
Programming in C

main

Level 2 Level 2

Level 3 Level 3

Level 2

1



Programmer-Defined Functions
▪ Modularize with building blocks of programs

⚫Divide and Conquer
➢ Construct a program from smaller pieces or components

⚫ Place smaller pieces into functions

➢ Pieces are more manageable than one big program

⚫ Makes other functions smaller

⚫ Pieces can be independently implemented and tested

2



Programmer-Defined Functions
▪ Readability

⚫Function name should indicate operations performed

▪ Reuse

⚫Functions may be used multiple times in same program

⚫Functions may be used in other programs

3



Components of Function Use
▪ Three steps to implementing functions

1. Function declaration/prototype

➢ If not defined before use

2. Function definition

3. Function call

➢ Either prototype or definition must come first

▪ Prototype and/or definitions can go in either

⚫Same file as main()

⚫Separate file so other programs can also use it

➢ #include

4



1. Function Declaration/Prototype
▪ An ‘informational’ declaration for compiler

▪ Tells compiler how to interpret calls

▪ Syntax:

<return_type> FnName(<formal-parameter-list>);

▪ Formal parameter syntax:

<data_type> Parameter-Name

▪ Example:

5



Function Declaration/Prototype
▪ Placed before any calls

⚫Generally above all functions in global space

⚫May be placed in declaration space of calling function

▪ Example

6



Alternative Function Declaration
▪ Function declaration is 'information' for compiler, so

⚫Compiler only needs to know:
➢ Return type

➢ Function name

➢ Parameter list

⚫ Formal parameter names not needed but help readability

▪ Example

7



2. Function Definition
▪ Actual implementation/code for what function does

⚫Just like implementing function main()

⚫General format – header & basic block:

<return-type> fn-name (parameter-list) 

basic block

▪ Example:

header

8



Return Statements
▪ Syntax: return return-value-expression

▪ Two actions

⚫Sets return value

⚫Transfers control back to 'calling' function

▪ Good programming & course requirement:

⚫One return per function

⚫Return is last statement

9



3. Function Call
▪ Using function name transfers control to function

1. Values are passed through parameters

2. Statements within function are executed

3. Control continues after the call

▪ For value-returning functions, either

⚫Store the value for later use

⚫Use the value returned without storing

⚫Throw away return value

10



Parameters (Arguments)
▪ Formal parameters/arguments

⚫In function declaration

⚫In function definition's header

⚫'Placeholders' for data sent in

⚫'Variable name' used to refer to data in definition of
function

▪ Actual parameters/arguments

⚫In function call

11



Parameter vs. Argument
▪ Names used interchangeably

▪ Technically parameter is 'formal' piece 
while argument is 'actual' piece

Argument!Parameter!

12



Functions Calling Functions
▪ We're already doing this!

⚫main() IS a function calling printf!

▪ Only requirement:

⚫Function's declaration or definition must appear first

▪ Common for functions to call many other functions

⚫Function can call itself → Recursion

13



Declaring Void Functions
▪ Similar to functions returning a value

⚫Return type specified as 'void'

▪ Example prototype:

⚫Return-type is 'void'

14



Declaring Void Functions
▪ Nothing is returned

⚫Void functions cannot have return statement with an 
expression
➢ Will return at end of function

⚫Non-void functions must have return statement with an 
expression

▪ Example definition:

15



Calling Void Functions
▪ From some other function, like main():

▪ Cannot be used where a value is required

⚫Cannot be assigned to a variable,
since no value returned

16



Function documentation
▪ Used to aid in program maintenance

▪ Comments at non-main definition header

⚫Purpose of function

⚫Parameters

⚫Return

⚫Class standard example:

17



main(): ‘Special’
▪ Recall: main() IS a function

▪ 'Special'

⚫It is the first function executed

⚫Called by operating system or run-time system

⚫Can return value to operating system
➢ Value can be tested in command scripts

▪ Tradition holds it should return an int

⚫Zero indicates normal ending of program

18



Scope of Identifier Names
▪ Region of a program where identifier is visible

⚫Begins at definition within block

⚫Ends at end of block

▪ Local variables

⚫Name given to variables defined within function block

⚫Can have different local variables with same name 
declared in different functions

⚫Cannot have duplicate local names within a function

19



Scope Rules
▪ Local variables preferred

⚫Maintain individual control over data

⚫Need to know basis (Hidden)

⚫Functions should declare whatever local data 
needed to 'do their job'

20



Global Scope
▪ Names declared 'outside' function bodies

⚫Global to all functions in that file

▪ Global declarations typical for constants:

⚫Declare globally so all functions have scope, can use

21



Global Constants and Global Variables

▪ Global variables?

⚫Possible, but SELDOM-USED

⚫Better alternative is to use parameters

⚫Dangerous: no control over usage!

⚫We do not use global variables in this class!

22



Block Scope
▪ Declare data inside nested blocks

⚫Has 'block-scope'
➢ Note: All function definitions are blocks!

23



Lifetime
▪ How long does it last

⚫Allocation Deallocation

▪ Normally variables are allocated when defined

▪ Normally variables are deallocated at the end of block

24



Static & Lifetime
▪ Variable definition modifier keyword: static

▪ Static variables are only allocated once

▪ Static variables are not deallocated until program ends

25



Programming in C

T H E E N D

26


	Diapositive 1 Programming in C
	Diapositive 2 Programmer-Defined Functions
	Diapositive 3 Programmer-Defined Functions
	Diapositive 4 Components of Function Use
	Diapositive 5 1. Function Declaration/Prototype
	Diapositive 6 Function Declaration/Prototype
	Diapositive 7 Alternative Function Declaration
	Diapositive 8 2. Function Definition
	Diapositive 9 Return Statements
	Diapositive 10 3. Function Call
	Diapositive 11 Parameters (Arguments)
	Diapositive 12 Parameter vs. Argument
	Diapositive 13 Functions Calling Functions
	Diapositive 14 Declaring Void Functions
	Diapositive 15 Declaring Void Functions
	Diapositive 16 Calling Void Functions
	Diapositive 17 Function documentation
	Diapositive 18 main(): ‘Special’
	Diapositive 19 Scope of Identifier Names
	Diapositive 20 Scope Rules
	Diapositive 21 Global Scope
	Diapositive 22 Global Constants and Global Variables
	Diapositive 23 Block Scope
	Diapositive 24 Lifetime
	Diapositive 25 Static & Lifetime
	Diapositive 26 Programming in C

