
Programming in C

1



Looping Subtasks

2

▪ We will examine some basic algorithms that use the 
while and if constructs. These subtasks include

⚫Reading unknown quantity of data

⚫Counting things

⚫Accumulating (summing) totals

⚫Searching for specific values

⚫Finding extreme values



Looping Subtasks

3

▪ Examples will be based upon common models: 
Priming Read or Input Count

▪ The type of state that must be maintained by the program 
depends on the nature of the problem and can include:
⚫ indicator (true/false) variables

⚫ counter variables

⚫ sum variables

⚫ previous input value variables

Initialize program state

Read the first value (priming read) 

While (data exists)

update program state as needed

read next value(s)

Output final state

Initialize program state

While (input count OK)

update program state as needed 

Output final state



Counter-Controlled Repetition
▪ Number of items is known before loop

▪ Suppose the problem becomes:

Develop a class-averaging program that will process an 
arbitrary number of grade scores each time the program 
is run.

4



Sentinel-Controlled Repetition
▪ One way to handle an arbitrary number of 

input values is to have the user enter a 
special value to indicate the end of input.

▪ Such a value is a sentinel value.
⚫Indicates end of valid input
⚫Loop ends when sentinel value is read
⚫Must choose a sentinel value that cannot be 

confused with a regular input value.

25
43
67
96
12
58
44
-1

5



▪ For sentinel-controlled loops
1. Read before the loop (priming read)

2. Test input to make sure it is not the sentinel value

3. Process

4. Read again at the bottom of the loop

▪ Use the following model:

read before entering the loop 

while (value_read != SENTINEL)

{

// process

…

read at bottom of loop

(before entering loop again)

}

Sentinel-Controlled Priming Read

6



Sentinel-Controlled Loop 
using Priming Read

25
43
67
96
12
58
44
-1

7



Sentinel-Controlled Loop 
using Input Count

25
43
67
96
12
58
44
-1

8



Example of sentinel-controlled loop
25 43
67 96
12 58
44 99
-1

9



Processing an arbitrary number of pairs

▪ Sometimes it is not possible 
to find a sentinel value

▪ We can use

⚫ End-of-input controlled loops

➢ Uses return from scanf

➢ Can be fooled by invalid data

⚫ End-of-file controlled loops

➢ Uses function feof

10



End of Data
▪ Hardware & Software 

End-Of-File

⚫Keyboard
➢ Ctrl-d (Does not work on Mac!)

25 43
67 96
12 58
44 99
Ctrl-d The End Is Here!

11



Example: End-of-input controlled loop 
using items read & priming read

25
43
67
96
12
58
44

12



Example: End-of-input controlled loop 
using just items read

25
43
67
96
12
58
44

13



Example: End-of-input controlled loop 
using number of items read

25 43
67 96
12 58
44 99

14



Detecting End-of-File

15

▪ Function: feof
⚫Syntax: feof(file-pointer)

➢ Returns true or false

➢ Standard input: feof(stdin)

⚫Use in a while loop -
while (!feof(stdin))



Example: End-of-file controlled loop

End of File

25
43
67
96
12
58
44

16



Example: end-of-file controlled loop
25 43
67 96
12 58
44 99

End of File

17



Looping Subtask: Counting

▪ Example: Find the number of scores in a file

⚫Here the program state that must be maintained
is a counter that maintains the number of scores
that have been read so far.

▪ Steps

⚫Declare an int variable for the count

⚫Initialize the count to zero

⚫Increment the count
in the body of the loop

18



Looping Subtask: Counting

19



Looping Subtask: Counting

20



Looping Subtask: Counting

21



Looping Subtask: Counting

22



Counting Example

23

▪ What if we want to print the number of passing scores 
(scores >= 70)?

⚫We need a mechanism that allows us to count only if the 
score is greater than or equal to 70

⚫Use if stmt



Looping Subtask: Counting

24



Counting Example

25

▪ What if we want to print the number of passing scores 
(scores >= 70) and the number of failing scores?

⚫Use if -else



Looping Subtask: Counting

26



Looping Subtask: 
Accumulation (Summing)

▪ The state that must be maintained is the sum of all 
values that have been seen so far.

