
Programming in C

1

Reserved Words and Identifiers
▪ Reserved word

⚫ Word that has a specific meaning in C
➢ Ex: int, return

▪ Identifier

⚫Word used to name and refer to a data element
or object manipulated by the program.

2

Valid Identifier Names

3

▪ Begins with a letter or underscore symbol

▪ Consists of letters, digits, or underscores only

▪ Cannot be a C reserved word

▪ Case sensitive
⚫ Total ≠ total ≠ TOTAL

▪ Examples:
distance

milesPerHour

_voltage

goodChoice

high_level

MIN_RATE

Invalid Identifier Names

4

▪ Does not begin with a letter or underscore symbol or

▪ Contains other than letters, digits, and underscore or

▪ Is a C reserved word

▪ Examples
x-ray

2ndGrade

$amount

two&four

after five

return

Identifier Name Conventions
▪ Standard practice, not required by C language

⚫Normally lower case

⚫Constants upper case

▪ Multi-word

⚫Underscore between words or

⚫Camel case - each word after first is capitalized

distance

TAX_RATE

miles_per_hour

milesPerHour

CONSTANT

5

Variable

▪ Name is a valid identifier name

▪ Is a memory location where a value can be stored for
use by a program

▪ Value can change during program execution

▪ Can hold only one value

▪ Whenever a new value is placed into a variable, the
new value replaces the previous value.

6

Variables Names

▪ C: Must be a valid identifier name

▪ C: Variables must be declared with a name and a data type
before they can be used in a program

▪ Should not be the name of a standard function or variable

▪ Should be descriptive; the name should be reflective of
the variable’s use in the program

⚫For class, make that must be descriptive except subscripts

▪ Abbreviations should be commonly understood
⚫Ex. amt = amount

7

Variable/Named Constant
Declaration Syntax

8

optional_modifier data_type name_list;

▪ optional_modifier – type modifier

⚫Used to distinguish between signed and unsigned integers

➢ The default is signed

⚫Used to specify size (short, long)

⚫Used to specify named constant with const keyword

▪ data_type - specifies the type of value; allows the compiler to
know what operations are valid and how to represent a
particular value in memory

▪ name_list – program identifier names
▪ Examples:

int test-score;

const float TAX_RATE = 6.5;

Numeric Data Types

Whole numbers
(Integer)

Real numbers
(Floating-point)

short int long float

9

double long double

Data Types and Typical Sizes

10

Type Name Memory
Used

Size Range Precision Guarantee

short

(= short int)

2 bytes -32,768 to 32,767 N/A 16 bits

int 4 bytes -2,147,483,648 to
2,147,483,647

N/A 16 bits

long

(= long int)

8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

N/A 32 bits

float 4 bytes approximately

10-38 to 1038

7 digits 6 digits

double 8 bytes approximately

10-308 to 10308

15 digits 10 digits

long double 10 bytes approximately

10-4932 to 104932

19 digits 10 digits

Determining Data Type Size
▪ sizeof operator

⚫Returns size of operand in bytes

⚫Operand can be a data type

▪ Examples:

11

Characters

Type Name Memory
Used

Sample Size Range

char 1 byte All ASCII characters

ASCII = American Standard Code for Information Interchange

www.asciitable.com
12

http://www.asciitable.com/

Boolean Data Type
▪ Data type: _Bool

⚫Can only store 0 & 1

⚫Non zero value will be stored as 1

▪ Data type : bool
⚫<stdbool.h> defines bool, true, and false

▪ Any expression

⚫0 is false

⚫Non-zero is true

Basic Data Types: Table 4.1 p. 30

More types: Table A.4 p. 431
13

Variable Declaration Examples

14

Assigning Values to Variables

15

▪ Allocated variables without initialization have an
undefined value.

▪ We will use three methods
for assigning a value to a variable

⚫ Initial value
➢ In the declaration statement

⚫ Processing
➢ the assignment statement

⚫ Input
➢ scanf function

Initializing Variables
▪ Initializing variables in declaration statements

16

Assignment Operator =
▪ Assigns a value to a variable

▪ Binary operator (has two operands)

▪ Not the same as "equal to" in mathematics

▪ General Form:
l_value = r_value

⚫Most common examples of l_values (left-side)
➢ A simple variable

➢ A pointer dereference (in later chapters)

⚫r_values (right side) can be any valid expression

▪ Assignment expression has value of assignment
⚫Allows us to do something like

a = b = 0;
17

Example Assignment Statement
▪ Statement

▪ Means:
Evaluate the expression on the right and put the
result in the memory location named x

▪ If the value stored in y is 18,
then 23 will be stored in x

5 is literal value
or constant

18

Other Example Assignments
▪ Example:

l_value: distance
r_value: rate * time

▪ Other Examples:

19

Terminal Output
What can be output?

