
Programming in C
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Looping Subtasks
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▪ We will examine some basic algorithms that use the 
while and if constructs. These subtasks include

⚫Reading unknown quantity of data

⚫Counting things

⚫Accumulating (summing) totals

⚫Searching for specific values

⚫Finding extreme values



Looping Subtasks
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▪ Examples will be based upon common models: 
Priming Read or Input Count

▪ The type of state that must be maintained by the program 
depends on the nature of the problem and can include:
⚫ indicator (true/false) variables

⚫ counter variables

⚫ sum variables

⚫ previous input value variables

Initialize program state

Read the first value (priming read) 

While (data exists)

update program state as needed

read next value(s)

Output final state

Initialize program state

While (input count OK)

update program state as needed 

Output final state



Counter-Controlled Repetition
▪ Number of items is known before loop

▪ Suppose the problem becomes:

Develop a class-averaging program that will process an 
arbitrary number of grade scores each time the program 
is run.
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Sentinel-Controlled Repetition
▪ One way to handle an arbitrary number of 

input values is to have the user enter a 
special value to indicate the end of input.

▪ Such a value is a sentinel value.
⚫Indicates end of valid input
⚫Loop ends when sentinel value is read
⚫Must choose a sentinel value that cannot be 

confused with a regular input value.
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▪ For sentinel-controlled loops
1. Read before the loop (priming read)

2. Test input to make sure it is not the sentinel value

3. Process

4. Read again at the bottom of the loop

▪ Use the following model:

read before entering the loop 

while (value_read != SENTINEL)

{

// process

…

read at bottom of loop

(before entering loop again)

}

Sentinel-Controlled Priming Read
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Sentinel-Controlled Loop 
using Priming Read

25
43
67
96
12
58
44
-1

7



Sentinel-Controlled Loop 
using Input Count
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Example of sentinel-controlled loop
25 43
67 96
12 58
44 99
-1
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Processing an arbitrary number of pairs

▪ Sometimes it is not possible 
to find a sentinel value

▪ We can use

⚫ End-of-input controlled loops

➢ Uses return from scanf

➢ Can be fooled by invalid data

⚫ End-of-file controlled loops

➢ Uses function feof
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End of Data
▪ Hardware & Software 

End-Of-File

⚫Keyboard
➢ Ctrl-d (Does not work on Mac!)

25 43
67 96
12 58
44 99
Ctrl-d The End Is Here!
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Example: End-of-input controlled loop 
using items read & priming read
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Example: End-of-input controlled loop 
using just items read
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Example: End-of-input controlled loop 
using number of items read

25 43
67 96
12 58
44 99
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Detecting End-of-File
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▪ Function: feof
⚫Syntax: feof(file-pointer)

➢ Returns true or false

➢ Standard input: feof(stdin)

⚫Use in a while loop -
while (!feof(stdin))



Example: End-of-file controlled loop

End of File
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Example: end-of-file controlled loop
25 43
67 96
12 58
44 99

End of File
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Looping Subtask: Counting

▪ Example: Find the number of scores in a file

⚫Here the program state that must be maintained
is a counter that maintains the number of scores
that have been read so far.

▪ Steps

⚫Declare an int variable for the count

⚫Initialize the count to zero

⚫Increment the count
in the body of the loop
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Looping Subtask: Counting
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Looping Subtask: Counting
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Looping Subtask: Counting
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Looping Subtask: Counting
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Counting Example
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▪ What if we want to print the number of passing scores 
(scores >= 70)?

⚫We need a mechanism that allows us to count only if the 
score is greater than or equal to 70

⚫Use if stmt



Looping Subtask: Counting
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Counting Example
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▪ What if we want to print the number of passing scores 
(scores >= 70) and the number of failing scores?

⚫Use if -else



Looping Subtask: Counting
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Looping Subtask: 
Accumulation (Summing)

▪ The state that must be maintained is the sum of all 
values that have been seen so far.

⚫Declare a variable to hold the sum (accumulator)

⚫Initialize the sum to zero

⚫In the body of the loop, add the new value to the sum
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Accumulating Example
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Counting & Accumulating Example
▪ Problem

⚫A class of ten students took a quiz.

⚫The grades (integers in the range 0 to 100) for this quiz 
are available to you.

⚫Determine the class average on the quiz.

▪ Hint: Requirements for an average
⚫Count of number of items
⚫Sum of the items
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Counting & Accumulating Example
▪ Pseudocode:

Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten 
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten 

Print the class average
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Looping Subtasks: Searching
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▪ Need a variable to indicate whether or not the program 
has encountered the target value, call it found

▪ Initialize found to 0 (false)

▪ Each time through the loop, check to see if the current 
value equals the target value

⚫If so, assign 1 to found



Searching Exercise
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Write a C program that

1. Reads a target score at the beginning of the file

2. Reads a set of scores and determines if the target 
score is in the set of scores

3. If found prints
Target ## was found

otherwise prints
Target ## was not found



Looping Subtasks: Searching
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Searching Improvement
▪ Stop searching if target has been found
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96 is the max
12 is the min

Looping Subtasks: Finding Extremes
▪ Finding Extreme Values (e.g. maximum, minimum)

⚫Need a variable (such as maxValue) to remember the 
most extreme value encountered so far
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Looping Subtasks: Finding Extremes
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▪ Finding Extreme Values (e.g. maximum, minimum)
⚫Initialize the maxValue (minValue) to some value

➢ maxValue: Lower value than any data

➢ minValue: Higher value than any data

➢ Or for both: The first data value

⚫For each data item
➢ Compare the current value to maxValue (or minValue)

➢ If the current value is > maxValue (< minValue), replace maxValue 
(minValue) with the current value.



Extremes Exercise
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Write a C program that

1. Reads a set of scores from a file

2. Determines and prints the maximum score



Looping Subtasks: Finding Extremes
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Programming in C

T H E E N D
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