
Programming in C

1



Structures
▪ A structure can be used to define a new data type that 

combines different types into a single (compound) data 
type
⚫Definition is similar to a template or blueprint
⚫Composed of members of previously defined types

▪ Structures must defined before use

▪ C has three different methods to define a structure
⚫variable structures

⚫ tagged structures
⚫ type-defined structures

2



1) Struct variable
▪ A variable structure definition defines a struct variable

Member names

Variable name DON’T FORGET THE SEMICOLON

3



▪ A tagged structure definition defines a type

▪ We can use the tag to define variables, parameters, and return types

▪ Variable definitions:

⚫ Variables point1, point2, and point3 all have members x and y.

2) Tagged Structure

Member names

Structure tag

DON’T FORGET THE SEMICOLON

4



▪ A typed-defined structure allows the definition of variables without

the struct keyword.

▪ We can use the tag to define variables, parameters, and return types.

▪ Variable definition:

⚫ Variable emp has members ssn, empType, and salary.

3) Typedef Structure

Member namesNew type name DON’T FORGET THE SEMICOLON

5



Dot Operator (.)
▪ Used to access member variables
⚫Syntax:
structure_variable_name.member_name

⚫These variables may be used like any other variables

6



Nested Structures
▪ A member that is of a structure type is nested

8



Initializing Structures
▪ A structure may be initialized at the time it is declared

▪ Order is essential
⚫The sequence of values is used to initialize the 

successive variables in the struct

▪ It is an error to have more initializers than members

▪ If fewer initializers than members, the initializers 
provided are used to initialize the data members
⚫The remainder are initialized to 0 for primitive types

9



Dynamic Allocation of Structures
▪ The sizeof() operator should always be used in 

dynamic allocation of storage for structured data 
types and in reading and writing structured data types

10



Arrays Within Structures
▪ A member of a structure may be an array

11



Arrays of Structures
▪ We can also create an array of structure types

12



Arrays of Structures Containing Arrays
▪ We can also create an array of structures that contain 

arrays

13



Structures as Parameters
▪ A struct, like an int, may be passed to a function

▪ The process works just like passing an int, in that:
⚫The complete structure is copied to the stack
⚫Called function is unable to modify 

the caller's copy of the variable

14



Structures as Parameters

15



Structures as Parameters
▪ Disadvantage of passing structures by value: 

Copying large structures onto stack

⚫Is inefficient

⚫May cause stack overflow

16



Structure Pointers as Parameters
▪ More efficient: Pass the address of the struct

▪ Passing an address requires that only a single word be 
pushed on the stack, no matter the size
⚫Called function can then modify the structure.

17



Const Struct Parameter
▪ What if you do not want the recipient to be able to 

modify the structure?
⚫Use the const modifier

19



Return Structure

▪ Scalar values (int, float, etc) are efficiently returned in 
CPU registers

▪ Historically, the structure assignments and the return 
of structures was not supported in C

▪ But, the return of pointers (addresses), including 
pointers to structures, has always been supported

21



Function Return Structure Values

▪ It is possible for a function to return a structure.

▪ This facility depends upon the structure assignment 
mechanisms which copies one complete structure to 
another.
⚫Avoids the unsafe condition associated with

returning a pointer, but
⚫Incurs the possibly extreme penalty of 

copying a very large structure

24



Function Return Structure Values

25



Arrays as Parameters & Return

▪ Array’s address is passed as parameter

⚫Simulates passing by reference

▪ Embedding array in structure

⚫The only way to pass an array by value 
is to embed it in a structure

⚫The only way to return an array is 
to embed it in a structure

⚫Both involve copying
➢ Beware of size

26



Programming in C

T H E E N D

27


	Diapositive 1 Programming in C
	Diapositive 2 Structures
	Diapositive 3 1) Struct variable
	Diapositive 4 2) Tagged Structure
	Diapositive 5 3) Typedef Structure
	Diapositive 6 Dot Operator (.)
	Diapositive 8 Nested Structures
	Diapositive 9 Initializing Structures
	Diapositive 10 Dynamic Allocation of Structures
	Diapositive 11 Arrays Within Structures
	Diapositive 12 Arrays of Structures
	Diapositive 13 Arrays of Structures Containing Arrays
	Diapositive 14 Structures as Parameters
	Diapositive 15 Structures as Parameters
	Diapositive 16 Structures as Parameters
	Diapositive 17 Structure Pointers as Parameters
	Diapositive 19 Const Struct Parameter
	Diapositive 21 Return Structure
	Diapositive 24 Function Return Structure Values
	Diapositive 25 Function Return Structure Values
	Diapositive 26 Arrays as Parameters & Return
	Diapositive 27 Programming in C