▪ Any data can be output to standard output (stdout),
the terminal display screen
⚫ Literal values
⚫ Variables
⚫ Constants
⚫ Expressions (which can include all of above)

▪ printf function:
The values of the variables are passed to printf

Go Tigers!

20

Syntax: printf function

21

printf(format_string, expression_list)

⚫Format_string specifies how expressions are to be
printed
➢ Contains placeholders for each expression

⚫ Placeholders begin with % and end with type

⚫Expression list is a list of zero or more expressions
separated by commas

⚫Returns number of characters printed

Typical Integer Placeholders
⚫ %d or %i - for integers, %l for long

⚫ %o - for integers in octal

⚫ %x – for integers in hexadecimal

22

Floating-point Placeholders

23

▪ %f, %e, %g – for float

⚫%f – displays value in a standard manner.

⚫%e – displays value in scientific notation.

⚫%g – causes printf to choose between %f and %e and to
automatically remove trailing zeroes.

▪ %lf – for double (the letter l, not the number 1)

Printing the value of a variable
⚫We can also include literal values that will appear in the

output.
➢ Use two %’s to print a single percent

\n is new line

24

Output Formatting Placeholder

25

%[flags][width][.precision][length]type

▪ Flags

0

- left-justify
+ generate a plus sign for positive values
puts a leading 0 on an octal value and 0x on

a hex value
pad a number with leading zeros

▪ Width
⚫Minimum number of characters to generate

▪ Precision
⚫Float: Round to specified decimal places

Output Formatting Placeholder

26

%[flags][width][.precision][length]type

▪ Length
l long

▪ Type
d, i decimal unsigned int
f float

x hexadecimal
o octal
% print a %

Output Formatting Placeholder
%[flags][width][.precision][length]type

▪ Examples:

Format codes w/printf:
http://en.wikipedia.org/wiki/Printf

[123] [+0123] [0173] [0x7b]

[123.456000] [123.46] [123%]

27

http://en.wikipedia.org/wiki/Printf

Return from printf
▪ A successful completion of printf returns the

number of characters printed. Consequently, for
the following:

if printf() is successful,
the value in printCount should be 13.

28

Literals / Literal Constants
▪ Literal – a name for a specific value

▪ Literals are often called constants

▪ Literals do not change value

29

Integer Constants
▪ Must not contain a decimal point

▪ Must not contain a comma

▪ Examples

-25

68

17895

. ,

30

http://upload.wikimedia.org/wikipedia/commons/c/c4/X_mark.gif
http://upload.wikimedia.org/wikipedia/commons/c/c4/X_mark.gif

Integer Constants
▪ May be expressed in several ways

decimal number

hexadecimal number

octal number

120

0x78

0170

ASCII encoded character 'x'

▪ All of the above represent the 8-bit byte
whose value is 01111000

31

Integer Constants

▪ Constants of different representations may be
intermixed in expressions:

⚫ Examples

32

Floating Point Constants
▪ Contain a decimal point.

▪ Must not contain a comma

▪ Can be expressed in two ways

decimal number: 23.8 4.0

scientific notation: 1.25E10

,

33

http://upload.wikimedia.org/wikipedia/commons/c/c4/X_mark.gif

char Constants

34

▪ Enclosed in apostrophes, single quotes

▪ Examples:

'a'

'A'

'$'

'2'

'+'

▪ Format specification: %c

String Constants

35

▪ Enclosed in quotes, double quotes

▪ Examples:
"Hello"

"The rain in Spain"

"x"

▪ Format specification/placeholder: %s

Terminal Input
▪ We can put data into variables from the standard

input device (stdin), the terminal keyboard

▪ When the computer gets data from the terminal, the
user is said to be acting interactively.

▪ Putting data into variables from the standard input
device is accomplished via the use of the scanf
function

36

▪ General format
scanf(format-string, address-list)

▪ Example

▪ The format string contains placeholders (one per
address) to be used in converting the input.

⚫ %d – Tells scanf that the program is expecting an ASCII
encoded integer number to be typed in, and that scanf
should convert the string of ASCII characters to internal
binary integer representation.

▪ Address-list: List of memory addresses
to hold the input values

Keyboard Input using scanf

& (address of operator)
is required

37

Addresses in scanf()
▪ Address-list must consist of addresses only

⚫ scanf() puts the value read into the memory address

⚫ The variable, age, is not an address; it refers to the
content of the memory that was assigned to age

▪ & (address of) operator causes the address of the
variable to be passed to scanf rather than the value in
the variable

▪ Format string should consist of a placeholder for each
address in the address-list

Format codes w/scanf:
http://en.wikipedia.org/wiki/Scanf

38

http://en.wikipedia.org/wiki/Scanf

Return from scanf()
▪ A successful completion of scanf() returns the number of

input values read. Returns EOF if hits end-of-file reading
one item.

