Programming in C

Programmer-Defined Fumctions

Level 3 | Level 3

Programmer-Defined Functions

Modularize with building blocks of programs

® Divide and Conquer
Construct a program from smaller pieces or components
Place smaller pieces into functions
Pieces are more manageable than one big program
Makes other functions smaller
Pieces can be independently implemented and tested

Programmer-Defined Functions

Readability
® Function name should indicate operations performed

Reuse
® Functions may be used multiple times in same program
® Functions may be used in other programs

[Tr: Fund‘ ons

G
i

<

Components of Function Use

Three steps to implementing functions
1. Function declaration/prototype

If not defined before use 1.2.3
2. Function definition

3. Function call

Either prototype or definition must come first

Prototype and/or definitions can go in either
® Same file as main()

® Separate file so other programs can also use it

H#include

1. Function Declaration/Prototype

An ‘informational’ declaration for compiler
Tells compiler how to interpret calls
Syntax:

<return type> FnName (<formal-parameter-list>);
Formal parameter syntax:

<data_ type> Parameter-Name

Example:

char grade (int score);

Function Declaration/Prototype

Placed before any calls
® Generally above all functions in global space
® May be placed in declaration space of calling function

Example

#include <=tdioc.h>

'/ Function prototypes
double total cost(int guantity, double unit cost);

int main{() {

Alternative Function Declaration

Function declaration is 'information' for compiler, so

® Compiler only needs to know:
Return type
Function name
Parameter list
Formal parameter names not needed but help readability

Example

#¥include <stdio.h>

' Function prototypes
doukble total cost(int, double);

int main() {

2. Function Definition

Actual implementation/code for what function does
®Just like implementing function main()
® General format — header & basic block:

<return-type> fn-name (parameter-list) . header

basic block

Example:

double total cost(int guantity, double unit cost) {
con=st double TAXEATE = 0.05;
double sub total;
sub total = guantity ¥ unit cost;
return (sub total + sub total * TAXRATE);

Return Statements

Syntax: return return-value-expression

Two actions
® Sets return value
® Transfers control back to 'calling' function

Good programming & course requirement:
® One return per function
® Return is last statement

double total cost(int guantity, double unit cost) {
const double TAXEATE = 0.05;
double sub total;
sub total = guantity * unit cost;

return (sub total + sub total * TAXEATE):;

3. Function Call

Using function name transfers control to function
1. Values are passed through parameters

2. Statements within function are executed

3. Control continues after the call

For value-returning functions, either
® Store the value for later use

bill = total cost (number, price):;
® Use the value returned without storing

printf ("Cost i=s %f'\n", total cost (number, price)):;

® Throw away return value

total cost (number, price);

Parameters (Arguments)

Formal parameters/arguments

®|n function declaration

® In function definition's header

®'Placeholders' for data sent in

® 'Variable name' used to refer to data in definition of
function

Actual parameters/arguments

@ n function call

Parameter vs. Argument

Names used interchangeably

Technically parameter is 'formal’ piece
while argument is 'actual’ piece

{ Parameter! Argument! J

Functions Calling Functions

We're already doing this!
® main() IS a function calling printf!

Only requirement:
® Function's declaration or definition must appear first

Common for functions to call many other functions
® Function can call itself > Recursion

Declaring Void Functions

Similar to functions returning a value
® Return type specified as 'void'

Example prototype:

vold showResults (double fDegrees, double cDegrees):;

® Return-type is 'void'

Declaring Void Functions

Nothing is returned
@ \Void functions cannot have return statement with an
expression
Will return at end of function

® Non-void functions must have return statement with an
expression

Example definition:

vold showBResults (double fDegrees=zs, doubkle cDegreesz) {
printf("%.2f degree=z fahrenheit equals ", fDegrees):;
printf ("%.2f degrees celsius‘\n", cDegrees):

Calling Void Functions

From some other function, like main():

showResults (degreesF, degreesC):;
showBesult=s(32.5, 0.3):
Cannot be used where a value is required

® Cannot be assigned to a variable,
since no value returned

Function documentation

Used to aid in program maintenance

Comments at non-main definition header
® Purpose of function

® Parameters
® Return
® Class standard example:

double interest (double balance, double rate):;
ff Calculates the interest charge on an account balance

J/ Parameters: bhalance - non-negative account balance
£ rate - interest rate percentage
Jf Return: calculated interest charge

main(): ‘Special’ MAIN STREET

Recall: main() IS a function
'Special’
® |t is the first function executed

® Called by operating system or run-time system

® Can return value to operating system
Value can be tested in command scripts

Tradition holds it should return an int
® Zero indicates normal ending of program

™~

Scope of Identifier Names

Region of a program where identifier is visible
® Begins at definition within block
® Ends at end of block

Local variables
® Name given to variables defined within function block

® Can have different local variables with same name
declared in different functions

® Cannot have duplicate local names within a function

Scope Rules

Local variables preferred
® Maintain individual control over data
® Need to know basis (Hidden)

® Functions should declare whatever local data
needed to 'do their job'

Global Scope

Names declared 'outside' function bodies
® Global to all functions in that file

Global declarations typical for constants:
® Declare globally so all functions have scope, can use

#include <=tdioc.h>
const double TAH_RATE = 0.05;

int main{() {1

Global Constants and Global Variables

Global variables?

® Possible, but SELDOM-USED

® Better alternative is to use parameters

® Dangerous: no control over usage!

® We do not use global variables in this class!

Block Scope

Declare data inside nested blocks

® Has 'block-scope’
Note: All function definitions are blocks!

if (amount > 5) {
int add imn;
add in = prior amount * .03;
amount += add in;

Lifetime &7
‘\\\/\ AT § X
How long does it last b et
ARR AN

® Allocation = Deallocation
Normally variables are allocated when defined
Normally variables are deallocated at the end of block

double total cost(int guantity, double unit cost) {
const double TAXRATE = 0.05; J,/ TAXEALATE allocated
double sub total; /4 sub total allocated
sub total = guantity * unit cost;
return (sub total + sub total * TAXERATE);
'/ TAXBEATE and sub total deallocated

Static & Lifetime

Variable definition modifier keyword: static
Static variables are only allocated once
Static variables are not deallocated until program ends

= SRR

|
static int count = 0; ﬁ

// count will remain allocated and keep its wvalue >

count++;

recurn count;
\

~—

R0 R D

Programming in C

8 Programmer-Defined Functions

THE END

	Diapositive 1 Programming in C
	Diapositive 2 Programmer-Defined Functions
	Diapositive 3 Programmer-Defined Functions
	Diapositive 4 Components of Function Use
	Diapositive 5 1. Function Declaration/Prototype
	Diapositive 6 Function Declaration/Prototype
	Diapositive 7 Alternative Function Declaration
	Diapositive 8 2. Function Definition
	Diapositive 9 Return Statements
	Diapositive 10 3. Function Call
	Diapositive 11 Parameters (Arguments)
	Diapositive 12 Parameter vs. Argument
	Diapositive 13 Functions Calling Functions
	Diapositive 14 Declaring Void Functions
	Diapositive 15 Declaring Void Functions
	Diapositive 16 Calling Void Functions
	Diapositive 17 Function documentation
	Diapositive 18 main(): ‘Special’
	Diapositive 19 Scope of Identifier Names
	Diapositive 20 Scope Rules
	Diapositive 21 Global Scope
	Diapositive 22 Global Constants and Global Variables
	Diapositive 23 Block Scope
	Diapositive 24 Lifetime
	Diapositive 25 Static & Lifetime
	Diapositive 26 Programming in C

