithm, it is crucial to consider its “convergence behavior, as

different methods converge at different rates. For example, Newton's method converges

quadratically near the solution, while the Bisection method exhibits linear convergence,

making it slower but more robust for certain problems. Additionally, the “robustness”

of an algorithm is essential; methods sensitive to minor input changes may not be

suitable for real-world applications. “Adaptivity” is another key feature; some

algorithms can dynamically adjust their parameters based on problem characteristics,

such as adaptive step-size methods in numerical integration, which modify the step size

12

according to estimated errors. Evaluating these characteristics helps ensure the selection

of algorithms that are efficient, reliable, and resilient under various conditions.

1.3.1.6 Problem Conditioning

Understanding the conditioning of a problem is crucial for algorithm selection,

particularly in differentiating between “well-conditioned” and “ill-conditioned”

problems. Ill-conditioned problems are sensitive to small input perturbations, which can

lead to significant output variations, complicating the numerical solution. In such cases,

it is often beneficial to use regularization techniques or select more robust algorithms

that minimize error propagation. These strategies help stabilize the solution, ensuring

that minor changes in input do not cause disproportionately large errors in the results.

Recognizing the problem's conditioning enables informed decisions about which

algorithms will provide reliable and accurate solutions.

1.3.1.7 Availability of Libraries and Tools

When choosing an algorithm, it's essential to consider the availability of implementation

resources, such as libraries and tools that facilitate application. Libraries like NumPy

and SciPy, along with specialized numerical solvers, can save significant time and effort

by offering pre-implemented functions and optimized algorithms. Additionally, strong

community support and comprehensive documentation are invaluable; they help users

troubleshoot issues and provide practical insights into algorithm usage. This support

enhances the implementation of numerical methods, ensuring effective application

while minimizing potential challenges.

1.3.2 Refinement and Adaptation

Numerical methods can often be refined based on error and stability assessments. For

instance, adaptive algorithms can adjust parameters like step size dynamically based on

estimated errors.

1.3.3 Validation and Testing

Rigorous testing and validation against known solutions or benchmarks can help verify

that the combined considerations of error, stability, and conditioning lead to reliable

numerical results.

Error analysis and stability are vital for ensuring the reliability and accuracy of numerical

algorithms. A comprehensive understanding of these concepts, combined with an awareness of

problem conditioning, allows developers to create robust numerical methods suitable for a

wide range of applications. By systematically addressing these aspects, we can enhance the

performance and trustworthiness of numerical computations in science and engineering.

13

Chapter 2 Direct Methods for Solving Linear Systems

𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛 = 𝑏

{

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

{

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

{

 𝑎1𝑛𝑥𝑛 = 𝑏1
 𝑎2(𝑛−1)𝑥𝑛−1+𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

Definitions

Definition 1:
A linear equation is an equation that can be expressed in the form:

Where 𝑎1, 𝑎2, … , 𝑎𝑛 are coefficients, 𝑥1, 𝑥2, … , 𝑥𝑛 are variables, and 𝑏 is a constant.

Definition 2:
A linear system of equations consists of two or more linear equations involving the same set of

variables.

where 𝑥1, 𝑥2, … , 𝑥𝑛 are the unknowns, 𝑎11, 𝑎12, … , 𝑎𝑛𝑛 are the coefficients of the system,

and 𝑏1, 𝑏2, … , 𝑏𝑛 are the constant terms.

There are three possible behaviors of a linear system: infinitely many solutions, a single unique

solution (𝑥1, 𝑥2, … , 𝑥𝑛)
𝑇
, and no solution.

Understanding the possible behaviors of linear systems—infinitely many solutions, a single

unique solution, and no solution—is crucial in both theoretical and practical contexts. Each

behavior has distinct implications for how we approach solving systems of equations and

understanding the relationships between variables. By identifying the nature of a linear system,

we can apply the appropriate methods for analysis and solution.

Definition 3:
Triangular and diagonal systems are special cases of linear systems that offer the advantage of

being very easy to solve. They form an important foundation for understanding and

implementing more general methods for solving linear systems.

1) Upper triangular system, each equation has the form:

Here, all coefficients below the main diagonal are zero (∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 > 𝑗 ∶ 𝑎𝑖𝑗 = 0).

2) Lower triangular system, the arrangement is inverted:

Where (∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 < 𝑗 ∶ 𝑎𝑖𝑗 = 0).

3) In a diagonal system of linear equations, the arrangement of the coefficients is such

that all non-zero elements lie on the main diagonal of the coefficient matrix.

4) {

𝑎11𝑥1 = 𝑏1
 𝑎22𝑥2 = 𝑏2
…………

 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

Where (∀𝑖, 𝑗 = 1. . 𝑛, 𝑖 ≠ 𝑗 ∶ 𝑎𝑖𝑗 = 0 𝑎𝑛𝑑 𝑎𝑖𝑖 ≠ 0).

14

2.1 Remarks on Solving Triangular Systems

One of the fundamental principles in linear algebra is that any system of linear equations can be

transformed into a triangular system. This is typically achieved through a process called Gaussian

elimination or LU decomposition. By manipulating the equations using row operations such as

swapping rows, multiplying rows by non-zero constants, and adding multiples of one row to another

one can systematically eliminate variables to achieve either an upper or lower triangular form.

2.1.1 Solving Upper Triangular System

To solve an upper triangular system, we use back substitution. The idea is to start from the last

equation and substitute backward. The process is:

1) Solve for 𝑥𝑛:

 𝑥𝑛 =
𝑏𝑛

𝑎𝑛𝑛
 (10)

2) Substitute 𝑥𝑛 into the previous-to-First equation and Solve for i = n − 1…1, 𝑥𝑖 :

 𝑥𝑖 =
𝑏𝑖−∑ 𝑎𝑖𝑗𝑥𝑗

𝑛
𝑗=𝑖+1

𝑎𝑖𝑖
 (11)

Example:

{

2𝑥1 + 3𝑥2 + 𝑥3 = 7
 4𝑥2 + 2𝑥3 = 10
 5𝑥3 = 15

 → {

2𝑥1 + 3𝑥2 + 𝑥3 = 7
4𝑥2 + 2𝑥3 = 10

𝒙𝟑 =
𝟏𝟓

𝟓
= 𝟑

 → {

2𝑥1 + 3𝑥2 + 𝑥3 = 7

𝒙𝟐 =
𝟏𝟎 − 𝟐(𝟑)

𝟒
= 𝟏

𝒙𝟑 = 𝟑

 → {
𝒙𝟏 =

𝟕 − 𝟑(𝟏) − (𝟑)

𝟐
=
𝟏

𝟐
𝒙𝟐 = 𝟏
𝒙𝟑 = 𝟑

The solution x is (
𝟏

𝟐
, 1,3)

𝑇

2.1.2 Solving Lower Triangular System

To solve a lower triangular system, we use forward substitution. The steps are as follows:

1) Solve for 𝑥1:

 𝑥1 =
𝑏1

𝑎11
 (12)

2) Substitute 𝑥1 into the second-to-last equation and Solve for i = 2…n, 𝑥𝑖 :

 𝑥𝑖 =
𝑏𝑖−∑ 𝑎𝑖𝑗𝑥𝑗

𝑖−1
𝑗=1

𝑎𝑖𝑖
 (13)

Example:

{

 2𝑥1 = 6
 4𝑥1 + 3𝑥2 = 18
5𝑥1 − 2𝑥2 + 3𝑥3 = 7

 → {
𝒙𝟏 =

𝟔

𝟐
= 𝟑

4𝑥1 + 3𝑥2 = 18
5𝑥1 − 2𝑥2 + 3𝑥3 = 7

 → {

𝒙𝟏 = 𝟑

𝒙𝟐 =
𝟏𝟖 − 𝟒(𝟑)

𝟑
= 𝟐

5𝑥1 − 2𝑥2 + 3𝑥3 = 7

 → {

𝒙𝟏 = 𝟑
𝒙𝟐 = 𝟐

𝒙𝟑 =
𝟕 − 𝟓(𝟑) + 𝟐(𝟐)

𝟑
= −

𝟒

𝟑

15

The solution x is (3,2,−
𝟒

𝟑
)
𝑇

Triangular systems of equations provide a structured and efficient framework for solving

linear equations. By transforming any system into a triangular form, we can leverage back

substitution for upper triangular systems and forward substitution for lower triangular

systems. Understanding these concepts is crucial for advanced numerical methods and

applications in various fields, including engineering and computer science.

2.2 Gaussian Elimination Method

Gaussian elimination is a powerful and systematic method for solving systems of linear

equations. The primary goal of this technique is to transform a rectangular system represented

as AX= B into an equivalent upper triangular form, denoted as UX= C. In this representation,

A is the coefficient matrix, X is the vector of variables, and B is the constant vector. The

matrix U is an upper triangular matrix, and C is a modified constant vector resulting from the

elimination process.

Figure 3. Gaussian Elimination Method

In summary, the Gaussian elimination process consists of two main steps: triangularization and

resolution. First, we express a system of linear equations in the matrix form AX= B, combining the

coefficient matrix A and constants vector B into an augmented matrix [A∣B] The goal of

triangularization is to transform this matrix into row echelon form, where all entries below the main

diagonal are zeros. If a pivot is zero, we handle this by swapping with a non-zero row below it. After

achieving row echelon form, the resolution step involves back substitution: starting from the last

equation, we express each variable in terms of the others and substitute back up to find the values of

all unknowns.

1. Step 1: Triangularization

1) Writing the System in Matrix Form: To begin, we express the system of linear equations in
the form:𝑨𝑿 = 𝑩

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑛𝑛

) , 𝐵 = (

𝑏1
𝑏2
⋮
𝑏𝑛

) , 𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑛

) (14)

Where:𝐴 is the coefficient matrix, 𝑋 is the vector of unknowns, 𝐵 is the constants vector.

2) Formulating the Augmented Matrix

Combine the matrix 𝐴 and vector 𝐵 into an augmented matrix denoted as [𝐴|𝐵]:

16

[𝐴|𝐵] = [

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑛𝑛

|

𝑏1
𝑏2
⋮
𝑏𝑛

] (15)

Transforming to Row Echelon Form

The objective is to convert the augmented matrix into an upper triangular form (row echelon

form), where all entries below the main diagonal are zeros.

[𝐴|𝐵] = [

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑛𝑛

|

𝑏1
𝑏2
⋮
𝑏𝑛

]

𝐿1
𝐿2
⋮
𝐿𝑛

 (16)

3) Using the Elimination Formula

For 𝑖 = 1. . (𝑛 − 1) each pivot 𝑎𝑖𝑖, replace the entries below it using the formula:

𝐹𝑜𝑟 𝑗 = 𝑖 + 1…𝑛, 𝐿𝑗 = 𝐿𝑗 −
 𝑎𝑗𝑖

 𝑎𝑖𝑖
× 𝐿𝑖 (17)

Where:

 𝐿𝑗 is the 𝑗𝑡ℎrow,

 𝐿𝑖 is the 𝑖𝑡ℎrow (the pivot row),
 𝑎𝑗𝑖 is the element below the pivot to reduce it to zero at position (𝑗, 𝑖)

 𝑎𝑖𝑖 is the pivot element at position (𝑖, 𝑖).

4) Handling Zero Pivots

 Identifying a Zero Pivot

If the pivot element 𝑎𝑖𝑖 is zero, we cannot proceed with elimination directly, as division by zero

is undefined.

 Row Swapping

To resolve this issue, look for a non-zero entry in the same column below the current pivot row. If

found, swap the current row with the row containing the non-zero entry: 𝐿𝑖 ↔ 𝐿𝑘

Where 𝐿𝑘 is the row with the non-zero element: 𝑖 < 𝐾 ≤ 𝑛, 𝑎𝑘𝑖 ≠ 0.

After swapping, continue using the elimination formula as before.
5) Repeat the elimination process for each column until the matrix is in row echelon form

2. Step 2: Resolution

After triangularization, we obtain the following matrix system:

𝑈 = (

𝑢11
0
⋮
0

𝑢12
𝑎22
⋮
0

…
…
 ⋱ …

𝑢1𝑛
𝑢2𝑛
⋮

 𝑢𝑛𝑛

) , 𝐶 = (

𝑐1
𝑐2
⋮
𝑐𝑛

)

Next, we transform the new system UX=C into a system of linear equations to solve for X, which will

be the same solution as for the original system AX=B.

17

{

𝑢11𝑥1 + 𝑢12𝑥2 +⋯+ 𝑢1𝑛𝑥𝑛 = 𝑐1
 𝑢22𝑥2 +⋯+ 𝑢2𝑛𝑥𝑛 = 𝑐2
……………………………………
 𝑢𝑛𝑛𝑥𝑛 = 𝑐𝑛

 (18)

1) Back Substitution

 Solve for 𝑥𝑛:

 𝑥𝑛 =
𝑐𝑛

𝑢𝑛𝑛
 (19)

 Substitute 𝑥𝑛 into the previous-to-First equation and Solve for i = n − 1…1, 𝑥𝑖 :

 𝑥𝑖 =
𝑐𝑖−∑ 𝑢𝑖𝑗𝑥𝑗

𝑛
𝑗=𝑖+1

𝑢𝑖𝑖
 (20)

By transforming the system UX=C into a system of linear equations and solving through back

substitution, you can effectively find the solution vector X, similar to how you would have solved

AX=B. This process maintains the same structure and approach, ensuring consistency in solving linear

systems.

Example:

Consider the following system of equations:

{

2𝑥 + 3𝑦 + 𝑧 = 1
4𝑥 + 𝑦 + 2𝑧 = 2
−2𝑥 + 5𝑦 + 2𝑧 = 3

Step 1: Write the Augmented Matrix

First, we form the augmented matrix [A∣B]:

[
2 3 1
4 1 2
−2 5 2

|
1
2
3
]

𝐿1
𝐿2
𝐿3

Step 2: Triangularization

For i=1 to (n-1)=2

1. 𝑖 = 1 pivot 𝑎11 = 2 ≠ 0

Eliminate the first column below the pivot by following Eq. (17):

 𝐿𝑗 = 𝐿𝑗 −
 𝑎𝑗𝑖

 𝑎𝑖𝑖
× 𝐿𝑖

 For 𝐿2 = 𝐿2 −
4

2
𝐿1 = 𝐿2 − 2𝐿1

 For 𝐿3 = 𝐿3 −
(−2)

2
𝐿1 = 𝐿3 + 𝐿1

The calculations for 𝐿2 and 𝐿3 are as follows:

𝐿2 = (4 1 2|2) − 2(2 3 1|1) =(4 1 2|2) − (4 6 2|2) =(0 − 5 0|0)

18

𝐿3 = (−2 5 2|3) + (2 3 1|1) =(0 8 3|4)

The augmented matrix is now:

[
2 3 1
0 −5 0
0 8 3

|
1
0
4
]
𝐿1
𝐿2
𝐿3

2. 𝑖 = 2 pivot 𝑎22 = −5 ≠ 0

Eliminate the first column below the next pivot

 For 𝐿3 = 𝐿3 −
8

(−5)
𝐿1 = 𝐿3 + 𝐿1

𝐿3 = (0 − 8 3|4) +
8

5
(0 − 5 0|0) = (0 0 3|4)

Finally, the augmented matrix is now:

[
2 3 1
0 −5 0
0 0 3

|
1
0
4
]

Step 3: Back Substitution

From the final augmented matrix, we can write the equations:

{
2𝑥 + 3𝑦 + 𝑧 = 1

−5𝑦 = 0
3𝑧 = 4

→

{

 𝑥 = −

1

6
𝑦 = 0

𝑧 =
4

3

Final Solution

The solution to the system AX=B is: 𝑥 = (−
1

6
, 0,

4

3
)
𝑇

{

2𝑦 + 𝑧 = 4
𝑥 + 3𝑦 + 2𝑧 = 5
2𝑥 + 𝑦 + 𝑧 = 3

Exercise

Consider the following system of linear equations represented by:

1. Form the augmented matrix [A∣B] and perform Gaussian elimination.

2. Then, deduce the determinant of A.

NB: 𝐝𝐞𝐭(𝑨) = (−𝟏)𝒑. ∏ 𝒖𝒊𝒊
𝒏
𝒊=𝟏

Where p is the number of permutations performed during the triangularization

of A and U is an upper triangular matrix.

