
Programming in C

Hello World!

Soon I will
control the world!

1

Introduction to C

▪ C language

⚫Facilitates a structured and disciplined approach to
computer program design

⚫Provides low-level access

⚫Highly portable

2

Program Basics

3

▪ The source code for a program is the set of instructions
written in a high-level, human readable language.

X = 0;

MOVE 0 TO X.

X := 0

▪ The source code is transformed into object code by a
compiler. Object code is a machine usable format.

▪ The computer executes a program in response to a
command.

Basics of a Typical C Environment

Phases of C Programs:

1. Edit

2. Preprocess

3. Compile

4. Link

5. Load

6. Execute

Loader

Primary

Memory

Program is created in

the editor and stored

on disk.

Preprocessor program

processes the code.

Loader puts program

in memory.

CPU takes each

instruction and

executes it, possibly

storing new data

values as the program

executes.

Compiler
Compiler creates

object code and stores

it on disk.

Linker links the object

code with the libraries,
creates a.out and

stores it on disk

Editor

Preprocessor

Linker

CPU

Primary

Memory

.

.

.

.

.

.

.

.

.

Disk

Disk

Disk

Disk

Disk

4

GCC Program Basics

▪ The basic program writing sequence:
1. create or modify a file of instructions using an editor

➢ Unix: Pico, vi, gEdit, emacs, …

2. compile the instructions with GCC

3. execute or run the compiled program

⚫repeat the sequence if there are mistakes

Pico:
http://www.bgsu.edu/departments/compsci/docs/pico.html

5

http://www.bgsu.edu/departments/compsci/docs/pico.html

Structure of a C Program

Every C program must
have a main function

main function

function 1

.

.

.

function n

6

Functions
▪ Each function consists of a header

followed by a basic block.

▪ General format:

<return-type> fn-name (parameter-list)

basic block
header

7

The Basic Block

8

⚫A semi-colon (;) is used to terminate a statement

⚫A block consists of zero or more statements

⚫Nesting of blocks is legal and common
➢ Each interior block may include variable declarations

{

declaration of variables

executable statements

}

Return statement
▪ return expression

1. Sets the return value to the value of the expression

2. Returns to the caller / invoker

▪ Example:

9

SSH Secure Shell
⚫On-Campus / VPN

⚫SSH to one of the
machines in the list
⚫machine.cs.clemson.edu

⚫Off-Campus

⚫SSH to access.cs.clemson.edu

⚫ssh machine.cs.clemson.edu

10

Unix Commands: mkdir & cd

11

mkdir cpsc1110

⚫Creates a new directory / folder

cd cpsc1110

⚫Changes the current directory

pico ch02First.c

⚫Runs the pico editor to edit file ch02First.c

Go Tigers!!!

Our First Program

12

Compiling and Running a Program
▪ To compile and print all warning messages, type

gcc –Wall prog-name.c

▪ If using math library (math.h), type

gcc –Wall prog-name.c -lm

▪ By default, the compiler produces the file a.out

After

13

Compiling and Running a Program

14

▪ To execute the program type
./a.out

⚫The ./ indicates the current directory

▪ To specify the file for the object code,
for example, p1.o, type
gcc –Wall prog1.c –o p1.o

then type

./p1.o

to execute the program

Comments
▪ Make programs easy to read and modify

▪ Ignored by the C compiler

▪ Two methods:

1. // - line comment
- everything on the line following // is ignored

2. /* */ - block comment
- everything between /* */ is ignored

15

Preprocessor Directive: #include
▪ A C program line beginning with # that is processed by

the compiler before translation begins.

▪ #include pulls another file into the source

causes the contents of the
named file, stdio.h, to be inserted where the #
appears. File is commonly called a header file.
➢ <>’s indicate that it is a compiler standard header file.

causes the contents of
myfunctions.h to be inserted

➢ “’s indicate that it is a user file from current or specified
directory

#include: Chapter 12 p. 311
16

Introduction to Input/Output

▪ Input data is read into variables

▪ Output data is written from variables.

▪ Initially, we will assume that the user

⚫enters data via the terminal keyboard

⚫views output data in a terminal window on the screen

17

Program Input / Output

18

▪ The C run-time system automatically opens two files
for you at the time your program starts:

⚫stdin – standard input (from the keyboard)

⚫stdout – standard output (to the terminal window in
which the program started)

▪ Later, how to read and write files on disk

1. Using stdin and stdout

2. Using FILE’s

Console Input/Output

19

▪ Defined in the C library included in <stdio.h>
⚫Must have this line near start of file:

#include <stdio.h>

⚫Includes input functions scanf, fscanf, …

⚫Includes output functions printf, fprintf, …

Console Output - printf
▪ Print to standard output,

typically the screen

▪ General format (value-list may not be required):
printf("format string", value-list);

20

Console Output

21

What can be output?

▪ Any data can be output to display screen
➢ Literal values

➢ Variables

➢ Constants

➢ Expressions (which can include all of above)

▪ Note
Values are passed to printf
Addresses are passed to scanf

Console Output

22

▪ We can

⚫Control vertical spacing with blank lines
➢ Use the escape sequence "\n“, new line

⚫ Should use at the end of all lines unless you are building lines
with multiple printf’s.

⚫ If you printf without a \n and the program crashes, you will not
see the output.

⚫Control horizontal spacing
➢ Spaces

➢ Use the escape sequence “\t”, tab

⚫ Sometimes undependable.

Terminal Output - Examples

⚫Sends string "Hello World" to display, skipping to next
line

⚫Displays the lines
Good morning

Ms Smith.

23

Program Output: Escape Character \

24

⚫ Indicates that a “special” character is to be output

Escape
Sequence

Description

\n Newline. Position the screen cursor to the beginning of
the next line.

\t Horizontal tab. Move the screen cursor to the next tab
stop.

\r Carriage return. Position the screen cursor to the
beginning of the current line; do not advance to the next
line.

\a Alert. Sound the system bell.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double quote character.

Template: a.c
▪ Starting point for a new program

⚫Read into (^R in pico) or

⚫Copy into (cp command) a new file
➢ Ex: cp a.c prog1.c

25

Programming in C

T H E E N D

26

	Diapositive 1 Programming in C
	Diapositive 2 Introduction to C
	Diapositive 3 Program Basics
	Diapositive 4 Basics of a Typical C Environment
	Diapositive 5 GCC Program Basics
	Diapositive 6 Structure of a C Program
	Diapositive 7 Functions
	Diapositive 8 The Basic Block
	Diapositive 9 Return statement
	Diapositive 10 SSH Secure Shell
	Diapositive 11 Unix Commands: mkdir & cd
	Diapositive 12 Our First Program
	Diapositive 13 Compiling and Running a Program
	Diapositive 14 Compiling and Running a Program
	Diapositive 15 Comments
	Diapositive 16 Preprocessor Directive: #include
	Diapositive 17 Introduction to Input/Output
	Diapositive 18 Program Input / Output
	Diapositive 19 Console Input/Output
	Diapositive 20 Console Output - printf
	Diapositive 21 Console Output
	Diapositive 22 Console Output
	Diapositive 23 Terminal Output - Examples
	Diapositive 24 Program Output: Escape Character \
	Diapositive 25 Template: a.c
	Diapositive 26 Programming in C

