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Structures
▪ A structure can be used to define a new data type that 

combines different types into a single (compound) data 
type
⚫Definition is similar to a template or blueprint
⚫Composed of members of previously defined types

▪ Structures must defined before use

▪ C has three different methods to define a structure
⚫variable structures

⚫ tagged structures
⚫ type-defined structures
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1) Struct variable
▪ A variable structure definition defines a struct variable

Member names

Variable name DON’T FORGET THE SEMICOLON
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▪ A tagged structure definition defines a type

▪ We can use the tag to define variables, parameters, and return types

▪ Variable definitions:

⚫ Variables point1, point2, and point3 all have members x and y.

2) Tagged Structure

Member names

Structure tag

DON’T FORGET THE SEMICOLON
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▪ A typed-defined structure allows the definition of variables without

the struct keyword.

▪ We can use the tag to define variables, parameters, and return types.

▪ Variable definition:

⚫ Variable emp has members ssn, empType, and salary.

3) Typedef Structure

Member namesNew type name DON’T FORGET THE SEMICOLON
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Dot Operator (.)
▪ Used to access member variables
⚫Syntax:
structure_variable_name.member_name

⚫These variables may be used like any other variables
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Nested Structures
▪ A member that is of a structure type is nested
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Initializing Structures
▪ A structure may be initialized at the time it is declared

▪ Order is essential
⚫The sequence of values is used to initialize the 

successive variables in the struct

▪ It is an error to have more initializers than members

▪ If fewer initializers than members, the initializers 
provided are used to initialize the data members
⚫The remainder are initialized to 0 for primitive types
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Dynamic Allocation of Structures
▪ The sizeof() operator should always be used in 

dynamic allocation of storage for structured data 
types and in reading and writing structured data types
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Arrays Within Structures
▪ A member of a structure may be an array
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Arrays of Structures
▪ We can also create an array of structure types
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Arrays of Structures Containing Arrays
▪ We can also create an array of structures that contain 

arrays
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Structures as Parameters
▪ A struct, like an int, may be passed to a function

▪ The process works just like passing an int, in that:
⚫The complete structure is copied to the stack
⚫Called function is unable to modify 

the caller's copy of the variable
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Structures as Parameters
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Structures as Parameters
▪ Disadvantage of passing structures by value: 

Copying large structures onto stack

⚫Is inefficient

⚫May cause stack overflow
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Structure Pointers as Parameters
▪ More efficient: Pass the address of the struct

▪ Passing an address requires that only a single word be 
pushed on the stack, no matter the size
⚫Called function can then modify the structure.
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Const Struct Parameter
▪ What if you do not want the recipient to be able to 

modify the structure?
⚫Use the const modifier
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Return Structure

▪ Scalar values (int, float, etc) are efficiently returned in 
CPU registers

▪ Historically, the structure assignments and the return 
of structures was not supported in C

▪ But, the return of pointers (addresses), including 
pointers to structures, has always been supported
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Function Return Structure Values

▪ It is possible for a function to return a structure.

▪ This facility depends upon the structure assignment 
mechanisms which copies one complete structure to 
another.
⚫Avoids the unsafe condition associated with

returning a pointer, but
⚫Incurs the possibly extreme penalty of 

copying a very large structure
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Function Return Structure Values
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Arrays as Parameters & Return

▪ Array’s address is passed as parameter

⚫Simulates passing by reference

▪ Embedding array in structure

⚫The only way to pass an array by value 
is to embed it in a structure

⚫The only way to return an array is 
to embed it in a structure

⚫Both involve copying
➢ Beware of size
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Programming in C

T H E E N D
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