19

2.3 Matrix Interpretation of Gaussian Elimination: LU Factorization

LU Factorization is a method used to decompose a given matrix A into two matrices: a lower

triangular matrix L and an upper triangular matrix U. This decomposition is particularly useful for

solving systems of linear equations, calculating determinants, and performing matrix inversions

efficiently (as shown in Figure.4).

Figure 4. Representation of LU Factorization

For a matrix A to be decomposed into its LU factorization, it must satisfy several conditions: First, A

must be a square matrix. Second, it must be non-singular, meaning that its determinant is non-zero

(det(A)≠0). Lastly, if zero pivots are encountered during the elimination process, the use of

permutation matrices may be necessary to enable the factorization. These conditions collectively

ensure that the LU factorization can be performed without issues.

Steps to Obtain LU Factorization from Gaussian Elimination:

1) Initial Matrix: Consider a square matrix A of size n×n.

2) Form of the Decomposition: We seek to express:

 A= LU

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑛𝑛

) = (

1
𝑙21
⋮
𝑙𝑛2

0
1
⋮
𝑙𝑛2

…
…
 …

0
0
⋮
1

)

⏟
𝐿

(

𝑢11
0
⋮
0

𝑢12
𝑢22
⋮
0

…
…
 …

𝑢1𝑛
𝑢2𝑛
⋮

 𝑢𝑛𝑛

)

⏟
𝑈

 (21)

Where L is a lower triangular matrix with ones on the diagonal and U is an upper triangular

matrix.

3) Gaussian Elimination:

Apply Gaussian elimination to transform A into an upper triangular matrix U.

At each step of elimination, as you eliminate the entries below the diagonal of A, note the

multipliers used to zero out the elements in the current column. These multipliers will form

the elements of L.

4) Constructing L and U:

For each non-zero element 𝑎𝑖𝑗 used for elimination, record the multiplier 𝑚𝑖𝑗 =
 𝑎𝑖𝑗

 𝑎𝑗𝑗
 and

place this multiplier in the position (𝑖, 𝑗)of matrix L.

The matrix U will be the resulting matrix after all elimination steps.

When we have a linear system represented by the matrix equation: AX=B And we have a LU

decomposition of matrix A, meaning A = LU, we can substitute LU for A in the original equation, as

shown in Eq. (22):
𝐴𝑋 = 𝐵 → (𝐿𝑈)𝑋 = 𝐵 → 𝐿(𝑈𝑋) = 𝐵 → 𝐿𝑌 = 𝐵

20

𝑤ℎ𝑒𝑟𝑒 {
𝐿𝑌 = 𝐵 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒
𝑈𝑋 = 𝑌 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑠𝑦𝑠𝑡𝑒𝑚 𝑡𝑜 𝑠𝑜𝑙𝑣𝑒

 (22)

By introducing a new variable Y, we can break down the problem into two simpler triangular systems:

1. To solve for Y, we start by defining Y=UX. This transforms our equation into LY=B. Given

that L is a lower triangular matrix, we can apply forward substitution to efficiently solve for

Y.

2. After obtaining Y, we proceed to solve the equation UX= Y. Since U is an upper triangular

matrix, we can efficiently find X using backward substitution.

By factoring A into LU, we transform a potentially complex linear system into two simpler triangular

systems, which can be solved efficiently using forward and backward substitution.

Example:

Consider the following matrix A:

𝐴 = [
1 1 1
4 3 −1
3 5 3

]

𝐴 = 𝐿𝑈 = [
1 1 1
4 3 −1
3 5 3

] = [
1 0 0
𝑙12 1 0
𝑙13 𝑙32 1

] * [
𝑢11 𝑢12 𝑢13
0 𝑢22 𝑢23
0 0 𝑢33

]

Using Gaussian elimination on A

For i=1 to (n-1) =2

 Calculate 𝒊𝒕𝒉 column of L

 Calculate 𝒊𝒕𝒉 row of U

1) For L: 𝑖 = 1 𝑎𝑛𝑑 𝑘 = 2. . 𝑛, 𝑙𝑘𝑖 =
𝑎𝑘𝑖
(𝑖−1)

𝑎
𝑖𝑖
(𝑖−1)

𝑳 =

[

1 0 0

𝑙12 =
𝑎(0)12
𝑎(0)11

=
4

1
= 4 1 0

𝑙13 =
𝑎(0)13
𝑎(0)11

=
3

1
= 3 𝑙32 1

]

For U: Eliminate Entries Below the Pivot i=1: 𝑎11 = 1 ≠ 0

𝐹𝑜𝑟 𝑗 = 𝑖 + 1…𝑛, 𝐿𝑗 = 𝐿𝑗 −
 𝑎𝑗𝑖

 𝑎𝑖𝑖
× 𝐿𝑖

𝐴(0) = [
1 1 1
4 3 −1
3 5 3

]
𝐿2 = 𝐿2 −

4

1
𝐿1

𝐿3 = 𝐿32 −
3

1
𝐿1
→ 𝐴(1) = [

1 1 1
0 −1 −5
0 2 0

]

21

2) For L: 𝑖 = 2 𝑎𝑛𝑑 𝑘 = 2. . 𝑛, 𝑙𝑘𝑖 =
𝑎𝑘𝑖
(𝑘−1)

𝑎
𝑖𝑖
(𝑘−1)

𝑳 = [

1 0 0
4 1 0

3 𝑙32 =
𝑎(1)32
𝑎(1)22

=
2

−1
= −2 1

]

Eliminate Entries Below the Pivot 2: 𝑎22 = −1 ≠ 0

𝐴(1) = [
1 1 1
0 −1 −5
0 2 0

] 𝐿3 = 𝐿32 −
2

(−1)
𝐿1 = 𝐿3 + 2𝐿1 → 𝐴

(2) [
1 1 1
0 −1 −5
0 0 −10

] = 𝑈

The obtained matrix is the upper triangular matrix U

𝑈 = [
1 1 1
0 −1 −5
0 0 −10

]

𝐿 = [
1 0 0
4 1 0
3 −2 1

]

{

2𝑥 + 3𝑦 + 𝑧 = 1
4𝑥 + 7𝑦 + 2𝑧 = 2
6𝑥 + 18𝑦 + 5𝑧 = 3

Exercise

Consider the following system of linear equations::

1. Perform LU decomposition of the coefficient matrix 𝐴

2. Solve the system using the LU decomposition method.
3. Then, deduce the determinant of A.

22

Chapter 3 Iterative Methods for Solving Linear Systems

3.1 General Considerations

Direct and iterative methods offer two distinct approaches to solving systems of linear equations.

Direct methods, such as Gaussian elimination or LU decomposition, compute the exact solution in a

finite number of steps but can be computationally expensive and memory-intensive for large systems.

In contrast, iterative methods, like the Jacobi method or conjugate gradient, approximate the solution

iteratively, refining an initial guess. While they do not guarantee an exact solution in a finite number

of iterations, they are often more efficient in terms of computational time and memory usage,

especially for sparse systems. The choice between a direct and iterative method depends on the size of

the system, the structure of the matrix, the desired accuracy, and the available computational

resources.

Definition 1:

An iterative method for solving the linear system Ax=b is a systematic approach that generates

a sequence 𝑋(𝑘) 𝑤ℎ𝑒𝑟𝑒 𝑘 ∈ 𝐼𝑁. Each iterate 𝑋(𝑘) is computed based on the previous

iterates 𝑋(0),…, 𝑋(𝑘−1), with the goal of converging to the solution 𝑋 of the linear system.

Typically, the construction of the sequence follows a recurrence relation of the form shown in

Equation (23):

𝑋(𝑘) = 𝑩𝑋(𝑘−1) + 𝐶 (23)

In this equation, 𝑩 represents the iteration matrix derived from 𝐴, and 𝐶 is a vector that

depends on 𝑏. This formulation allows for flexibility in how the iterates are generated. By

examining the limit as 𝑘 approaches infinity (𝑘 → +∞), we observe that the solution 𝑋 must

satisfy Eq.(24):

𝑋 = 𝐵𝑋 + 𝐶 (24)

This reveals an important relationship between the solution and the matrices involved. Since

we know that 𝑋 = 𝐴−1𝑏, it follows that 𝐶 can be expressed in Eq. (25) as:

𝐶 = (𝐼𝑑 − 𝑏) 𝐴−1𝑏 (25)

This leads to the conclusion that the iterative method is fundamentally defined by the iteration

matrix 𝑩. Thus, understanding the structure and properties of 𝑩 is crucial for analyzing the

convergence and efficiency of the iterative method in solving the linear system 𝐴𝑋 = 𝑏.

Definition 2:

Splitting, A general technique for constructing the matrix 𝑩 is based on a decomposition (or

splitting) of the matrix A in the form:

𝐴 = 𝑃 − 𝑁 (26)

Where 𝑃 is an invertible matrix that is easy to invert, such as a diagonal or triangular matrix.

The matrix 𝑃 is referred to as the conditioning matrix. This approach is fundamental in

iterative methods because it simplifies the process of finding solutions to linear systems.

23

In practice, the most common splittings are based on the representation:

𝐴 = 𝐷− 𝐸− 𝐹 (28)

𝐷 = (

𝑎11
0
⋮
0

0
𝑎22
⋮
0

…
…
 …

0
0
⋮

 𝑎𝑛𝑛

) − 𝐸 = (

0
𝑎21
⋮
𝑎𝑛2

0
0
⋮
𝑎𝑛2

…
…
 …

0
0
⋮
0

) − 𝐹 = (

0
0
⋮
0

 𝑎12
0
⋮
0

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮
0

)

Where 𝐷 is the diagonal part of 𝐴, 𝐸 is the strictly lower triangular part (with zeros on the

diagonal), and 𝐹 is the strictly upper triangular part (also with zeros on the diagonal) as shown

in Eq. (28).

3.2 Jacobi and Relaxation Methods

3.2.1 Jacobi Method

The Jacobi method is an iterative technique for solving systems of linear equations of the form 𝐴𝑋 =
𝑏. This method is particularly useful for large and sparse matrices, where direct methods may be

inefficient. There are two primary approaches to implementing the Jacobi method: the classical format

based on explicit equations and the alternative format utilizing matrix splitting.

Both approaches have their advantages and applications, and understanding them provides a

comprehensive view of how the Jacobi method operates in practice. In this course, we will delve into

both methods, starting with the classical formulation before exploring the benefits of the splitting

technique.

3.2.1.1 Equations-Based Formula
To implement the corresponding algorithm, consider the following system of linear

equations in Eq. (29). This method involves directly manipulating the equations to derive

the iterative formula.

𝑃𝑋(𝑘+1) = 𝑁𝑋(𝑘) + 𝑏 → 𝑋(𝑘+1) = 𝑃−1𝑁𝑋(𝑘) + 𝑃−1𝑏
𝑤ℎ𝑒𝑟𝑒 𝐵 = 𝑃−1𝑁 𝑎𝑛𝑑 𝐶 = 𝑃−1𝑏 (27)

In this context, the matrix 𝑃 plays a critical role as it dictates the stability and convergence

properties of the iterative algorithm. The idea is to isolate the more easily manageable part of

the matrix 𝐴 (represented by 𝑃) from the more complex part (represented by 𝑁). By

rearranging 𝐴 in this way, we can define an iterative algorithm that can be expressed in a

recurrence relation, allowing us to compute the next iterate based on the previous one.

The iterative algorithm can then be written as Eq. ’23) (𝑋(𝑘) = 𝑩𝑋(𝑘−1) + 𝐶).

where 𝑩 is derived from the decomposition, and 𝐶 incorporates the vector 𝑏. This formulation

allows us to systematically update our estimates of the solution 𝑋 in each iteration. The

flexibility of choosing 𝑃 allows for various strategies to optimize convergence, depending on

the characteristics of the specific linear system being solved.

Overall, the splitting technique is a powerful tool in numerical linear algebra, providing a

structured method to analyze and implement iterative methods effectively.

24

𝐴𝑋 = 𝑏 → {

𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
……………………………………

𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 +⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛

 (29)

 Therefore, by isolating 𝑥1 from the first equation, 𝑥2 from the second equation, ..., and 𝑥𝑛

from the 𝑛𝑡ℎ equation, we obtain the expression given by Eq. (30). Each variable is

isolated and expressed in terms of the other variables, leading to a straightforward

computation in each iteration.

{

 𝑥1 =

(𝑏1−𝑎12𝑥2−⋯−𝑎1𝑛𝑥𝑛)

𝑎11

𝑥2 =
(𝑏2−𝑎21𝑥1−⋯−𝑎2𝑛𝑥𝑛)

𝑎22
……………………………………

𝑥𝑛 =
(𝑏𝑛−𝑎𝑛1𝑥1−⋯−𝑎𝑛(𝑛−1)𝑥𝑛−1)

𝑎𝑛𝑛

→ ∀𝑖 = 1. . 𝑛, 𝑥𝑖 =
1

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑖

𝑛
𝑖=1
𝑖≠𝑗

) (30)

Derivation of the Iterative Formula

Starting from a given initial vector 𝑋(0), we construct the sequence of vectors (𝑋(𝑘))𝑘≥0,

defined by Eq. (31).

∀𝑖 = 1…𝑛, 𝑥𝑖
(𝑘+1) =

1

𝑎𝑖𝑖
(𝑏𝑖 − ∑ 𝑎𝑖𝑗𝑥𝑖

(𝑘)𝑛
𝑖=1
𝑖≠𝑗

) (31)

Thus, by juxtaposing Eq. (31) with Eq. (23): (𝑋(𝑘) = 𝑩𝑋(𝑘−1) + 𝐶), we obtain the

iteration matrix 𝑩𝒋 for the Jacobi method and a vector 𝐶 in Eq. (32)

𝑩𝒋 =

(

0

−
𝑎21

𝑎22

⋮

−
𝑎1𝑛

𝑎𝑛𝑛

−
𝑎12

𝑎11

0
⋮

−
𝑎𝑛2

𝑎𝑛𝑛

…
…
 …

−
𝑎1𝑛

𝑎11

−
𝑎2𝑛

𝑎22

⋮
0)

 𝑎𝑛𝑑 𝐶 =

(

𝑏1

𝑎11
𝑏2
𝑎22
⋮
𝑏𝑛

𝑎𝑛𝑛)

 (32)

3.2.1.2 Splitting-Based Formula

This technique involves decomposing the matrix 𝐴 into its components: specifically the

diagonal part 𝐷, the strictly lower triangular part 𝐸, and the strictly upper triangular part 𝐹.

This decomposition simplifies the iteration process and enhances the clarity of the

algorithm, as shown in Eq. (28).

Derivation of the Iterative Formula

Given the equation 𝐴𝑋 = 𝑏, we can rewrite it using our decomposition:

𝐷𝑋 = 𝑏 + (𝐸 + 𝐹)𝑋 (33)

Rearranging this leads to Eq. ’34):

𝑋 = 𝐷−1(𝑏 + (𝐸 + 𝐹)𝑋) (34)

To derive the iterative formula, we isolate 𝑋 in Eq. (35).

