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Programmer-Defined Functions
▪ Modularize with building blocks of programs

⚫Divide and Conquer
➢ Construct a program from smaller pieces or components

⚫ Place smaller pieces into functions

➢ Pieces are more manageable than one big program

⚫ Makes other functions smaller

⚫ Pieces can be independently implemented and tested
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Programmer-Defined Functions
▪ Readability

⚫Function name should indicate operations performed

▪ Reuse

⚫Functions may be used multiple times in same program

⚫Functions may be used in other programs
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Components of Function Use
▪ Three steps to implementing functions

1. Function declaration/prototype

➢ If not defined before use

2. Function definition

3. Function call

➢ Either prototype or definition must come first

▪ Prototype and/or definitions can go in either

⚫Same file as main()

⚫Separate file so other programs can also use it

➢ #include
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1. Function Declaration/Prototype
▪ An ‘informational’ declaration for compiler

▪ Tells compiler how to interpret calls

▪ Syntax:

<return_type> FnName(<formal-parameter-list>);

▪ Formal parameter syntax:

<data_type> Parameter-Name

▪ Example:
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Function Declaration/Prototype
▪ Placed before any calls

⚫Generally above all functions in global space

⚫May be placed in declaration space of calling function

▪ Example

6



Alternative Function Declaration
▪ Function declaration is 'information' for compiler, so

⚫Compiler only needs to know:
➢ Return type

➢ Function name

➢ Parameter list

⚫ Formal parameter names not needed but help readability

▪ Example
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2. Function Definition
▪ Actual implementation/code for what function does

⚫Just like implementing function main()

⚫General format – header & basic block:

<return-type> fn-name (parameter-list) 

basic block

▪ Example:

header
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Return Statements
▪ Syntax: return return-value-expression

▪ Two actions

⚫Sets return value

⚫Transfers control back to 'calling' function

▪ Good programming & course requirement:

⚫One return per function

⚫Return is last statement
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3. Function Call
▪ Using function name transfers control to function

1. Values are passed through parameters

2. Statements within function are executed

3. Control continues after the call

▪ For value-returning functions, either

⚫Store the value for later use

⚫Use the value returned without storing

⚫Throw away return value
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Parameters (Arguments)
▪ Formal parameters/arguments

⚫In function declaration

⚫In function definition's header

⚫'Placeholders' for data sent in

⚫'Variable name' used to refer to data in definition of
function

▪ Actual parameters/arguments

⚫In function call
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Parameter vs. Argument
▪ Names used interchangeably

▪ Technically parameter is 'formal' piece 
while argument is 'actual' piece

Argument!Parameter!
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Functions Calling Functions
▪ We're already doing this!

⚫main() IS a function calling printf!

▪ Only requirement:

⚫Function's declaration or definition must appear first

▪ Common for functions to call many other functions

⚫Function can call itself → Recursion
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Declaring Void Functions
▪ Similar to functions returning a value

⚫Return type specified as 'void'

▪ Example prototype:

⚫Return-type is 'void'
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Declaring Void Functions
▪ Nothing is returned

⚫Void functions cannot have return statement with an 
expression
➢ Will return at end of function

⚫Non-void functions must have return statement with an 
expression

▪ Example definition:
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Calling Void Functions
▪ From some other function, like main():

▪ Cannot be used where a value is required

⚫Cannot be assigned to a variable,
since no value returned
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Function documentation
▪ Used to aid in program maintenance

▪ Comments at non-main definition header

⚫Purpose of function

⚫Parameters

⚫Return

⚫Class standard example:
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main(): ‘Special’
▪ Recall: main() IS a function

▪ 'Special'

⚫It is the first function executed

⚫Called by operating system or run-time system

⚫Can return value to operating system
➢ Value can be tested in command scripts

▪ Tradition holds it should return an int

⚫Zero indicates normal ending of program
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Scope of Identifier Names
▪ Region of a program where identifier is visible

⚫Begins at definition within block

⚫Ends at end of block

▪ Local variables

⚫Name given to variables defined within function block

⚫Can have different local variables with same name 
declared in different functions

⚫Cannot have duplicate local names within a function
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Scope Rules
▪ Local variables preferred

⚫Maintain individual control over data

⚫Need to know basis (Hidden)

⚫Functions should declare whatever local data 
needed to 'do their job'
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Global Scope
▪ Names declared 'outside' function bodies

⚫Global to all functions in that file

▪ Global declarations typical for constants:

⚫Declare globally so all functions have scope, can use
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Global Constants and Global Variables

▪ Global variables?

⚫Possible, but SELDOM-USED

⚫Better alternative is to use parameters

⚫Dangerous: no control over usage!

⚫We do not use global variables in this class!
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Block Scope
▪ Declare data inside nested blocks

⚫Has 'block-scope'
➢ Note: All function definitions are blocks!
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Lifetime
▪ How long does it last

⚫Allocation Deallocation

▪ Normally variables are allocated when defined

▪ Normally variables are deallocated at the end of block
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Static & Lifetime
▪ Variable definition modifier keyword: static

▪ Static variables are only allocated once

▪ Static variables are not deallocated until program ends
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Programming in C

T H E E N D
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