Consequently, we could have

➢ If scanf() is successful,
the value in dataCount should be 2

⚫Spaces or new lines separate one value from another

39

Keyboard Input using scanf
▪ When using scanf for the terminal, it is best to first

issue a prompt

⚫Waits for user input, then stores the input value in the
memory space that was assigned to number.

⚫Note: ‘\n’ was omitted in printf

➢ Prompt ‘waits’ on same line for keyboard input.

⚫Including printf prompt before scanf maximizes
user-friendly input/output

40

scanf Example

41

Input using scanf()

▪ Instead of using scanf() twice,
we can use one scanf() to read both values.

42

Bad Data

▪ scanf stops at the first bad character.

▪ The value of y was never set. The value 4 is what was
left in the memory location named num2 the last time
the location was assigned a value.

43

Format Placeholder for Input

44

▪ When reading data, use the following format
specifiers / placeholders

%d - for integers, no octal or hexadecimal

%i – for integers allowing octal and hexadecimal

%f - for float

%lf – for double (the letter l, not the number 1)

▪ Do not specify width and other special printf options

Executable Code
▪ Expressions consist of legal combinations of

➢ constants

➢ variables

➢ operators

➢ function calls

45

Executable Code

46

▪ Operators

⚫Arithmetic:

⚫Relational:

⚫Logical:

⚫Bitwise:

⚫Shift:

+, -, *, /, %

==, !=, <, <=, >, >=

!, &&, ||

&, |, ~, ^

<<, >>

▪ See Expressions

⚫4th Edition: p. 443-450

⚫3rd Edition: p. 439-445

Arithmetic
▪ Rules of operator precedence (arithmetic ops):

▪ Average a + b + c / 3 ?

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are

nested, the expression in the innermost pair

is evaluated first. If there are several pairs

of parentheses “on the same level” (i.e.,

not nested), they are evaluated left to right.

*, /, or % Multiplication

Division

Modulus

Evaluated second. If there are several, they

are evaluated left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

47

Precedence Example

48

▪ Find the average of three variables a, b and c

Do not use:

Use:

a + b + c / 3

(a + b + c) / 3

The Division Operator
▪ Generates a result that is the same data type of the

largest operand used in the operation.

▪ Dividing two integers yields an integer result.
Fractional part is truncated.

5 / 2 → 2

17 / 5 → 3

➢Watch out: You will not be warned!

49

The Division Operator

50

▪ Dividing one or more decimal floating-point values
yields a decimal result.

5.0 / 2 → 2.5

4.0 / 2.0 → 2.0

17.0 / 5.0 → 3.4

The modulus operator: %
⚫% modulus operator returns the remainder

7 % 5 → 2

5 % 7 → 5

12 % 3 → 0

51

Evaluating Arithmetic Expressions
▪ Calculations are done ‘one-by-one’ using

precedence, left to right within same precedence

▪ 11 / 2 / 2.0 / 2 performs 3 separate divisions.
1. 11 / 2 → 5

2. 5 / 2.0 → 2.5

3. 2.5 / 2 → 1.25

52

Arithmetic Expressions

a/b

2x 2*x

(x-7)/(2 + 3*y)

b

math expression C expression

a

x - 7

2 + 3y

53

Evaluating Arithmetic Expressions

54

2 * (-3) -6

4 * 5 - 15 5

4 + 2 * 5 14

7 / 2 3

7 / 2.0 3.5

2 / 5 0

2.0 / 5.0 0.4

2 / 5 * 5 0

2.0 + 1.0 + 5 / 2 5.0

5 % 2 1

4 * 5/2 + 5 % 2 11

Data Assignment Rules
▪ In C, when a floating-point value is assigned to an

integer variable, the decimal portion is truncated.

▪ Only integer part ‘fits’, so that’s all that goes

▪ Called ‘implicit’ or ‘automatic type conversion’

55

Arithmetic Precision

56

▪ Precision of Calculations

▪ VERY important consideration!
▪ Expressions in C might not evaluate as you ‘expect’!

▪ ‘Highest-order operand’ determines type of
arithmetic ‘precision’ performed

▪ Common pitfall!

▪ Must examine each operation

Type Casting
▪ Casting for Variables

▪ Can add ‘.0’ to literals to force precision
arithmetic, but what about variables?

▪ We can’t use ‘myInt.0’!

▪ type cast – a way of changing a value of one type to a
value of another type.

▪ Consider the expression 1/2: In C this expression
evaluates to 0 because both operands are of type
integer.