𝑋(𝑘) = 𝐷−1(𝑏 + (𝐸 + 𝐹)𝑋(𝑘−1)) (35)

25

This formula indicates that the new iterate 𝑋(𝑘) is computed based on the previous iterate

𝑋(𝑘−1)and the contributions from the off-diagonal elements, represented by 𝐸 and 𝐹.

By substituting Eq. (35) into Eq. (23), we obtain the iteration matrix for the Jacobi

method, as given in Eq. (36).

𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹) 𝑎𝑛𝑑 𝐶 = 𝐷−1𝑏 (36)

3.2.1.3 Iterative Algorithm Steps

The iterative process of the Jacobi method begins with the initialization step, where an

initial guess for the solution is selected. This initial guess is often a zero vector, although

any reasonable approximation can be used. The choice of initial values can influence the

speed of convergence, but the method is generally robust enough to work with various

starting points.

Once the initial guess is established, the process moves into the iteration phase. For each

iteration, a new estimate is calculated based on the previous iterate. This step refines the

approximation of the solution, incorporating the contributions from other variables in the

system.

After computing the new estimate, it is essential to perform a convergence check to

determine if the iterative process should continue. This is typically done by evaluating a

stopping criterion, such as checking whether the difference between consecutive

estimates is less than a predetermined small tolerance value. If this difference is

sufficiently small, it indicates that the solution has stabilized, and the method can be

terminated. This systematic approach ensures that the Jacobi method converges

efficiently toward the true solution of the linear system.

Example:

Consider the following system of equations:

{

3𝑥1 + 𝑥2 − 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = 17
2𝑥1 − 𝑥2 ± 6𝑥3 = −18

1) Equations-Based Formula

𝑋(𝑘) = 𝑩𝒋𝑋
(𝑘−1) + 𝐶

‖𝑋(𝑘) − 𝑋(𝑘−1)‖ < 𝜀

1. Initialization: Choose an initial guess 𝑋(0) (often a zero vector).

2. Iteration: For each iteration 𝑘:

Calculate 𝑋(𝑘)using the formula

3. Convergence Check: Determine if the method has converged by

evaluating the stopping criterion, such as:

where 𝜀 epsilonϵ is a small tolerance value.

26

{

 𝑥1 =

(𝑏1 − 𝑎12𝑥2 − 𝑎13𝑥3)

𝑎11

𝑥2 =
(𝑏2 − 𝑎21𝑥1 − 𝑎23𝑥3)

𝑎22

𝑥3 =
(𝑏3 − 𝑎31𝑥1 − 𝑎32𝑥2)

𝑎11

 →

{

 𝑥1 =

(2 − 𝑥2 + 𝑥3)

3

𝑥2 =
(17 − 𝑥1 − 2𝑥3)

5

𝑥3 =
(−18 − 2𝑥1 + 𝑥2)

6

Iterative Formula based on equation

{

 𝑥1

(𝑘+1) =
 (2 − 𝑥2

(𝑘) + 𝑥3
(𝑘))

3

𝑥2
(𝑘+1) =

(17 − 𝑥1
(𝑘) − 2𝑥3

(𝑘))

5

𝑥3
(𝑘+1) =

(−18 − 2𝑥1
(𝑘) + 𝑥2

(𝑘))

6

𝑩𝒋 = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

) 𝑎𝑛𝑑 𝐶 = (
2/3
17/5
−3

)

The iterative process of the Jacobi method:

If 𝑋(0) = (

2

3
17

5

−3

) →

{

 𝑥1

(1) =
 (2−𝑥2

(0)+𝑥3
(0))

3

𝑥2
(1) =

(17−𝑥1
(0)−2𝑥3

(0))

5

𝑥3
(1) =

(−18−2𝑥1
(0)+𝑥2

(0))

6

 →

{

 𝑥1

(1) =
 (2−(

17

5
)+(−3))

3
= 0,5333

𝑥2
(1) =

(17−(
2

3
)−2(−3))

5
= 2,0666

𝑥3
(1) =

(−18−2(
2

3
)+(

17

5
)

6
= 2,6555

NB: The result is computed with 4 significant digits (or 3 exact decimal places). So, probably, ε

=0,5.10
-3

.

‖𝑋(1) − 𝑋(0)‖ < 0.5. 10−3 → ‖𝑋(1) − 𝑋(0)‖ = ‖
‖
0.5333 −

2

3

2.0666 −
17

5
2.6555 − 3

‖
‖ = ‖

‖
0.5333 −

2

3

2.0666 −
17

5
2.6555 − 3

‖
‖ = ‖

1.1999
1.3334
0.3445

‖

‖
1.1999
1.3334
0.3445

‖ > (
0.5. 10−3

0.5. 10−3

0.5. 10−3
) So we should continue to process and calculate 𝑋(1) .

2) Splitting-Based Formula

In our Sytem AX=b:

𝐴 = (
3 1 −1
1 5 2
2 −1 −6

) 𝑎𝑛𝑑 𝑏 = (
2
17
−18

)

27

A=D-E-F

𝐷 = (
3 0 0
0 5 0
0 0 −6

) 𝐸 = (
0 0 0
−1 0 0
−2 1 0

) 𝐹 = (
0 −1 1
0 0 −2
0 0 0

)

 Calculate 𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹) 𝑎𝑛𝑑 𝐶 = 𝐷−1𝑏

𝐷−1 = (

1/3 0 0
0 1/5 0
0 0 −1/6

) Calculate

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐷−1𝑢𝑠𝑖𝑛𝑔 𝐺𝑎𝑢𝑠𝑠 𝑗𝑜𝑟𝑑𝑎𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 𝐷−1 =
1

det (𝐷)
× 𝑎𝑑𝑗(𝐷)

(𝐸 + 𝐹) = (
0 −1 1
−1 0 −2
−2 1 0

)

𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹) → 𝑩𝒋 =

(

1

3
0 0

0
1

5
0

0 0 −
1

6)

(
0 −1 1
−1 0 −2
−2 1 0

) = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

)

𝐶 = 𝐷−1𝑏 =

(

1

3
0 0

0
1

5
0

0 0 −
1

6)

(
2
17
−18

) = (
2/3
17/5
−3

)

𝑩𝒋 = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

) and C=(
2/3
17/5
−3

)

Iterative Formula based on matrix:

𝑿(𝒌+𝟏) = (

0 −1/3 1/3
−1/5 0 −2/5
−1/3 1/6 0

)𝑿(𝒌) + (
2/3
17/5
−3

)

Exercise: Consider the following matrix

A= (
4 −1 0
−1 2 0
0 0 3

) 𝑎𝑛𝑑 𝐵 = (
2
5
1
)

 How many iterations for jacobi method needed to get an accuracy within 10
—2

.

28

3.2.2 Relaxation Method

The relaxation method refers to a general family of iterative techniques that gradually refine the

solution to a system of equations. It involves adjusting the current estimate of the solution by

combining it with some computed corrections.

The idea is to improve convergence by introducing a relaxation factor (usually denoted as ω). In its

simplest form, the relaxation method updates the solution by:

{

𝑋(0) ∈ 𝐼𝑅𝑛

 𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)
+𝜔(

𝑏𝑖−−∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗
(𝑘)

𝑎𝑖𝑖
)

 (37)

The relaxation parameter, usually denoted as ω\omegaω, determines the step size of the update. It lies

in the range 0 < 𝜔 < 1

3.3 Gauss-Seidel and Successive Relaxation Methods

3.3.1 Gauss-Seidel Method

The Gauss-Seidel method is a widely-used iterative technique for solving systems of linear equations,

particularly advantageous for large-scale and sparse matrices. One of its key benefits is its simplicity,

making it accessible for a variety of applications. Additionally, it often converges faster than the

Jacobi method, providing quicker solutions, especially in scenarios involving sparse matrices where

many elements are zero, thus minimizing computational overhead. However, while generally reliable,

the method's convergence is not guaranteed for all systems, and it can be sensitive to the choice of

initial guess. Understanding these advantages and limitations helps in effectively utilizing Gauss-

Seidel, especially in conjunction with techniques like Successive Over-Relaxation and in parallel

computing environments.

Typically, the construction of the detailed equation sequence follows a recurrence relation of the form

shown in Equation (38):

{
𝑋(0) ∈ 𝐼𝑅𝑛

 𝑥𝑖
(𝑘+1)

=
1

𝑎𝑖𝑖
(𝑏𝑖 −∑ 𝑎𝑖𝑗𝑗<𝑖 𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗
(𝑘))

 (38)

In this equation, 𝑥𝑖
(𝑘+1)

 represents the updated value of the variable 𝑥𝑖in the (𝑘 + 1)𝑡ℎiteration. The

term 𝑏𝑖is the corresponding constant from the system of equations, while 𝑎𝑖𝑗 are the coefficients from

the matrix 𝐴. The first summation accounts for the contributions of already updated variables, and the

second summation includes the contributions from previous iteration values, ensuring that the most

current data is utilized. This iterative approach allows for progressive refinement of the solution,

showcasing the method's efficiency, particularly in handling large, sparse systems.

Using this approach, we can represent the iterative update in Eq. (27) as: 𝑋(𝑘+1) = 𝑃−1𝑁𝑋(𝑘) +
𝑃−1𝑏 𝑤ℎ𝑒𝑟𝑒 𝐵 = 𝑃−1𝑁 𝑎𝑛𝑑 𝐶 = 𝑃−1𝑏. It consists of choosing the simplest splitting with P = D-E et

N = F. By replacing in the equation Eq. (27), we obtain Eq. (39).

𝑋(𝑘+1) = (𝐷 − 𝐸)−1𝐹𝑋(𝑘) + (𝐷 − 𝐸)−1𝑏

29

𝑩𝑮𝑺 = (𝐷 − 𝐸)
−1𝐹 𝑎𝑛𝑑 𝐶 = (𝐷 − 𝐸)−1𝑏 (39)

Example:

Consider the same system of equations:

{

3𝑥1 + 𝑥2 − 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = 17
2𝑥1 − 𝑥2 ± 6𝑥3 = −18

 Based on A=D-E-F

𝐷 = (
3 0 0
0 5 0
0 0 −6

) 𝐸 = (
0 0 0
−1 0 0
−2 1 0

) 𝐹 = (
0 −1 1
0 0 −2
0 0 0

)

 Calculate 𝑩𝑺𝑶𝑹 = (𝐷 − 𝐸)
−1 ((

1−𝜔

𝜔
)𝐷 + 𝐹) 𝑎𝑛𝑑 𝐶 = (𝐷 − 𝐸)−1𝑏

(𝐷 − 𝐸) = (
3 0 0
0 5 0
0 0 −6

) − (
0 0 0
−1 0 0
−2 1 0

) = (
3 0 0
1 5 0
2 −1 −6

)

(𝐷 − 𝐸)−1 = (
0.333 0 0
−0.066 0.2 0
0.122 −0.033 −0.166

)

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝐷 − 𝐸)−1 𝑢𝑠𝑖𝑛𝑔 𝐺𝑎𝑢𝑠𝑠 𝑗𝑜𝑟𝑑𝑎𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 (𝐷 − 𝐸)−1 =
1

det (𝐷−𝐸)
×

𝑎𝑑𝑗((𝐷 − 𝐸))

𝑩𝒋 = (𝐷 − 𝐸)
−1𝐹 → 𝑩𝒋 = (

0.333 0 0
−0.066 0.2 0
0.122 −0.033 −0.166

) (
0. −1 1
0 0 −2
0 0 0

)

= (
0 −0.333 0.333
0 0.066 −0.466
0 −0.122 0.188

)

𝐶 = (𝐷 − 𝐸)−1𝑏 = (
0.333 0 0
−0.066 0.2 0
0.122 −0.033 −0.166

)(
2
17
−18

) = (
0.666
3.58
2.86

)

𝑩𝒋 = (
0 −0.333 0.333
0 0.066 −0.466
0 −0.122 0.188

) and C=(
0.666
3.208
2.671

)

Gauss Seidal Iterative Formula based on matrix:

𝑿(𝒌+𝟏) = (
0 −0.333 0.333
0 0.066 −0.466
0 −0.122 0.188

) 𝑿(𝒌) + (
0.666
3.208
2.671

)

30

3.3.2 Successive Relaxation Method (SOR)

Relaxation methods are iterative techniques used to solve systems of linear equations, particularly in

numerical analysis and computational mathematics. In this method, we slightly modify the previous

method by introducing a parameter w, the relaxation coefficient. This parameter is generally constant.

Relaxation in the Jacobi method typically does not provide any significant gains (see sub-section

3.2.2. However, when applied to the Gauss-Seidel method (see sub-section 3.3.1), it improves the

speed of convergence. The update formula becomes:

{
𝑋(0) ∈ 𝐼𝑅𝑛

𝑥𝑖
(𝑘+1)

= (1 − 𝜔)𝑥𝑖
(𝑘) +

𝜔

𝑎𝑖𝑖
(𝑏𝑖 −∑ 𝑎𝑖𝑗𝑗<𝑖 𝑥𝑗

(𝑘+1) − ∑ 𝑎𝑖𝑗𝑗>𝑖 𝑥𝑗
(𝑘))

 (40)

In Eq. (40):

 𝑥𝑖
(𝑘+1)

 is the updated value for the 𝑖𝑡ℎ variable.

 𝑥𝑗
(𝑘+1)

 are the most recently updated values for indices 𝑗 < 𝑖 and 𝑥𝑖
(𝑘)

 are the previous values

for indices 𝑗 > 𝑖.

The idea is that if the "correction" applied to a component is going in the "right direction," we benefit

from increasing it by multiplying by a factor greater than 1 (ω>1\omega > 1ω>1: over-relaxation).

Conversely, if there is a risk of diverging or oscillating, it is better to dampen the correction by

multiplying by a factor less than 1 (ω<1\omega < 1ω<1: under-relaxation). A necessary but not

sufficient condition for the convergence of these methods is that the parameter ω lies between 0 and 2.

Given the equation 𝐴𝑋 = 𝑏 we can rewrite it using our decomposition into the components 𝐷 , 𝐸, and

𝐹 (𝑤ℎ𝑒𝑟𝑒 𝐴 = 𝐷 − 𝐸 − 𝐹 𝑠𝑒𝑒 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 3.1):

𝑋(𝑘+1) = (
𝐷

𝜔
− 𝐸)

−1

((
1−𝜔

𝜔
)𝐷 + 𝐹)𝑋(𝑘) + (

𝐷

𝜔
− 𝐸)

−1

𝑏 (41)

By substituting Eq. (41) into Eq. (23), we obtain the iteration matrix for the SOR method, as given in

Eq. (42).

𝑩𝑺𝑶𝑹 = (
𝐷

𝜔
− 𝐸)

−1

((
1−𝜔

𝜔
)𝐷 + 𝐹) 𝑎𝑛𝑑 𝐶 = (

𝐷

𝜔
− 𝐸)

−1

𝑏 (42)

The iterative process for the SOR method will remain the same as described in subsection 3.2.1.3.