⚫Declare a variable to hold the sum (accumulator)

⚫Initialize the sum to zero

⚫In the body of the loop, add the new value to the sum

27



Accumulating Example

28



Counting & Accumulating Example
▪ Problem

⚫A class of ten students took a quiz.

⚫The grades (integers in the range 0 to 100) for this quiz 
are available to you.

⚫Determine the class average on the quiz.

▪ Hint: Requirements for an average
⚫Count of number of items
⚫Sum of the items

29



Counting & Accumulating Example
▪ Pseudocode:

Set total to zero

Set grade counter to one

While grade counter is less than or equal to ten 
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten 

Print the class average

30



Looping Subtasks: Searching

31

▪ Need a variable to indicate whether or not the program 
has encountered the target value, call it found

▪ Initialize found to 0 (false)

▪ Each time through the loop, check to see if the current 
value equals the target value

⚫If so, assign 1 to found



Searching Exercise

32

Write a C program that

1. Reads a target score at the beginning of the file

2. Reads a set of scores and determines if the target 
score is in the set of scores

3. If found prints
Target ## was found

otherwise prints
Target ## was not found



Looping Subtasks: Searching

33



Searching Improvement
▪ Stop searching if target has been found

34



96 is the max
12 is the min

Looping Subtasks: Finding Extremes
▪ Finding Extreme Values (e.g. maximum, minimum)

⚫Need a variable (such as maxValue) to remember the 
most extreme value encountered so far

25
43
67
96
12
58
44

35



Looping Subtasks: Finding Extremes

36

▪ Finding Extreme Values (e.g. maximum, minimum)
⚫Initialize the maxValue (minValue) to some value

➢ maxValue: Lower value than any data

➢ minValue: Higher value than any data

➢ Or for both: The first data value

⚫For each data item
➢ Compare the current value to maxValue (or minValue)

➢ If the current value is > maxValue (< minValue), replace maxValue 
(minValue) with the current value.



Extremes Exercise

37

Write a C program that

1. Reads a set of scores from a file

2. Determines and prints the maximum score



Looping Subtasks: Finding Extremes

38



Programming in C

T H E E N D

39


	Diapositive 1 Programming in C
	Diapositive 2 Looping Subtasks
	Diapositive 3 Looping Subtasks
	Diapositive 4 Counter-Controlled Repetition
	Diapositive 5 Sentinel-Controlled Repetition
	Diapositive 6 Sentinel-Controlled Priming Read
	Diapositive 7 Sentinel-Controlled Loop  using Priming Read
	Diapositive 8 Sentinel-Controlled Loop  using Input Count
	Diapositive 9 Example of sentinel-controlled loop
	Diapositive 10 Processing an arbitrary number of pairs
	Diapositive 11 End of Data
	Diapositive 12 Example: End-of-input controlled loop  using items read & priming read
	Diapositive 13 Example: End-of-input controlled loop  using just items read
	Diapositive 14 Example: End-of-input controlled loop  using number of items read
	Diapositive 15 Detecting End-of-File
	Diapositive 16 Example: End-of-file controlled loop
	Diapositive 17 Example: end-of-file controlled loop
	Diapositive 18 Looping Subtask: Counting
	Diapositive 19 Looping Subtask: Counting
	Diapositive 20 Looping Subtask: Counting
	Diapositive 21 Looping Subtask: Counting
	Diapositive 22 Looping Subtask: Counting
	Diapositive 23 Counting Example
	Diapositive 24 Looping Subtask: Counting
	Diapositive 25 Counting Example
	Diapositive 26 Looping Subtask: Counting
	Diapositive 27 Looping Subtask:  Accumulation (Summing)
	Diapositive 28 Accumulating Example
	Diapositive 29 Counting & Accumulating Example
	Diapositive 30 Counting & Accumulating Example
	Diapositive 31 Looping Subtasks: Searching
	Diapositive 32 Searching Exercise
	Diapositive 33 Looping Subtasks: Searching
	Diapositive 34 Searching Improvement
	Diapositive 35 Looping Subtasks: Finding Extremes
	Diapositive 36 Looping Subtasks: Finding Extremes
	Diapositive 37 Extremes Exercise
	Diapositive 38 Looping Subtasks: Finding Extremes
	Diapositive 39 Programming in C