57

Type Casting
1 / 2.0 gives a result of 0.5

Given the following:

result is 0, because of integer division

58

Type Casting
▪ To get floating point-division, you must do a type cast

from int to double (or another floating-point type),
such as the following:

⚫This is different from (double) (m/n)

Type cast operator

59

Type Casting

60

▪ Two types of casting

▪ Implicit – also called ‘Automatic’
▪ Done for you, automatically
17 / 5.5

This expression causes an ‘implicit type cast’ to take place,
casting the 17→ 17.0

▪ Explicit type conversion

▪ Programmer specifies conversion with cast operator

(double)17 / 5.5

(double) myInt / myDouble

Abreviated/Shortcut Assignment Operators

▪ Assignment expression abbreviations
a = a + 3; can be abbreviated as a += 3;

using the addition assignment operator

▪ Examples of other assignment operators include:

Assignment Shortcut

d = d - 4 d -= 4

e = e * 5 e *= 5

f = f / 3 f /= 3

g = g % 9 g %= 9

61

Shorthand Operators
▪ Increment & Decrement Operators

▪ Just short-hand notation

▪ Increment operator, ++
intVar++; is equivalent to

intVar = intVar + 1;

▪ Decrement operator, --
intVar--; is equivalent to

intVar = intVar – 1;

62

Shorthand Operators: Two Options
▪ Post-Increment

x++

▪ Uses current value of variable,
THEN increments it

▪ Pre-Increment
++x

▪ Increments variable first,
THEN uses new value

63

Shorthand Operators: Two Options

64

▪ ‘Use’ is defined as whatever ‘context’ variable is
currently in

▪ No difference if ‘alone’ in statement:
x++; and ++x; → identical result

Post-Increment in Action
▪ Post-Increment in Expressions:

▪ This code segment produces the output:
4
3

▪ Since post-increment was used

65

Pre-Increment in Action
▪ Now using pre-increment:

▪ This code segment produces the output:
6
3

▪ Because pre-increment was used

66

Programming in C

T H E E N D

67

	Diapositive 1 Programming in C
	Diapositive 2 Reserved Words and Identifiers
	Diapositive 3 Valid Identifier Names
	Diapositive 4 Invalid Identifier Names
	Diapositive 5 Identifier Name Conventions
	Diapositive 6 Variable
	Diapositive 7 Variables Names
	Diapositive 8 Variable/Named Constant Declaration Syntax
	Diapositive 9 Numeric Data Types
	Diapositive 10 Data Types and Typical Sizes
	Diapositive 11 Determining Data Type Size
	Diapositive 12 Characters
	Diapositive 13 Boolean Data Type
	Diapositive 14 Variable Declaration Examples
	Diapositive 15 Assigning Values to Variables
	Diapositive 16 Initializing Variables
	Diapositive 17 Assignment Operator =
	Diapositive 18 Example Assignment Statement
	Diapositive 19 Other Example Assignments
	Diapositive 20 Terminal Output
	Diapositive 21 Syntax: printf function
	Diapositive 22 Typical Integer Placeholders
	Diapositive 23 Floating-point Placeholders
	Diapositive 24 Printing the value of a variable
	Diapositive 25 Output Formatting Placeholder
	Diapositive 26 Output Formatting Placeholder
	Diapositive 27 Output Formatting Placeholder
	Diapositive 28 Return from printf
	Diapositive 29 Literals / Literal Constants
	Diapositive 30 Integer Constants
	Diapositive 31 Integer Constants
	Diapositive 32 Integer Constants
	Diapositive 33 Floating Point Constants
	Diapositive 34 char Constants
	Diapositive 35 String Constants
	Diapositive 36 Terminal Input
	Diapositive 37 Keyboard Input using scanf
	Diapositive 38 Addresses in scanf()
	Diapositive 39 Return from scanf()
	Diapositive 40 Keyboard Input using scanf
	Diapositive 41 scanf Example
	Diapositive 42 Input using scanf()
	Diapositive 43 Bad Data
	Diapositive 44 Format Placeholder for Input
	Diapositive 45 Executable Code
	Diapositive 46 Executable Code
	Diapositive 47 Arithmetic
	Diapositive 48 Precedence Example
	Diapositive 49 The Division Operator
	Diapositive 50 The Division Operator
	Diapositive 51 The modulus operator: %
	Diapositive 52 Evaluating Arithmetic Expressions
	Diapositive 53 Arithmetic Expressions
	Diapositive 54 Evaluating Arithmetic Expressions
	Diapositive 55 Data Assignment Rules
	Diapositive 56 Arithmetic Precision
	Diapositive 57 Type Casting
	Diapositive 58 Type Casting
	Diapositive 59 Type Casting
	Diapositive 60 Type Casting
	Diapositive 61 Abreviated/Shortcut Assignment Operators
	Diapositive 62 Shorthand Operators
	Diapositive 63 Shorthand Operators: Two Options
	Diapositive 64 Shorthand Operators: Two Options
	Diapositive 65 Post-Increment in Action
	Diapositive 66 Pre-Increment in Action
	Diapositive 67 Programming in C