Example:

Consider the following system of equations and = 1.1 :

{

3𝑥1 + 𝑥2 − 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = 17
2𝑥1 − 𝑥2 ± 6𝑥3 = −18

 Based on A=D-E-F

31

𝐷 = (
3 0 0
0 5 0
0 0 −6

) 𝐸 = (
0 0 0
−1 0 0
−2 1 0

) 𝐹 = (
0 −1 1
0 0 −2
0 0 0

)

 Calculate 𝑩𝑺𝑶𝑹 = (
𝐷

𝜔
− 𝐸)

−1

((
1−𝜔

𝜔
)𝐷 + 𝐹) 𝑎𝑛𝑑 𝐶 = (

𝐷

𝜔
− 𝐸)

−1

𝑏

(
𝐷

𝜔
− 𝐸) =

(

3

1.1
0 0

0
5

1.1
0

0 0 −
6

1.1)

− (

0 0 0
−1 0 0
−2 1 0

) = (
2,72 0 0
1 4,54 0
2 −1 −5,45

)

(
𝐷

𝜔
− 𝐸)

−1

= (
0.37 0 0
−0.08 0.22 0
0.15 −0.04 −0.18

)

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (
𝐷

𝜔
− 𝐸)

−1

𝑢𝑠𝑖𝑛𝑔 𝐺𝑎𝑢𝑠𝑠 𝑗𝑜𝑟𝑑𝑎𝑛 𝑚𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 (
𝐷

𝜔
− 𝐸)

−1

=
1

det (
𝐷

𝜔
−𝐸)

×

𝑎𝑑𝑗((
𝐷

𝜔
− 𝐸))

((
1 − 𝜔

𝜔
)𝐷 + 𝐹) = ((

1 − 1.1

1.1
)𝐷 + 𝐹) = ((−0,09)𝐷 + 𝐹) = (

−0.27. −1 1
0 −0.45 −2
0 0 0.54

)

𝑩𝒋 = (
𝐷

𝜔
− 𝐸)

−1

((
1 − 𝜔

𝜔
)𝐷 + 𝐹) → 𝑩𝒋 = (

0.37 0 0
−0.08 0.22 0
0.15 −0.04 −0.18

) (
−0.27. −1 1
0 −0.45 −2
0 0 0.54

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)

𝐶 = (
𝐷

𝜔
− 𝐸)

−1

𝑏 = (
0.37 0 0
−0.08 0.22 0
0.15 −0.04 −0.18

)(
2
17
−18

) = (
0.74
3.58
2.86

)

𝑩𝒋 = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

) and C=(
0.74
3.58
2.86

)

Iterative Formula based on matrix:

𝑿(𝒌+𝟏) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

) 𝑿(𝒌) + (
0.74
3.58
2.86

)

𝑰𝒇 𝑿(𝟎) = (
0.00
0.00
0.00

) and In order to calculate the solution X using the Successive Over-

Relaxation (SOR) method up to the 5th iteration, I will perform the following steps:

32

𝑿(𝟏) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

) 𝑿(𝟎) + (
0.74
3.58
2.86

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.00

0.00

0.00

) + (
0.74
3.58
2.86

) = (
0.74
3.58
2.86

) → 𝑿(𝟏) = (
0.74
3.58
2.86

)

𝑿(𝟐) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟏) + (
0.74
3.58
2.86

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.74
3.58
2.86

) + (
0.74
3.58
2.86

) = (
0.407
2.18
2.73

) → 𝑿(𝟐) ≈ (
0.407
2.18
2.73

)

𝑿(𝟑) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟐) + (
0.74
3.58
2.86

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.407
2.18
2.73

) + (
0.74
3.58
2.86

) = (
0.90
2.21
2.91

) → 𝑿(𝟑) ≈ (
0.90
2.21
2.91

)

𝑿(𝟒) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟑) + (
0.74
3.58
2.86

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
−2.14
3.96
−5.33

) + (
0.90
2.21
2.91

) = (
0.92
2.12
2.91

) → 𝑿(𝟒) ≈ (
0.92
2.12
2.91

)

𝑿(𝟓) = (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)𝑿(𝟒) + (
0.74
3.58
2.86

)

= (
−0.09 −0.37 0.37
0.02 0.02 −0.52
−0.04 −0.13 0.13

)(
0.92
2.12
2.91

) + (
0.74
3.58
2.86

) = (
0.94
2.12
2.92

) → 𝑿(𝟓) ≈ (
0.94
2.12
2.92

)

Thus, the result for the fifth iteration is:

𝑿(𝟓) ≈ (
0.94
2.12
2.92

) 𝑠𝑜 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑋 → (
1.00
2.00
3.00

)

3.4 Remarks on the Implementation of Iterative Methods

When implementing iterative methods for solving linear systems, several factors can significantly

impact their efficiency and effectiveness. Here are some key considerations:

33

1. Initial Guess:

 Choice: The initial guess can significantly influence convergence speed. A good initial

guess can accelerate convergence, while a poor one may lead to slow convergence or

even divergence.

 Strategies: Common strategies include using a zero vector, averaging previous solutions,

or leveraging prior knowledge about the system.

1) Zero Vector:

 Example: For a system 𝐴𝑥 = 𝑏, starting with 𝑥 = (
0
0
0
) is a common default. This

can work well for many problems but may not be optimal for every system.

2) Averaging Previous Solutions:

This strategy can be effective in iterative algorithms where prior estimates are

available. For instance, if previous solutions from a related problem or earlier

iterations are known, averaging them can provide a more refined initial guess.

Example: If past solutions were 𝑥(𝑘−1) = (
1
2
3
) and 𝑥(𝑘−2) = (

0.5
1.5
2.5
), an average can

be 𝑥(0) =
1

2
(𝑥(𝑘−1) + 𝑥(𝑘−2)) = (

1
2
3
).

3) Leveraging Prior Knowledge:

If there is existing knowledge about the system or the expected solution range, this can

guide the choice of an initial guess. For example, in physical systems modeled by

differential equations, parameters often lie within known bounds.

Example: If a temperature distribution in a rod is known to stabilize around a certain

value based on physical properties, starting near that temperature can lead to faster

convergence.

In summary, the initial guess in iterative methods is crucial for convergence speed and

overall effectiveness. By employing strategies such as using a zero vector, averaging

previous solutions, or leveraging prior knowledge, one can enhance the chances of rapid

convergence to the desired solution.

2. Convergence Criteria:

Defining clear criteria for determining convergence is essential in iterative methods.

Convergence criteria help establish when the solution has sufficiently approximated the

true answer, allowing the algorithm to terminate.

Common Convergence Criteria

1) Difference Between Successive Iterates:

34

The most straightforward method involves comparing the difference between

successive estimates of the solution. If the difference falls below a predefined

tolerance level, the process can be considered converged.

Example: For a vector 𝑥, the criterion can be expressed as: ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ < 𝜀

where 𝜀 is a small positive number (e.g., 10−6). If the norm of the difference is

smaller than 𝜀, the algorithm stops.

2) Residual Norm:

Another common approach is to check the residual of the equation 𝐴𝑥 = 𝑏. If the

norm of the residual 𝑟 = 𝑏 − 𝐴𝑥 is sufficiently small, the solution is deemed

converged.

Example: If ‖𝑟‖ < 𝛿, where 𝛿 is another small tolerance (e.g., 10−6), the

solution is considered acceptable.

Adaptive Convergence Criteria

Adaptive criteria involve adjusting the convergence tolerance based on the

current progress of the solution. This approach can improve efficiency by

allowing the algorithm to adapt to the problem's dynamics.

Benefits of Adaptive Criteria

1) Dynamic Adjustment:

Instead of a fixed tolerance, the tolerance can be adjusted based on how quickly

the solution is approaching convergence. For example, as the iterates get closer to

the solution, the tolerance could become stricter.

Example: If the norm of the difference ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ is decreasing rapidly, the

algorithm could tighten the tolerance from 10−6 to 10−8.

2) Performance Improvement:

Adaptive criteria can lead to faster convergence in some cases, especially for

complex or ill-conditioned problems where a static tolerance might not be

appropriate.

Example: In an optimization problem, if the function value decreases

significantly in one iteration, the tolerance could be relaxed temporarily, allowing

for faster exploration of the solution space.

Clearly defining convergence criteria is fundamental in iterative methods, ensuring that

the solution process is both effective and efficient. By implementing adaptive criteria, one

can tailor the convergence process to the specific dynamics of the problem, enhancing

performance and reducing unnecessary computations.

3. Method Selection:

35

When selecting an iterative method for solving linear systems, the properties of the

matrix play a crucial role in determining which algorithm will be most effective.

Different methods have strengths and weaknesses depending on the characteristics of the

matrix involved.

Key Matrix Properties

1) Diagonally Dominant Matrices:

A matrix 𝐴 is diagonally dominant if for each row, the absolute value of the diagonal

entry is greater than or equal to the sum of the absolute values of the other entries in that

row.

Method Suitability: Methods like Gauss-Seidel and Jacobi perform well with diagonally

dominant matrices due to their guaranteed convergence.

Example: For a matrix 𝐴 = (
10 1 −5
4 −7 2
1 1 3

)

each row satisfies the diagonal dominance condition, making it suitable for these

methods.

2) Symmetric Positive Definite Matrices:

A matrix is symmetric positive definite if it is symmetric (𝐴 = 𝐴𝑇) and all its eigenvalues

are positive.

Method Suitability: Iterative methods like Conjugate Gradient are specifically designed

for symmetric positive definite matrices, providing efficient convergence.

Example: A matrix like 𝐴 = (
4 1
1 3

)

 is symmetric positive definite, making it ideal for methods like Conjugate Gradient.

3) Sparse Matrices:

Many large systems are represented by sparse matrices, which contain a significant

number of zero elements.

Method Suitability: Iterative methods such as Krylov subspace methods (e.g., GMRES)

are effective for sparse systems, as they can take advantage of the matrix's sparsity to

reduce computational costs.

Example: A sparse matrix: 𝐴 = (
0 0 1
2 0 0
0 3 0

) is well-suited for these methods.

Hybrid Approaches

Combining different iterative methods can leverage their strengths and mitigate their

weaknesses, often resulting in improved convergence rates and more robust performance.

36

Examples of Hybrid Approaches

1) Using Smoothing Techniques:

Combine a direct method (like LU decomposition) with an iterative method. For example,

one might use LU to obtain a preliminary solution and then apply SOR to refine it.

Example: Start with 𝑋(0)from LU decomposition and then iteratively improve it using

SOR.

2) Multi-Grid Methods:

Multi-grid methods involve using different grid levels (coarse to fine) to accelerate

convergence. They can effectively reduce errors at multiple scales.

Example: In solving PDEs (Partial Differential Equation), one can use a coarse grid to

solve for global features and then refine the solution on finer grids.

3) Preconditioning:

Preconditioning involves transforming the original problem into a more favorable form

before applying an iterative method. This can improve convergence rates significantly.

Example: Applying an incomplete LU decomposition as a preconditioner for methods

like Conjugate Gradient.

4) Adaptive Strategy:

Employ an adaptive method that switches between different iterative techniques based on

the convergence behavior observed during iterations.

Example: Start with Jacobi for initial convergence and switch to Gauss-Seidel for

refinement once closer to the solution.

Choosing an appropriate iterative method based on matrix properties is crucial for efficient

problem-solving. Additionally, exploring hybrid approaches can capitalize on the strengths of

various methods, leading to faster convergence and enhanced robustness. By understanding both

the nature of the matrix and the available methods, one can optimize the solution process

effectively.

4. Relaxation Parameters:

In iterative methods like Successive Over-Relaxation (SOR), the relaxation parameter

ω\omegaω plays a crucial role in optimizing convergence.

1) Tuning 𝝎

Careful tuning of 𝜔 can significantly impact convergence speed. For instance, a value

around 1.25 often works well for diagonally dominant matrices, enhancing convergence

37

compared to standard methods. Conversely, setting 𝜔 too high or too low can lead to

divergence or excessively slow convergence. For example, using 𝜔 = 0.5 may result in

prolonged iterations, while 𝜔 = 3 could cause oscillations.

2) Dynamic Adjustment of 𝝎

Adapting 𝜔 during the iteration process can further enhance efficiency. As the solution

approaches the true value, adjusting 𝜔 can help maintain optimal convergence. For

example, starting with 𝜔 = 1.25 and gradually reducing it to 1.1 as the iterates stabilize

allows for fine-tuning. Implementing a feedback mechanism that monitors convergence

rates and adjusts ω\omegaω accordingly can lead to better performance, such as

increasing 𝜔 when improvements are sluggish.

By carefully tuning and dynamically adjusting the relaxation parameter 𝜔, one can significantly

improve the performance of iterative methods like SOR, ensuring faster and more reliable

convergence.

5. Matrix Properties:

1) Condition Number

The condition number of a matrix significantly affects the convergence of iterative

methods. A poorly conditioned matrix can lead to slow convergence and numerical

instability. For example, a matrix with a high condition number (e.g., 1,000) may cause

small changes in the input to produce large variations in the output, making it challenging

to converge to an accurate solution.

2) Sparsity

Leveraging the sparsity of a matrix is crucial for optimizing computational cost and

memory usage. Sparse matrices, which contain a significant number of zero elements, can

be represented efficiently, reducing both storage requirements and computational

complexity. For instance, using specialized algorithms like Conjugate Gradient can take

advantage of matrix sparsity, leading to faster solutions for large-scale problems.

In summary, understanding the condition number is essential for anticipating convergence

behavior, while utilizing sparsity can enhance the efficiency of iterative methods, ultimately

leading to quicker and more resource-efficient computations.

6. Numerical Stability:

1) Rounding Errors

Rounding errors are a critical concern in iterative methods, as they can accumulate during

calculations and impact the accuracy of the final solution. For example, in a sequence of

iterative updates, small errors introduced at each step can compound, leading to

significant deviations from the true solution. This is especially problematic in poorly

conditioned matrices, where precision is crucial.

2) Preconditioning

Preconditioning techniques can significantly improve the condition number of a matrix,

thereby accelerating convergence. By transforming the original system into a more

38

favorable form, preconditioners make it easier for iterative methods to find a solution. For

instance, applying an incomplete LU decomposition as a preconditioner can lead to faster

convergence rates in methods like Conjugate Gradient, particularly for large, sparse

systems.

In conclusion, being aware of rounding errors is essential for maintaining solution accuracy,

while employing preconditioning techniques can enhance the efficiency of iterative methods

by improving the condition number of the matrix and facilitating quicker convergence.

7. Parallelization:

Parallelizing iterative methods can significantly enhance performance by utilizing modern

multi-core and distributed computing architectures. For example, in the Jacobi method, each

element of the solution can be updated simultaneously, allowing for independent calculations

across processors. This parallel approach is particularly beneficial for large-scale problems,

where sequential processing would be inefficient.

Similarly, in methods like Conjugate Gradient, the computation of inner products and matrix-

vector multiplications can be executed in parallel, leading to faster convergence and better

resource utilization.

8. Implementation and Testing:

1) Language and Libraries

Selecting an appropriate programming language and leveraging optimized libraries is

crucial for efficient implementation of iterative methods. For example, languages like

Python or C++ offer powerful libraries such as NumPy and Eigen, respectively, which

provide highly optimized functions for matrix operations. Utilizing these libraries can

significantly enhance performance and reduce development time.

2) Testing

Thoroughly testing the implementation with various test cases is essential to ensure

accuracy and identify potential issues. For instance, testing the algorithm on known

solutions, edge cases, and larger problem sizes can help verify correctness and robustness.

This process ensures that the method performs well across different scenarios and

maintains stability under various conditions.

In summary, choosing the right programming language and libraries, along with rigorous

testing, is vital for the effective implementation of iterative methods. These practices help

optimize performance and ensure the reliability of the solution.

By carefully considering these factors and tailoring your implementation accordingly, you can enhance

the performance and reliability of iterative methods for solving linear systems.

39

QCM

Here are multiple-choice questions (MCQs) based on previous section:

Question 1:

What is the impact of a good initial guess in iterative methods for solving linear systems?

A) It has no impact on convergence speed.

B) It can lead to slow convergence or divergence.

C) It can significantly accelerate convergence.

D) It only affects the final solution accuracy.

Answer: C) It can significantly accelerate convergence.

Question 2:

Which of the following is a common strategy for selecting an initial guess in iterative

methods?

A) Using the identity matrix.

B) Averaging previous solutions.

C) Randomly generating values.

D) Always using zero as the initial guess.

Answer: B) Averaging previous solutions.

Question 3:

What does a matrix need to be for the Jacobi and Gauss-Seidel methods to guarantee

convergence?

A) It must be sparse.

B) It must be symmetric.

C) It must be diagonally dominant or symmetric positive definite.

D) It must have a low condition number.

Answer: C) It must be diagonally dominant or symmetric positive definite.

Question 4:

How can the relaxation parameter ω\omegaω in Successive Over-Relaxation (SOR) be

optimized?

A) It should always be set to 1.

B) It should be increased continuously throughout the iterations.

C) It can be tuned carefully to enhance convergence speed.

D) It is irrelevant to the convergence process.

Answer: C) It can be tuned carefully to enhance convergence speed.

Question 5:

What is the purpose of preconditioning techniques in iterative methods?

A) To increase the number of iterations needed for convergence.

B) To transform the problem into a more favorable form and improve the condition number

of the matrix.

C) To simplify the matrix to a diagonal form.

D) To eliminate the need for convergence criteria.

Answer: B) To transform the problem into a more favorable form and improve the

condition number of the matrix.

40

3.5 Convergence of Jacobi and Gauss-Seidel Methods

Definition 1

A square matrix 𝐴 ∈ 𝐼𝑅𝑛𝑥𝑛 is said to be diagonally dominant if, for each row 𝑖, the absolute value of

the diagonal entry is greater than or equal to the sum of the absolute values of the other entries in that

row. Mathematically, this can be expressed in Eq. (43) as:

∀𝑖 = 1. . 𝑛, |𝑎𝑖𝑖| ≥ ∑ |𝑎𝑖𝑗|𝑗≠𝑖,𝑗=1..𝑛 (43)

for all 𝑖 If the inequality is strict for at least one row, the matrix is called SDD, strictly diagonally

dominant.

Example:

𝐴 = (
5 1 −1
2 3 0
3 −1 −7

) → {

|𝑎11| = 5 > |𝑎12| + |𝑎13| = 1 + 1 = 2
|𝑎22| = 3 > |𝑎21| + |𝑎23| = 2 + 0 = 2
|𝑎33| = 7 > |𝑎31| + |𝑎32| = 3 + 1 = 2

→ 𝑆𝑜 𝐴 𝑖𝑠 (𝑆𝐷𝐷)

Definition 2

The matrix 𝐴 ∈ 𝐼𝑅𝑛𝑥𝑛is symmetric, meaning 𝐴 = 𝐴𝑇 this implies that for ∀𝑖, 𝑗 = 1. . 𝑛, 𝑎𝑖𝑗 = 𝑎𝑗𝑖

Example:

𝐴 = (
5 2 −1
2 3 0
−1 0 −7

) → 𝐴 𝑖𝑠 𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐 ∀𝑖, 𝑗 = 1. .3, 𝑎𝑖𝑗 = 𝑎𝑗𝑖

Definition 3

Let 𝐴 ∈ 𝐼𝑅𝑛𝑥𝑛 be a matrix. The principal minors of order 𝑘 of this matrix are the determinants of the

truncated matrices (𝑎𝑖𝑗)1≤𝑖,𝑗≤𝑘 for 𝑘ranging from 1 to 𝑛.

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑛𝑛

) →

{

𝐷1 = 𝑎11

𝐷2 = 𝑑𝑒𝑡 (
𝑎11 𝑎12
𝑎21 𝑎22

)

⋮

𝐷𝑛 = 𝑑𝑒𝑡 (

𝑎11
𝑎21
⋮
𝑎𝑛2

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑛𝑛

)

→ ∀𝑖 = 1. . 𝑛, 𝐷𝑖 > 0 (44)

Where 𝐷 𝑖are Leading principal minors. These are the determinants of the square submatrices located

in the upper left corner of A.

If all the leading principal minors of 𝐴 are strictly positive, the matrix is said to be positive definite

41

Example:

𝐴 = (
2 0 1
0 −1 1
1 0 −2

)

→

{

𝐷1 = 𝑎11 = 2 > 0

𝐷2 = 𝑑𝑒𝑡 (
2 0
0 −1

) = −𝟐 < 𝟎

𝐷3 = 𝑑𝑒𝑡 (
2 0 1
0 −1 1
1 0 −2

)
= 2 |

−1 1
0 −2

| − 0 |
0 1
1 −2

| + 12 |
0 −1
1 0

| = 4 + 1 = 5 > 0

Since not all leading principal minors are positive. 𝐷2 = −2 < 0, the matrix 𝐴 is not positive

definite.

Definition 4

Matrix norms ‖𝐴‖ provide a way to measure the size or magnitude of a matrix 𝐴. They are defined in

terms of the elements of the matrix, denoted as 𝑎𝑖𝑗.

1) Max Norm (Infinity Norm):

‖𝐴‖∞ = 𝑚𝑎𝑥1≤𝑖≤𝑛∑ |𝑎𝑖𝑗|
𝑛
𝑗=1 (45)

This norm takes the maximum absolute row sum of the matrix.

2) 1-Norm:

‖𝐴‖1 = 𝑚𝑎𝑥1≤𝑗≤𝑛∑ |𝑎𝑖𝑗|
𝑛
𝑖=1 (46)

This norm takes the maximum absolute column sum of the matrix.

Example:

𝐴 = (
2 0 −3
0 −1 1
1 5 −2

)

‖𝐴‖∞ = 𝑚𝑎𝑥1≤𝑖≤𝑛∑|𝑎𝑖𝑗|

𝑛

𝑗=1

= 𝑚𝑎𝑥1≤𝑖≤3(|2| + |−3|, |−1| + |1|, |1| + |5| + |−2|)

= 𝑚𝑎𝑥1≤𝑖≤3 (
5
2
7
) → ‖𝐴‖∞ = 7

‖𝐴‖1 = 𝑚𝑎𝑥1≤𝑗≤𝑛∑|𝑎𝑖𝑗|

𝑛

𝑖=1

= 𝑚𝑎𝑥1≤𝑖≤3(|2| + |1|, |−1| + |5|, |−3| + |1| + |−2|)

= 𝑚𝑎𝑥1≤𝑗≤3(3,6,6) → ‖𝐴‖1 = 6

42

Definition 5

The spectral radius of a matrix 𝐴 is defined as the maximum absolute value of its eigenvalues 𝜆𝑖. It is

denoted in Eq. (47) as:

 𝜌(𝐴) = 𝑚𝑎𝑥|𝜆𝑖| (47)

where 𝜆𝑖 are the eigenvalues of the matrix 𝐴. The spectral radius provides important information about

the stability and behavior of the matrix, particularly in applications related to dynamical systems and

numerical analysis.

Example

Let's consider a simple 2x2 matrix:

𝐴 = (
4 2
1 3

)

To find the spectral radius, we first need to compute the eigenvalues of the matrix 𝐴.

1) Characteristic Polynomial: The eigenvalues are found by solving the characteristic equation

given by: 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0.

Where 𝐼 is the identity matrix. For our matrix 𝐴:

𝐴 − 𝜆𝐼 = (
4 − 𝜆 2
1 3 − 𝜆

)

2) Determinant Calculation:

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = (4 − 𝜆)(3 − 𝜆) − (2)(1) = 𝜆2 − 7𝜆 + 10 = 0

3) Solving the Quadratic Equation:

Using the quadratic formula 𝜆 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
=
−7±√49−40

2
=
−7±3

2

This gives us: 𝜆1 = 5 𝑎𝑛𝑑 𝜆2 = 2

4) Calculating the Spectral Radius:

Now, we compute the spectral radius: 𝜌(𝐴) = 𝑚𝑎𝑥|𝜆𝑖| = 𝜌(𝐴) = max(|5|, |2|) =5

3.5.1 Sufficient Conditions for Convergence of Iterative Methods

Iterative methods are widely used for solving linear systems, especially when dealing with large

matrices. Among these methods, the Gauss-Seidel method and relaxation methods are particularly

noteworthy. Their convergence properties can be influenced by the characteristics of the coefficient

matrix 𝐴. In this section, we will discuss the sufficient conditions for the convergence of these

methods, particularly focusing on the case when 𝐴 is a strictly symmetric positive definite matrix.

43

3.5.1.1 Convergence of the Jacobi Method

The Jacobi method is another iterative approach used to solve the equation 𝐴𝑋 = 𝑏. Unlike the Gauss-

Seidel method, which updates the solution using the latest values, the Jacobi method updates all

components simultaneously using values from the previous iteration.

Sufficient Condition for Convergence: If 𝐴 is strictly symmetric positive definite, the Jacobi

method converges for any initial guess 𝑋(0). The convergence can be attributed to the following

factors:

 Similar to the Gauss-Seidel method, the spectral radius 𝜌(𝑩𝒋) of the iteration matrix 𝑩𝒋

associated with the Jacobi method is less than 1 (𝜌(𝑩𝒋) < 1). This guarantees that the error

decreases with each iteration.

3.5.1.2 Convergence of the Gauss-Seidel Method

The Gauss-Seidel method is an iterative approach that updates each component of 𝑥 based on the

most recent values, leveraging previously computed results.

Sufficient Condition for Convergence: If 𝐴 is strictly symmetric positive definite, the Gauss-Seidel

method converges for any initial guess 𝑋(0). This is due to:

 The spectral radius 𝜌(𝑩𝑮𝑺) of the iteration matrix 𝑩𝑮𝑺 being less than 1 (𝜌(𝑩𝑮𝑺) < 1),
ensuring that the error diminishes with each iteration.

3.5.1.3 Convergence of the Relaxation Method

The relaxation method is a generalization of the Gauss-Seidel method that introduces a relaxation

factor ω.

Sufficient Condition for Convergence: For the relaxation method to converge, the relaxation factor

ω must satisfy: 0<ω<2

When 𝐴 is strictly symmetric positive definite, choosing ω\omegaω within the range (0,2) enhances

the convergence speed. Specifically:

 When ω=1, the method reduces to Gauss-Seidel.

 When 0<ω<1, the method may converge more slowly but still guarantees convergence.

 When 1<ω<2, the method often converges more quickly than standard Gauss-Seidel.

In summary, the conditions for convergence of the Jacobi method, Gauss-Seidel method, and the

relaxation method are closely linked to the properties of the coefficient matrix 𝐴. Specifically, if 𝐴 is

strictly symmetric positive definite, all three methods will converge. For the relaxation method,

selecting an appropriate relaxation factor ω (where 0<ω<2) is crucial for achieving optimal

convergence rates. These insights are fundamental in numerical analysis and provide a strong basis for

the effective implementation of iterative methods in practical applications.

Example:

To compute successive approximations of the solution of a system using the Jacobi and

Gauss-Seidel methods, let's define a system of linear equations as follows:

44

𝐴 = (
𝑎 𝑏
𝑏 𝑎

) 𝑎𝑛𝑑 𝑏 = (
1
1
)

{
𝑎𝑥 + 𝑏𝑦 = 1
𝑏𝑥 + 𝑎𝑦 = 1

→ {
𝑥𝑘+1 =

1

𝑎
(1 − 𝑏𝑦𝑘)

𝑦𝑘+1 =
1

𝑎
(1 − 𝑏𝑥𝑘)

Study of Convergence

1) Let's start with the sufficient conditions.

 ∀𝑖 = 1. .2, |𝑎𝑖𝑖| ≥ ∑ |𝑎𝑖𝑗|𝑗≠𝑖,𝑗=1..𝑛 → {
|𝑎| > |𝑏|
|𝑎| > |𝑏|

the matrix 𝐴 is said to be (SDD) strictly diagonally dominant if |𝑎| > |𝑏|

The Jacobi and Gauss-Seidel methods converges if |𝒂| > |𝒃|.

 𝐴 = (
𝑎 𝑏
𝑏 𝑎

) 𝑎𝑛𝑑 𝐴𝑇 = (
𝑎 𝑏
𝑏 𝑎

)

1) Since 𝐴 = 𝐴𝑇, A is symmetric.

2) the matrix 𝐴 is said to be positive definite if all the leading principal minors of

𝐴 are strictly positive ∀𝑖 = 1. .2, 𝐷𝑖 > 0.

1. 𝐷1 = 𝑎11 = 𝑎 > 0

2. 𝐷2 = det 𝐴 = |
𝑎 𝑏

𝑏 𝑎
| = 𝑎2 − 𝑏2 > 0 → |𝑎| > |𝑏|

The Gauss-Seidel method converges if |𝒂| > |𝒃|.

2) Let's start with the Necessary & Sufficient Conditions

𝐷 = (
𝑎 0
0 𝑎

) , 𝐸 = (
0 0
−𝑏 0

), 𝐹 = (
0 −𝑏
0 0

)

Jacobi Method

𝑩𝒋 = 𝐷
−1(𝐸 + 𝐹) 𝑎𝑛𝑑 𝐶 = 𝐷−1𝑏

𝐷−1 = (
1/𝑎 0
0 1/𝑎

) 𝑎𝑛𝑑 (𝐸 + 𝐹) = (
0 −𝑏
−𝑏 0

)

𝑩𝒋 = (
0 −𝑏/𝑎

−𝑏/𝑎 0
) 𝑎𝑛𝑑 𝐶 = (

1/𝑎
1/𝑎

)

𝑋(𝐾+1) = 𝐷−1(𝐸 + 𝐹) 𝑋(𝐾) + 𝐷−1𝑏

45

 𝑑𝑒𝑡(𝑩𝒋 − 𝜆𝐼) = det(
−𝜆 −

𝑏

𝑎

−
𝑏

𝑎
−𝜆
) = (𝜆−

𝑏

𝑎
) (𝜆+

𝑏

𝑎
) = 0

𝑑𝑒𝑡(𝑩𝒋 − 𝜆𝐼) = 0 → 𝜆1 =
𝑏

𝑎
 𝑎𝑛𝑑 𝜆2 = −

𝑏

𝑎

The Jacobi method converges when 𝜌(𝑩𝒋) = 𝑚𝑎𝑥|𝜆𝑖| < 1

𝜌(𝑩𝒋) = max(|𝜆1|, |𝜆2|) = |
𝑏

𝑎
| < 1 → |𝑏| < |𝑎|

The Jacobi method converges if |𝒂| > |𝒃|.

Gauss Seidel Method

𝑩𝑮𝑺 = (𝐷 − 𝐸)
−1(𝐹) 𝑎𝑛𝑑 𝐶 = (𝐷 − 𝐸)−1𝑏

(𝐷 − 𝐸)−1 = (
1/𝑎 0

−𝑏/𝑎2 1/𝑎
) 𝑎𝑛𝑑 𝐹 = (

0 −𝑏
0 0

)

𝑩𝑮𝑺 = (
0 −𝑏/𝑎

0 𝑏2/𝑎2
)

𝑋(𝐾+1) = (𝐷 − 𝐸)−1(𝐹) 𝑋(𝐾) + (𝐷 − 𝐸)−1𝑏

 𝑑𝑒𝑡(𝑩𝑮𝑺 − 𝜆𝐼) = det (
−𝜆 −𝑏/𝑎

0 𝑏2/𝑎2 − 𝜆
) = (−𝜆) (

𝑏2

𝑎2
− 𝜆) = 0

𝑑𝑒𝑡(𝑩𝑮𝑺 − 𝜆𝐼) = 0 → 𝜆1 = 0 𝑎𝑛𝑑 𝜆2 =
𝑏2

𝑎2

The Jacobi method converges when 𝜌(𝑩𝑮𝑺) = 𝑚𝑎𝑥|𝜆𝑖| < |
𝑏2

𝑎2
|

𝜌(𝑩𝑮𝑺) = max(|𝜆1|, |𝜆2|) = |
𝑏2

𝑎2
| < 1 → |𝑏| < |𝑎|

The Gauss Seidel method converges if |𝒂| > |𝒃|.

46

Chapter 4 Computation of Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors are fundamental concepts in linear algebra with numerous applications

in science and engineering. This course section will cover the localization of eigenvalues and the

power method for their computation.

4.1 Localization of Eigenvalues

Definition

Eigenvalues are scalar values associated with a square matrix 𝐴 that satisfy the Eq. (48):

𝐴𝐱 = 𝛌𝐱 (48)

Where 𝛌 is an eigenvalue and 𝑥 is the corresponding eigenvector.

The equation states that when the matrix 𝐴 acts on the vector 𝑥, the output is a scaled version of 𝑥. In

other words, 𝐴 transforms 𝑥 by merely stretching or compressing it without changing its direction.

Example;

𝐴 = (
3 0
8 −1

) and x=(
1
2
)

𝐴𝑥 = (
3 0
8 −1

) (
1
2
) = (

3
6
) = 3 × (

1
2
)

Thus, the eigenvalue 𝝀 = 𝟑 and the associated eigenvector is 𝑥 = (
1
2
).

4.1.1 Finding Eigenvalues: Analytical calculation

To find the eigenvalues of a matrix 𝐴, we rearrange the equation (48) into the following form:

Ax − λx = 0 (49)

This can be rewritten as:

(𝐴 − 𝜆𝐼)𝑥 = 0 (50)

where 𝐼 is the identity matrix of the same size 𝐴. For non-trivial solutions (i.e., x≠0), the determinant

of (𝐴 − 𝜆𝐼)must be zero:

𝒅𝒆𝒕(𝑨 − 𝝀𝑰) = 𝟎 (51)

47

he equation 𝒅𝒆𝒕(𝑨 − 𝝀𝑰) = 0 is known as the characteristic equation of the matrix 𝐴 The solutions to

this polynomial equation give the eigenvalues λ1,λ2,…,λn .

Example

Consider the matrix:

𝐴 = (
10 0 0
1 −3 −7
0 2 6

)

To find the Eigenvalues and eigenvectors, we first need to compute the eigenvalues of the matrix 𝐴.

1) Characteristic Polynomial: The eigenvalues are found by solving the characteristic equation

given by: 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0.

Where 𝐼 is the identity matrix. For our matrix 𝐴:

𝐴 = (
10 0 0
1 −3 −7
0 2 6

) 𝑎𝑛𝑑 𝐼 = (
1 0 0
0 1 0
0 0 1

)

𝐴 − 𝜆𝐼 = (
10 − 𝜆 0 0
1 −3 − 𝜆 −7
0 2 6 − 𝜆

)

2) Determinant Calculation:

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = det (
10 − 𝜆 0 0
1 −3 − 𝜆 −7
0 2 6 − 𝜆

) = (10 − 𝜆)[(−3 − 𝜆)(6 − 𝜆) + 14]

= (𝜆 − 10)[𝜆2 − 3𝜆 − 4] = (𝜆 − 10)(𝜆 + 1)(𝜆 − 4)

3) Solving the Quadratic Equation: (𝜆 − 10)(𝜆 + 1)(𝜆 − 4) = 0

This gives us: 𝜆1 = 10 , 𝜆2 = −1 𝑎𝑛𝑑 𝜆3 = 4

𝐓𝐡𝐞 𝐄𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞𝐬 𝐚𝐫𝐞 𝝀𝟏 = 𝟏𝟎 , 𝝀𝟐 = −𝟏 𝒂𝒏𝒅 𝝀𝟑 = 𝟒

4) Calculating the eigenvectors:

Now, we compute the eigenvectors:

𝐅𝐨𝐫 𝝀𝟏 = 𝟏𝟎

𝐴𝑥 = 1𝑥 → (
10 0 0
1 −3 −7
0 2 6

)(

𝑥1
𝑥2
𝑥3
) = 10(

𝑥1
𝑥2
𝑥3
) → {

10𝑥1 = 10𝑥1
𝑥1 − 3𝑥2 − 7𝑥3 = 10𝑥2
2𝑥2 + 6𝑥3 = 10𝑥3

→ {

𝑥1 = 1
𝑥2 = 2/33
𝑥3 = 1/33

 → 𝑋1 = (
1

2/33
1/33

)

48

𝐅𝐨𝐫 𝝀𝟐 = −𝟏

𝐴𝑥 = 2𝑥 → (
10 0 0
1 −3 −7
0 2 6

)(

𝑥1
𝑥2
𝑥3
) = −1(

𝑥1
𝑥2
𝑥3
) → {

10𝑥1 = −𝑥1
𝑥1 − 3𝑥2 − 7𝑥3 = −𝑥2
2𝑥2 + 6𝑥3 = −𝑥3

→ {

𝑥1 = 0
𝑥2 = 1

𝑥3 = −2/7
 → 𝑋2 = (

0
1

−2/7
)

𝐅𝐨𝐫 𝝀𝟑 = 𝟒

𝐴𝑥 = 3𝑥 → (
10 0 0
1 −3 −7
0 2 6

)(

𝑥1
𝑥2
𝑥3
) = 4(

𝑥1
𝑥2
𝑥3
) → {

10𝑥1 = 4𝑥1
𝑥1 − 3𝑥2 − 7𝑥3 = 4𝑥2
2𝑥2 + 6𝑥3 = 4𝑥3

→ {

𝑥1 = 0
𝑥2 = −1
𝑥3 = 1

 → 𝑋3 = (
0
−1
1
)

𝐓𝐡𝐞 𝐄𝐢𝐠𝐞𝐧𝐯𝐞𝐜𝐭𝐨𝐫𝐬 𝐚𝐫𝐞 𝑋1 = (
1

2/33
1/33

) , 𝑋2 = (
0
1

−2/7
) 𝒂𝒏𝒅 𝑋3 = (

0
−1
1
)

Unfortunately, this approach is generally not recommended, as there's no reliable and quick way

to find the roots of a polynomial with a degree higher than 4. Thus, we investigate numerical

methods for solving the eigenvalue problem

4.1.2 Localization Techniques

Localization methods help to determine the approximate locations of eigenvalues without computing

them directly. Some common techniques include:

4.1.2.1 Gershgorin Circle Theorem

The Gershgorin Circle Theorem states that every eigenvalue of a matrix 𝐴 = [𝑎𝑖𝑗] lies within at least

one of the Gershgorin disks defined by Eq. (52):

𝐷𝑖 = {𝑧 ∈ 𝐶: ⌈𝑧 − 𝑎𝑖𝑗⌉ ≤ ∑ |𝑎𝑖𝑗|𝑗≠𝑖 } (52)

This means that for each row 𝑖 we can draw a circle in the complex plane centered at 𝑎𝑖𝑗with a radius

equal to the sum of the absolute values of the other entries in the row.

The Gerschgorin theorem states that all the eigenvalues of a matrix 𝐴 belong to the union of 𝑛 disks. If

the Gerschgorin disks are all disjoint, then each one contains exactly one eigenvalue.

Notations

1) All the eigenvalues of 𝐴 are located within the union of the disks.

2) The 𝑖𝑡ℎ disk is defined with center 𝑎𝑖𝑗 and radius 𝑟𝑖 is given by Eq. (53):

49

 𝑟𝑖 = ∑ | 𝑎𝑖𝑗|
𝑛
𝑗≠𝑖 (53)

The Gerschgorin theorem provides a valuable way to localize eigenvalues of a matrix. Each

Gerschgorin disk can be visualized in the complex plane, centered at the diagonal entry 𝑎𝑖𝑗of the

matrix and extending outwards by the radius 𝑟𝑖.

For example, if you have a matrix:

𝐵 = (
1 0 −3
2 3 1
1 0 −2

)

the disks are calculated as follows:

1. For i=1

 Center: : 𝑏11 = 1

The Gerschgorin disks according to the rows:

Radius: 𝑟1 = |0| + |−3| = 3

Disk: 𝐷1 → (1,3)

The Gerschgorin disks according to the columns

Radius: 𝑟1 = |2| + |1| = 3

Disk: 𝐷1 → (1,3)

2. For i=2:

Center: 𝑏22 = 3

The Gerschgorin disks according to the rows:

Radius: : 𝑟2 = |2| + |1| = 3

Disk: 𝐷2 → (3,3)

The Gerschgorin disks according to the columns:

Radius: : 𝑟2 = |0| + |0| = 0

Disk: 𝐷2 → (3,0)

3. For i=3

Center: 𝑏33 = −2

50

The Gerschgorin disks according to the rows:

Radius: : 𝑟3 = |1| + |0| = 1

Disk: 𝐷3 → (−2,1)

The Gerschgorin disks according to the columns:

Radius: : 𝑟3 = |−3| + |1| = 4

Disk: 𝐷3 → (−2,4)

Knowing that 𝐵 and 𝐵𝑇 share the same eigenvalues, we choose the smallest radius for

each Gerschgorin disk. This provides the following localization of the spectrum.

 𝐷1 → (1,3) , 𝐷2 → (3,0) 𝑎𝑛𝑑 𝐷3 → (−2,1)

Figure 4 shows the localization of the real eigenvalues and complex eigenvalues.

Figure.4 Localization of the real eigenvalues (a) and complex eigenvalues (b).

By employing analytical calculations, we were able to accurately determine the eigenvalues, which

were then used to verify localization.

Determinant Calculation:

Det(𝐵 − 𝜆𝐼)=det[
1 − 𝜆 0 −3
2 3 − 𝜆 1
1 0 −2 − 𝜆

]

=(1 − 𝜆)[((3 − 𝜆)(−2 − 𝜆) − 0)] + 0 − [3(3 − 𝜆)]

= (1 − 𝜆)[(𝜆 − 3)(𝜆 − 2)] + 3(𝜆 − 3)]

=(𝜆 − 3)[−(𝜆 − 1)(𝜆 − 2) + 3]

(a) (b)

51

=(𝜆 − 3)[−(𝜆2 − 3𝜆 + 2) + 3]

=-(𝜆 − 3)[𝜆2 + 𝜆 + 1]

Solving the Quadratic Equation:

−(𝜆 − 3)[𝜆2 + 𝜆 + 1] = 0 → 𝜆 − 3 = 0 𝑜𝑟 𝜆2 + 𝜆 + 1 = 0

The solutions are 𝜆1 = 3, 𝜆2 = −
1

2
+
√3

2
𝑖, 𝑎𝑛𝑑 𝜆3 = −

1

2
−
√3

2
i . Figure 4 (b) confirms the

localization of the eigenvalues..

In addition to the Gershgorin Circle Theorem, there are several other localization methods for

determining eigenvalues. Interval Analysis is one such method; for instance, using Sturm's theorem,

we can ascertain the number of eigenvalues within a specified interval by analyzing the roots of the

characteristic polynomial. This helps in refining the intervals that contain the eigenvalues.

Furthermore, various numerical methods can be utilized to obtain eigenvalues with greater precision

after initial localization. Techniques like the QR algorithm offer a reliable way to compute

eigenvalues more accurately, enhancing our understanding of the spectral properties of matrices.

4.2 Power Method

The Power Method is one of the simplest techniques for calculating the eigenvalues of a matrix 𝐴.

This iterative method is particularly useful for finding the eigenvalue with the largest absolute value,

known as the dominant eigenvalue, along with its corresponding eigenvector.

Theorem

Let 𝐴 be a square matrix of size 𝑛 × 𝑛 that has N eigenvalues. The eigenvalues are defined as the

values 𝜆1, 𝜆2 … , 𝜆𝑛 that satisfy the characteristic equation Eq. (54):

|𝝀𝟏 | > |𝝀𝟐| ≥ … ≥ |𝝀𝒏| (54)

An eigenvalue 𝜆1 of a matrix A is said to be dominant if its absolute value is greater than the absolute

values of all other eigenvalues of A.

Exercise: Consider the following matrix

A= (

30
4
−1
−3

1
15
0
5

2
−4
3
0

3
−2
5
−1

)

1) Calculate the Gershgorin disks.

2) Draw the Gershgorin disks in the complex plane.

3) Determine the possible localization of the eigenvalues of matrix A based on the

Gershgorin disks.

52

Let 𝑋(0)be a suitably chosen vector, then the sequences of vectors in Eq. (55)

{𝑋(𝑘) = [𝑥1
(𝑘)
, 𝑥2
(𝑘)
… , 𝑥𝑛

(𝑘)
]} (55)

And the sequence of scalars 𝐶𝑘 generated in Eq. (56) where Any vector 𝑋 in 𝑅𝑛 can be expressed

as:∑ 𝑐𝑖𝑥𝑖
𝑛
𝑖=1 .

𝑥(1) = 𝐴𝑥(0)=∑ 𝑐𝑖𝐴𝑥𝑖
𝑛
𝑖=1 =∑ 𝑐𝑖𝜆𝑖

𝑛
𝑖=1 𝑥𝑖 (56)

𝑥(𝑘) = 𝐴𝑘𝑥(0) =∑𝑐𝑖(𝜆𝑖)
𝑘

𝑛

𝑖=1

𝑥𝑖 = 𝜆1
𝑘 [𝑐𝑖𝑥𝑖 + 𝑐2 (

𝜆2
𝜆1
)
𝑘

𝑥2 +⋯+ 𝑐2 (
𝜆𝑛
𝜆1
)
𝑘

𝑥𝑛]

Converges respectively to the dominant eigenvector 𝒗𝟏 and the eigenvalue 𝜆1.

NB. The dominant eigenvalue plays a crucial role in various numerical methods and applications,

particularly in iterative methods for solving systems of linear equations or finding eigenvalues

themselves. The dominant eigenvalue significantly impacts various aspects of numerical analysis and

system behavior. In iterative methods like the Power Method, it governs the convergence rate,

allowing the method to quickly approach the dominant eigenvalue and its associated eigenvector,

while other eigenvalues influence the process to a lesser extent. Furthermore, in dynamic systems, the

magnitude of the dominant eigenvalue serves as an indicator of stability: if it is less than 1, the system

is stable, whereas if it exceeds 1, the system becomes unstable. Additionally, the dominant eigenvalue

provides valuable insights into the long-term behavior of processes modeled by matrices, including

applications in population dynamics, Markov chains, and iterative algorithms.

Iterative Process

The method proceeds as follows:

1) Initialization: Choose an initial vector 𝑋(0) (often randomly).

2) Iteration: For k=0,1,2,…

𝑥(1) = 𝐴𝑥(0)=∑ 𝑐𝑖𝐴𝑥𝑖
𝑛
𝑖=1 =∑ 𝑐𝑖𝜆𝑖

𝑛
𝑖=1 𝑥𝑖

Here, 𝑐𝑖 are the coefficients corresponding to the eigenvalues λi and eigenvectors 𝑥𝑖.

3) Normalization: To avoid overflow or underflow, normalize 𝑥(1):

𝑌(𝑘+1) = 𝑐(𝑘+1)𝑋(𝑘)

where 𝑐(𝑘+1) = max1≤𝑖≤𝑁{|𝑥𝑖
(𝑘)|}, This ensures that the components of the vector 𝑌(𝑘+1) are

scaled to maintain numerical stability.

4) Update the Iterative Vector:

𝑋(𝑘+1) =
1

𝑐(𝑘+1)
𝑋(𝑘)

53

Here, 𝑐𝑖
(𝑘+1) = 𝑥𝑗

(𝑘) is the coefficient that contributes to the eigenvector approximation.

5) Convergence Check: Estimate the dominant eigenvalue using the Rayleigh quotient:

𝜆 ≈
𝑋(𝑘)𝑇𝐴𝑋(𝑘)

𝑋(𝑘)𝑇𝑋(𝑘)

Repeat until the change in 𝑋(𝑘) is smaller than a predefined tolerance.

Example:

Applying the Power Method to Matrix 𝐴

Given the matrix A=[
10 0 0
1 −3 −7
0 2 6

] and the initial vector 𝑥(0)=[
1
0
0
]

we will apply the Power Method to find the dominant eigenvalue and its corresponding eigenvector.

Iterative Process

1. First Iteration:

A𝑥(0)=[
10 0 0
1 −3 −7
0 2 6

] [
1
0
0
]=[
10
1
0
]

Normalization: Calculate the maximum element for normalization:

𝑐(1) = max
1≤𝑖≤𝑁

{|𝑥𝑖
(1)|} = 10

Normalize 𝑥(1) :

𝑌(1) =
𝑋(1)

𝑐(1)
=
1

10
[
10
1
0
] = [

1
0,1
0
]

Update:

𝑋(1) = 𝑌(1). 𝑐(1) = [
1
0,1
0
] . 10 = [

10
1
0
]

2. Second Iteration:

𝑥(2) =A𝑥(1)=[
10 0 0
1 −3 −7
0 2 6

] [
10
1
0
]=[
100
−20
12

]

𝑐(2) = max
1≤𝑖≤𝑁

{|𝑥𝑖
(1)|} = 100

54

Normalize 𝑥(2) :

𝑌(2) =
𝑋(2)

𝑐(2)
=

1

100
[
100
−20
12

] = [
1

−0,2
0.12

]

Update:

𝑋(2) = 𝑌(2). 𝑐(2) = [
1

−0,2
0.12

] . 100 = [
100
−20
12

]

3. Third Iteration:

𝑥(3) =A𝑥(2)=[
10 0 0
1 −3 −7
0 2 6

] [
100
−20
12

]=[
1000
−140
72

]

𝑐(3) = max
1≤𝑖≤𝑁

{|𝑥𝑖
(1)|} = 1000

Normalize 𝑥(2) :

𝑌(3) =
𝑋(3)

𝑐(3)
=

1

1000
[
1000
−140
72

] = [
1

−0,14
0.072

]

Update:

𝑋(2) = 𝑌(2). 𝑐(2) = [
1

−0,14
0.072

] . 1000 = [
1000
−140
72

]

Rayleigh Quotient

Finally, we can estimate the dominant eigenvalue using the Rayleigh quotient:

𝜆 ≈
𝑋(2)𝑇𝐴𝑋(2)

𝑋(2)𝑇𝑋(𝑘2)
=

[100 −20 12] [
1000
−140
72

]

[100 −20 12] [
100
−20
12

]

=
103664

10444
≈ 9.91

The Power Method has shown that the dominant eigenvalue of matrix A is approximately

λ≈9.91, with an associated eigenvector that converges through the iterative process.

55

Exercise:

Consider the following matri x and Initial Vector

A= (
5 4 2
2 3 1
1 2 3

) and 𝑋(0) = (
1
1
1
)

1) Apply the Power Method to find the dominant eigenvalue and its corresponding

eigenvector of matrix A.

2) Perform two iterations of the Power Method and calculate the Rayleigh

quotient to estimate the dominant eigenvalue.

56

Chapter 5 Matrix Analysis

5.1 Vector Spaces

Definition

 A vector space 𝑉 over a field 𝐹 is a mathematical structure composed of a set of elements called

vectors, which adhere to specific properties. These properties ensure that vector operations are well-

defined and consistent. Below are the key properties that characterize a vector space:

 Closure under Addition: For any two vectors 𝑢, 𝑣 ∈ 𝑉, their sum 𝑢 + 𝑣 must also be in 𝑉.

This property ensures that adding vectors together results in another vector within the same

space.

 Closure under Scalar Multiplication: For any vector 𝑢 ∈ 𝑉 and any scalar 𝑐 ∈ 𝐹, the

product 𝑐𝑢 must also be in 𝑉. This indicates that multiplying a vector by a scalar does not take

it outside the vector space.

 Associativity of Addition: Vector addition is associative, meaning that for any vectors

𝑢, 𝑣, 𝑤 ∈ 𝑉:

(𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) (57)

This property ensures that the grouping of vectors during addition does not affect the outcome.

 Commutativity of Addition: Addition of vectors is commutative, so for any vectors 𝑢, 𝑣 ∈ 𝑉:

𝑢 + 𝑣 = 𝑣 + 𝑢 (58)

This means the order in which vectors are added does not change the result.

 Identity Element of Addition: There exists a zero vector 0 ∈ 𝑉 such that for any vector

𝑢 ∈ 𝑉:

𝑢 + 0 = 𝑢 (59)

The zero vector serves as the additive identity.

 Inverse Elements of Addition: For every vector 𝑢 ∈ 𝑉, there exists a vector −𝑢 ∈ 𝑉 such

that:

𝑢 + (−𝑢) = 0 (60)

This property guarantees that for every vector, there is a corresponding "opposite" vector that

sums to the zero vector.

 Distributive Property: Scalar multiplication distributes over vector addition and scalar

addition:

𝑐(𝑢 + 𝑣) = 𝑐𝑢 + 𝑐𝑣

57

(𝑐 + 𝑑)𝑢 = 𝑐𝑢 + 𝑑𝑢 (61)

This means that scaling a sum of vectors is equivalent to scaling each vector and then adding.

 Associativity of Scalar Multiplication: Scalar multiplication is associative, so for any scalars

𝑐, 𝑑 ∈ 𝐹 and any vector 𝑢 ∈ 𝑉:

𝑐(𝑑𝑢) = (𝑐𝑑)𝑢 (62)

This ensures that the order of scalar multiplication does not affect the result.

 Identity Element of Scalar Multiplication: The scalar multiplication by the identity scalar

(1) yields the vector itself:

1𝑢 = 𝑢 (63)

This property confirms that multiplying a vector by 1 leaves it unchanged.

Example

Consider the vector space 𝑅2 over the field of real numbers 𝑅. Elements of this vector space are

vectors of the form (
𝑥
𝑦)where 𝑥, 𝑦 ∈ 𝑅.

 Closure under Addition: If 𝑢 = (
𝑥1
𝑦1
) and 𝑣 = (

𝑥2
𝑦2
), then 𝑢 + 𝑣 = (

𝑥1 + 𝑥2
𝑦1 + 𝑦2

) in 𝑅2.

 Closure under Scalar Multiplication: For 𝑐 ∈ 𝑅 and 𝑢 = (
𝑥
𝑦), the product 𝑐𝑢 =

(
𝑐𝑥
𝑐𝑦) remains in 𝑅2.

This foundational structure provides the basis for many areas in mathematics, including linear algebra,

functional analysis, and beyond.

5.2 Matrices

Definition

A matrix is a rectangular array of numbers arranged in rows and columns. It is commonly used to

represent linear transformations or systems of linear equations. Each element in the matrix

corresponds to a specific position defined by its row and column indices.

Notation

A matrix 𝐴 of size 𝑛 ×𝑚 has 𝑚 rows and 𝑛 columns, denoted as:

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛1

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑚
𝑎2𝑚
⋮

 𝑎𝑛𝑚

) (64)

Here, 𝑎𝑖𝑗 represents the element located in the 𝑖 row and 𝑗 column of matrix 𝐴.

58

Matrices are fundamental in various mathematical fields, including linear algebra, computer science,

and statistics, where they facilitate operations such as addition, multiplication, and finding

determinants and eigenvalues.

5.2.1 Matrix Operations

5.2.1.1 Addition

Definition

Two matrices 𝐴 ∈ 𝑅𝑛𝑥𝑚 and 𝐵 ∈ 𝑅𝑛𝑥𝑚 can be added if they have the same dimensions: The addition

of two matrices 𝐴 and 𝐵 results in a new matrix 𝐶, where each element 𝑐𝑖𝑗 is calculated by adding the

corresponding elements of A and B:

𝐶 = 𝐴 + 𝐵 = [𝑐𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗]𝑛×𝑚

 = (

𝑎11 + 𝑏11
𝑎21 + 𝑏21

⋮
𝑎𝑛1 + 𝑏𝑛1

𝑎12 + 𝑏12
𝑎22 + 𝑏22

⋮
𝑎𝑛2 + 𝑏𝑛2

…
…
 …

𝑎1𝑚 + 𝑏1𝑚
𝑎2𝑚 + 𝑏2𝑚

⋮
 𝑎𝑛𝑚 + 𝑏𝑛𝑚

) (65)

 Example:

1) If we have: 𝐴 = (
1 −3
−2 −1

) 𝑎𝑛𝑑 𝐵 = (
−5 3
7 2

)

Then the sum 𝐶 = 𝐴 + 𝐵 is:

 𝐶 = 𝐴 + 𝐵 = (
1 − 5 −3 + 3
−2 + 7 −1 + 2

) = (
−4 0
5 1

)

2) If we have 𝐴 = (
1 −3
0 −1

0
5
) 𝑎𝑛𝑑 𝐵 = (

2 7
1 0

)

Matrix 𝐴 is of size 2 × 3 and matrix 𝐵 is of size 2 × 2. Since their dimensions do not

match, we cannot add them directly.

5.2.1.2 Scalar Multiplication

Definition

 Scalar multiplication involves multiplying each element of a matrix 𝐴 by a scalar 𝑐.

If 𝐴 is a matrix of size 𝑛 ×𝑚 given by:

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑛1

𝑎12
𝑎22
⋮
𝑎𝑛2

…
…
 …

𝑎1𝑚
𝑎2𝑚
⋮

 𝑎𝑛𝑚

) (66)

59

then the result of multiplying 𝐴 by the scalar𝑐 is another matrix 𝑐𝐴defined as:

𝑐. 𝐴 = (

𝑐. 𝑎11
𝑐. 𝑎21
⋮

𝑐. 𝑎𝑛1

 𝑐. 𝑎12
 𝑐. 𝑎22
⋮

 𝑐. 𝑎𝑛2

…
…
 …

 𝑐. 𝑎1𝑚
 𝑐. 𝑎2𝑚
⋮

 𝑐. 𝑎𝑛𝑚

) (67)

Notation

Properties of Scalar Multiplication:

1) Distributive Property: 𝑐(𝐴 + 𝐵) = 𝑐𝐴 + 𝑐𝐵

2) Associative Property: 𝑐(𝑑𝐴) = (𝑐𝑑)𝐴

3) Identity Element: 1𝐴 = 𝐴

Example

Let 𝐴 = (
1 −5
0 −1

) and let 𝑐 = 3.

Then,

𝑐𝐴 = 3(
1 −5
0 −1

) (
3 × 1 3 × (−5)

3 × 0 3 × (−1)
) = (

3 −15
0 −3

) .

This demonstrates how each element of the matrix 𝐴 is multiplied by the scalar 𝑐.

5.2.1.3 Matrix Multiplication

Definition

The product of two matrices 𝐴𝐵 is defined when the number of columns in matrix 𝐴 is equal to the

number of rows in matrix 𝐵. Specifically, if 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝 matrix, then the

resulting product 𝐴𝐵 will be an 𝑚 × 𝑝 matrix.

Notation

 Let 𝐴 be an 𝑚 × 𝑛 matrix:

𝐴 = (

𝑎11
𝑎21
⋮
𝑎𝑚1

𝑎12
𝑎22
⋮
𝑎𝑚2

…
…
 …

𝑎1𝑛
𝑎2𝑛
⋮

 𝑎𝑚𝑛

) (68)

 Let 𝐵 be an 𝑛 × 𝑝 matrix:

𝐵 = (

𝑏11
𝑏21
⋮
𝑏𝑛1

𝑏12
𝑏22
⋮
𝑏𝑛2

…
…
 …

𝑏1𝑝
𝑏2𝑝
⋮

 𝑏𝑛𝑝

) (69)

60

Calculation of the Product 𝑨𝑩

The product 𝐴𝐵 is calculated by taking the dot product of the rows of 𝐴 with the columns of 𝐵. The

element in the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of the resulting matrix 𝐶 = 𝐴𝐵 is given by:

𝑐𝑖𝑗 = ∑ 𝑎𝑖𝑘𝑏𝑘𝑗
𝑛
𝑘=1 (68)

where:

 𝑐𝑖𝑗 is the entry in the 𝑖𝑡ℎ row and 𝑗𝑡ℎcolumn of the matrix 𝐶.

 𝑎𝑖𝑘 is the entry from the 𝑖𝑡ℎ row of 𝐴.

 𝑏𝑘𝑗 is the entry from the 𝑗𝑡ℎ column of 𝐵.

Notation

Properties of Matrix Multiplication

1) Non-Commutativity: In general, 𝐴𝐵 ≠ 𝐵𝐴.

2) Associativity: (𝐴𝐵)𝐶 = 𝐴(𝐵𝐶).
3) Distributive: 𝐴(𝐵 + 𝐶) = 𝐴𝐵 + 𝐴𝐶.

Example

Let:

𝐴 = (
1 2
3 4

) 𝑎𝑛𝑑 𝐵 = (
5 6
7 8

)

The product 𝐴𝐵 is calculated as follows: 𝐴𝐵 = (
1 × 5 + 2 × 7 1 × 6 + 2 × 8
3 × 5 + 4 × 7 3 × 6 + 4 × 8

) = (
19 22
43 50

)

Matrix multiplication is a fundamental operation in linear algebra, with wide-ranging applications in

various fields including computer science, engineering, and economics. Understanding the conditions

for multiplication, the calculation method, and properties is essential for further exploration of linear

transformations and systems of equations.

5.2.2 Relationships between Linear Mappings and Matrices

Definition

Every linear mapping 𝑇: 𝑅𝑛 → 𝑅𝑚 can be represented by a matrix 𝐴 such that:

𝑇(𝑥) = 𝐴𝑥 (69)

for all 𝑥 ∈ 𝑅𝑛. Here, 𝐴 is an 𝑚 × 𝑛 matrix where the action of 𝑇 on a vector 𝑥 corresponds to the

matrix multiplication of 𝐴 and 𝑥.

61

5.2.2.1 Representation of the Matrix

If 𝑇 is defined by its effect on the standard basis vectors 𝑒1, 𝑒2, … , 𝑒𝑛of 𝑅𝑛 the columns of the matrix 𝐴

are given by:

𝐴 = (𝑇(𝑒1) 𝑇(𝑒2) … 𝑇(𝑒𝑛)) (70)

where each 𝑇(𝑒2) is an 𝑚-dimensional vector.

Notation

The properties are :

1) Linearity: The matrix 𝐴 captures the linearity of the mapping 𝑇, meaning:

 𝑇(𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑇(𝑥1) + 𝑐2𝑇(𝑥2) for any scalars 𝑐1, 𝑐2 and vectors 𝑥1, 𝑥2 ∈ 𝑅
𝑛.

2) Composition: If 𝑇1: 𝑅
𝑛 → 𝑅𝑚 and 𝑇2: 𝑅

𝑛 → 𝑅𝑚 are linear mappings with matrices 𝐴1 and 𝐴2,

respectively, then the composition 𝑇2° 𝑇1 can be represented by the matrix product 𝐴2𝐴1.

Understanding the relationship between linear mappings and matrices allows for the translation of

abstract linear transformations into concrete matrix operations, facilitating analysis and computation in

various mathematical and applied contexts.

Example

Let 𝐴 = (
1 0 0
0 2 0
0 0 3

) and 𝐴 = (
1
1
1
)

Calculation: 𝑇(𝑥) = 𝐴𝑥 = (
1 0 0

0 2 0

0 0 3

)(
1

1

1

) = (
1

2

3

)

5.2.3 Inverse of a Matrix

The inverse 𝐴−1 of a matrix 𝐴 satisfies the following conditions:

𝐴𝐴−1 = 𝐼 𝑎𝑛𝑑 𝐴−1𝐴 = 𝐼 (71)

𝐴−1 =
1

det (𝐴)
× 𝑎𝑑𝑗(𝐴)

where 𝐼 is the identity matrix and 𝑎𝑑𝑗(𝐴)𝑖𝑠 Adjugate.

The adjugate (or adjoint) of a matrix 𝐴, is the transpose of the cofactor matrix of 𝐴. It is calculated by:

 Finding the cofactor for each element of 𝐴.

 Transposing the resulting matrix of cofactors.

62

Example

For

𝐴 = (
1 2 3
0 1 4
5 6 0

)

Finding 𝐴−1 involves calculating the determinant and the adjugate. we will follow these steps:

1. Calculate the Determinant of 𝐴.

2. Find the Adjugate of 𝐴.

3. Use the formula for the inverse.

det(𝐴) = 1 |
1 4
6 0

| − 2 |
0 4
5 0

| + 3 |
0 1
5 6

| = −24 + 40 − 15 = 1

Calculate the Cofactor Matrix

To find the cofactor 𝐶𝑖𝑗, we calculate the determinant of the 2 × 2 matrix obtained by deleting the i

row and j column and apply the sign based on the position.

 𝐶𝑖𝑗 = (−1)
𝑖+𝑗𝑑𝑒𝑡(𝑖, 𝑗)

1. Cofactor 𝐶11 (delete row 1, column 1):

 𝐶11 = 𝑑𝑒𝑡 (
1 4
6 0

) = −24

2. Cofactor 𝐶12 (delete row 1, column 2):

 𝐶12 = −𝑑𝑒𝑡 (
0 4
5 0

) = 20

3. Cofactor 𝐶13 (delete row 1, column 3):

 𝐶13 = 𝑑𝑒𝑡 (
0 1
5 6

) = −16

4. Cofactor 𝐶21 (delete row 2, column 1):

 𝐶21 = −𝑑𝑒𝑡 (
2 3
6 0

) = 18

5. Cofactor 𝐶22 (delete row 2, column 2):

 𝐶22 = 𝑑𝑒𝑡 (
1 4
6 0

) = −15.

6. Cofactor 𝐶23 (delete row 2, column 3):

 𝐶23 = −𝑑𝑒𝑡 (
1 2
5 6

) = 4

63

7. Cofactor 𝐶31 (delete row 3, column 1):

 𝐶31 = 𝑑𝑒𝑡 (
2 3
1 4

) = 5

8. Cofactor 𝐶32 (delete row 3, column 2):

 𝐶32 = −𝑑𝑒𝑡 (
1 3
0 4

) = −4

9. Cofactor 𝐶33 (delete row 3, column 3):

 𝐶33 = −𝑑𝑒𝑡 (
1 2
0 1

) = 1

. Putting it all together, the cofactor matrix , and Taking the transpose of the cofactor matrix :

 𝐶 = (
−24 20 −5
18 −15 4
5 −4 1

) → 𝒂𝒅𝒋(𝑨) = 𝑪𝑻 = (
−𝟐𝟒 𝟏𝟖 𝟓
𝟐𝟎 −𝟏𝟓 −𝟒
−𝟓 𝟒 𝟏

)

Using the formula for the inverse:

𝐴−1 =
1

det (𝐴)
× 𝑎𝑑𝑗(𝐴)

Since 𝑑𝑒𝑡 (𝐴) = 1, The inverse of the matrix 𝐴 is:

𝐴−1 = (
−24 18 5
20 −15 −4
−5 4 1

)

5.2.4 Trace and Determinant of a Matrix

Definition 1

The trace of a square matrix 𝐴, denoted 𝑡𝑟(𝐴), is defined as the sum of the diagonal elements:

𝒕𝒓(𝑨) = 𝒂𝟏𝟏 + 𝒂𝟐𝟐 +⋯+ 𝒂𝒏𝒏 (72)

Properties of the Trace

1) Linearity: 𝑡𝑟(𝐴 + 𝐵) = 𝑡𝑟(𝐴) + 𝑡𝑟(𝐵) for any two square matrices 𝐴 and 𝐵 of the same size.

2) Scalar Multiplication: 𝑡𝑟(𝑐𝐴) = 𝑐𝑡𝑟(𝐴) for any scalar 𝑐.
3) Transpose 𝑡𝑟(𝐴𝑇) = 𝑡𝑟(𝐴).

Definition 2

The determinant of a square matrix 𝐴, denoted 𝑑𝑒𝑡(𝐴), is a scalar value that provides important

properties regarding the matrix, including whether it is invertible.

Properties of the Determinant

1) Multiplicative: 𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴). 𝑑𝑒𝑡(𝐵) for any two square matrices 𝐴 and 𝐵.

2) Invertibility: A matri𝑥 𝐴 is invertible if and only if det (𝐴) ≠ 0.

3) Effect of Row Operations:

64

 Swapping two rows multiplies the determinant by −1.

 Multiplying a row by a scalar 𝑐 multiplies the determinant by 𝐶.

 Adding a multiple of one row to another does not change the determinant.

5.2.5 Eigenvalues and Eigenvectors

Definition

For a square matrix 𝐴, a non-zero vector 𝑣 is called an eigenvector and the corresponding scalar 𝜆 is

called an eigenvalue if (see chapter 4):

𝐴𝑣 = 𝜆𝑣 (73)

5.2.5.1 Finding Eigenvalues

To find the eigenvalues of 𝐴, solve the characteristic equation:

𝑑𝑒𝑡 (𝐴 − 𝜆𝐼) = 0 (74)

where 𝐼 is the identity matrix of the same size as 𝐴.

5.2.5.2 Finding Eigenvectors

Once the eigenvalues are determined, substitute each eigenvalue 𝜆 back into the equation (𝐴 − 𝜆𝐼)𝑣 =
0 to find the corresponding eigenvectors.

Properties

1) Sum of Eigenvalues: The sum of the eigenvalues of 𝐴 equals the trace of 𝐴.

2) Product of Eigenvalues: The product of the eigenvalues equals the determinant of 𝐴.

5.2.6 Similar Matrices

Definition

Two square matrices 𝐴 and 𝐵 are said to be similar if there exists an invertible matrix 𝑃 such that:

𝐵 = 𝑃−1𝐴𝑃 (75)

Properties of Similar Matrices

1) Same Eigenvalues: Similar matrices share the same eigenvalues.

2) Same Determinant and Trace: If 𝐴 and 𝐵 are similar, then 𝑑𝑒 𝑡(𝐴) = 𝑑𝑒 𝑡(𝐵) 𝑎𝑛𝑑 𝑡 𝑟(𝐴) =
𝑡𝑟(𝐵)).

3) Invariant under Similarity: Many properties of matrices, such as rank and characteristic

polynomial, are invariant under similarity.

65

5.2.7 Some Special Matrices

Definition 1

A diagonal matrix is a square matrix in which all elements outside the main diagonal are zero. It can

be represented as:

𝐷 = (

𝑑1 0 … 0
0 𝑑2 ⋱ ⋮
⋮
0

⋱
…

⋱ 0
0 𝑑𝑛

)

where 𝑑1,𝑑2, . .𝑑𝑛 are the diagonal entries.

Properties

1) Eigenvalues: The eigenvalues of a diagonal matrix are simply its diagonal entries:

Eigenvalues=𝑑1, 𝑑2, . . 𝑑𝑛

2) Determinant: The determinant of a diagonal matrix is the product of its diagonal entries:

det(𝐴) = 𝑑1 × 𝑑2 ×, .× 𝑑𝑛

3) Inverse: If 𝑑𝑖 ≠ 0 for all 𝑖, the inverse of a diagonal matrix 𝐷 is also a diagonal matrix:

𝐷−1 = (

1/𝑑1 0 … 0
0 1/𝑑2 ⋱ ⋮
⋮
0

⋱
…

⋱ 0
0 1/𝑑𝑛

)

Definition 2

A matrix 𝑄 is orthogonal if its transpose is equal to its inverse:

𝑄𝑇𝑄 = 𝐼

Properties

1) Orthonormal Vectors: The columns (and rows) of 𝑄 are orthonormal vectors. This means:

- Each column vector has a length of 1.

- Any two different columns are orthogonal to each other.

2) Determinant: The determinant of an orthogonal matrix is either +1 or −1:

𝑑𝑒𝑡(𝑄) = ±1

3) Inverse: The inverse of an orthogonal matrix is its transpose:

66

𝑄−1 = 𝑄

Definition 3

A matrix 𝐴 is symmetric if it is equal to its transpose:

𝐴 = 𝐴𝑇

Properties

1) Real Eigenvalues: All eigenvalues of a symmetric matrix are real.

2) Diagonalization: There exists an orthogonal matrix 𝑄 such that:

𝐴 = 𝑄𝛬𝑄𝑇

where 𝛬 is a diagonal matrix containing the eigenvalues of 𝐴.

3) Quadratic Form: For any vector x: 𝑥𝑇𝐴 𝑥 is a vreal number.

5.3 Norms and Inner Products

Norms and inner products are fundamental concepts in linear algebra that provide a way to measure

the size of vectors and the angle between them. These tools are essential for various applications in

mathematics, physics, and engineering.

5.3.1 Definitions

Vector Norms

A norm is a function that assigns a non-negative length or size to vectors in a vector space. It is

denoted as ∥ 𝑥 ∥\for a vector 𝑥.

Properties of Norms

For any vector 𝑥 and scalar 𝑐:

1) Non-negativity: ∥ 𝑥 ∥≥ 0 and ∥ 𝑥 ∥= 0 if and only if 𝑥 = 0.

2) Scalar multiplication: ∥ 𝑐𝑥 ∥=∣ 𝑐 ∣∥ 𝑥 ∥.
3) Triangle inequality: ∥ 𝑥 + 𝑦 ∥≤∥ 𝑥 ∥ +∥ 𝑦∥.

Common Norms

1. 1-Norm (Manhattan Norm): ‖𝑥‖1 = ∑ |𝑥𝑖|
𝑛
𝑖=1

2. 2-Norm (Euclidean Norm): ‖𝑥‖2 = √∑ |𝑥𝑖|
2𝑛

𝑖=1

67

3. Infinity Norm: ‖𝑥‖∞ = max𝑖|𝑥𝑖|

5.3.2 Inner Products and Vector Norms

Inner Product

An inner product is a generalization of the dot product that allows us to define angles and

lengths in a vector space. For two vectors 𝑥, 𝑦 ∈ 𝑅𝑛, the inner product is denoted as ⟨𝑥, 𝑦⟩.

Properties of Inner Products

1) Conjugate symmetry: ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩̅̅ ̅̅ ̅̅ ̅
2) Linearity: ⟨𝑐𝑥 + 𝑧, 𝑦⟩ = 𝑐⟨𝑥, 𝑦⟩ + ⟨𝑧, 𝑦⟩
3) Positive definiteness: ⟨𝑥, 𝑥⟩ ≥ 0 and ⟨𝑥, 𝑥⟩ = 0 if x=0.

Relationship Between Norms and Inner Products

The norm of a vector can be derived from the inner product:

‖𝑥‖ = √(𝑥, 𝑥)

Examples of Inner Products

1) Standard Inner Product: ⟨𝑥, 𝑦⟩ = ∑ 𝑥𝑖
𝑛
𝑖=1 𝑦𝑖

2) Weighted Inner Product: ⟨𝑥, 𝑦⟩ = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 𝑦𝑖 where wi>0w_i > 0wi>0 are weights.

5.3.3 Matrix Norms

Definition

A matrix norm is a function that assigns a non-negative size to matrices, analogous to vector norms. It

is denoted as ∥ 𝐴 ∥ for a matrix 𝐴.

Properties of Matrix Norms

For any matrices 𝐴 and 𝐵 of appropriate dimensions and scalar 𝑐:

1) Non-negativity: ∥ 𝐴 ∥≥ 0 and ∥ 𝐴 ∥= 0 if and only if 𝐴 is the zero matrix.

2) Scalar multiplication: ∥ 𝑐𝐴 ∥=∣ 𝑐 ∣∥ 𝐴 ∥∥.
3) Triangle inequality: ∥ 𝐴 + 𝐵 ∥≤∥ 𝐴 ∥ +∥ 𝐵 ∥.

Common Matrix Norms

1. Frobenius Norm:

∥ 𝐴 ∥𝐹= √∑ |𝑎𝑖𝑗|
2

𝑖,𝑗 = √𝑡𝑟(𝐴∗𝐴)

where 𝐴∗∗ is the conjugate transpose of 𝐴.

68

2. 1-Norm:

∥ 𝐴 ∥1= max
1≤𝑗≤𝑛

∑|𝑎𝑖𝑗|

𝑚

𝑖=1

This norm is the maximum absolute column sum of the matrix.

3. Infinity Norm:

∥ 𝐴 ∥∞= max
1≤𝑗≤𝑚

∑|𝑎𝑖𝑗|

𝑛

𝑖=1

This norm is the maximum absolute row sum of the matrix.

4. 2-Norm (Spectral Norm):

∥ 𝐴 ∥2= 𝜎𝑚𝑎𝑥

where 𝜎𝑚𝑎𝑥 is the largest singular value of 𝐴.

Applications of Norms and Inner Products

 Stability Analysis: In control theory, norms are used to analyze the stability of systems.

 Optimization: In machine learning, norms help in regularization techniques to prevent

overfitting.

 Numerical Analysis: Norms measure error and convergence rates of numerical methods.

69

QCM

Here are multiple-choice questions (MCQs) based on previous section:

Question 1:

1. Which of the following is NOT a property of a vector space?

A) Closure under addition

B) Existence of a zero vector

C) Commutativity of multiplication

D) Closure under scalar multiplication

Answer: C) Commutativity of multiplication

Question 2:

What is the result of the matrix multiplication 𝐴 = (
1 2
3 4

) 𝑎𝑛𝑑 𝐵 = (
5 6
7 8

)?.

A) (
19 22
43 50

)

B) (
31 52
15 24

)

C) (
14 12
11 3

)

D) (
26 7
19 32

)

Answer: (
19 22
43 50

).

Question 3:

If 𝐴 is a matrix representing a linear mapping, which of the following statements is true?

A) The matrix has the same dimensions as the vector space it maps to.

B) The rank of the matrix is always equal to its dimension.

C) Every linear mapping can be represented by a matrix.

D) The inverse of a matrix always represents a linear mapping.

Answer: C) Every linear mapping can be represented by a matrix.

Question 4:

What is the determinant of the matrix 𝑀 = (
1 2
3 4

)?

A) -2.

B) 2.

C) 4.

D) 1.

Answer: A) -2.

Question 5:

Which of the following is a property of inner products in vector spaces?

A) It is commutative but not associative.

B) It can produce a scalar result.

C) It requires at least three vectors.

D) It can be negative.

Answer: B) It can produce a scalar result.

70

References

Timothy Sauer, “Numerical Analysis”, Publisher: PearsonEdition, November 26, 2011 ISBN-

0321783670 (2nd edition).

Francois Cuvelier, “Analyse numérique élémentaire”, course note, Université Paris XIII, 2022.

Jaan Kiusalaas, “Numerical Methods in Engineering with Python”, Publisher: Cambridge University

Press. (2nd edition).

Richard L. Burden and J. Douglas Faires, "Numerical Analysis", Publisher: Cengage Learning,

Publication: January 1, 2015 (Edition10)

Steven C. Chapra and Raymond P. Canale, "Numerical Methods for Engineers", Publisher: McGraw

Hill, Publication: March 3, 2020 (Edition 8)

Lloyd N. Trefethen and David Bau III, "Numerical Linear Algebra", Publisher: SIAM-Society for

Industrial and Applied Mathematics, 1997.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, "Numerical

Recipes: The Art of Scientific Computing", Publisher: Cambridge University Press, Publication: date6

September 2007. (Edition 3)

