s ettt o

x5 =Hczzgs

@

Structures

A structure can be used to define a new data type that
combines different types into a single (compound) data
type

® Definition is similar to a template or blueprint

® Composed of members of previously defined types

Structures must defined before use

C has three different methods to define a structure
® variable structures

® tagged structures

® type-defined structures

1) Struct variable

A variable structure definition defines a struct variable

struct {

double x; // x coordinate } Mermber names
double y; // y coordinate

} point;
I —

Variable name DON’T FORGET THE SEMICOLON

2) Tagged Structure

A tagged structure definition defines a type

We can use the tag to define variables, parameters, and return types

struct point t<{ Structure tag

double x; // x coordlnate
double y; // y coordinate Member names

};\

DON’T FORGET THE SEMICOLON

Variable definitions:

struct point t pointl, point2, point3;

® Variables pointl, point2, and point3 all have members x and y.

3) Typedef Structure

A typed-defined structure allows the definition of variables without

the struct keyword.

We can use the tag to define variables, parameters, and return types.

typedef struct {

long ssn; // Soclial Security Number

int empType; // Employee Type
float salary; // Annual Salary

} employee t; g\\\\\\\

New type name DON’T FORGET THE SEMICOLON

Member names

Variable definition:

employee t emp;

® Variable emp has members ssn, empType, and salary.

Dot Operator (.) @

Used to access member variables

® Syntax:
structure_variable_name.membe:_name

® These variables may be used like any other variables

struct point t {
double x; // x coordinate
double y; // y coordinate

¥ void setPoints() {
struct point t pointl, point2;
pointl.x = 7; // Init pointl members
pointl.y = 11;
point2 = pointl; // Copy pointl to polnt2

® &

Nested Structures

A member that is of a structure type is nested

typedef struct {
int month;
int day;
int year;
date t;

typedef struct {
double height;
int weight;
date_t birthday;
} personInfo t;

// Define variable of type personInfo t
personInfo t person;

// person.birthday is a member of person
// person.birthday.year is a member of person.birthday
printf("Birth year is %d\n", person.birthday.year);

Initializing Structures ﬂ

A structure may be initialized at the time it is declared

Order is essential

® The sequence of values is used to initialize the
successive variables in the struct

It is an error to have more initializers than members

If fewer initializers than members, the initializers
provided are used to initialize the data members
® The remainder are initialized to O for primitive types

typedef struct {
int month;
int day;
int year;

} date t;

date t due date = {12, 31, 2020}, ///

Dynamic Allocation of Structures

The sizeof() operator should always be used in
dynamic allocation of storage for structured data
types and in reading and writing structured data types

typedef struct {
int month;

int day;
int year;
} date t;
sizeof (date t)=12
date t due date; sizeof (due date) =12
int date t len = sizeof(date t); // sizeof t

int due date len = sizeof(due date); // sizeof

printf(“sizeof(date t)=%d\n", date t len);
printf(“sizeof(due date)=%d\n", due date len);

date t * due dates = calloc(100, sizeof(date t)); Y,

Sl | WiN = O

Arrays Within Structures

A member of a structure may be an array

typedef struct {

long ssn; // SSN

double payRate; // Hourly rate

float hoursWorked[7]; // Daily hours worked Sun-Sat
} timeCard t;

timeCard t empTime;

empTime.hoursWorked[5] = 6.5; // Thur hours worked

Sl | WiN = O

Arrays of Structures

We can also create an array of structure types

typedef struct {
// unsigned char will hold @-255
unsigned char red;
unsigned char green;
unsigned char blue;
} pixel t;

pixel t pixelMap[800][600];
pixelMap[425][37].red = 127;

pixelMap[425][37].green = @,
pixelMap[425][37].blue = 58;

Sl | WiN = O

Arrays of Structures Containing Arrays

We can also create an array of structures that contain
arrays

typedef struct {

long ssn; // SSN

double payRate; // Hourly rate

float hoursWorked[7]; // Daily hours worked Sun-5at
} timeCard t;

timeCard t empTime[1000];
// Thur hours worked, emp # 10

empTime[9].hoursWorked[5] = 6.5;

™~

Structures as Parameters

A struct, like an int, may be passed to a function

The process works just like passing an int, in that:
® The complete structure is copied to the stack

® Called function is unable to modify
the caller's copy of the variable

A~ =
N\ I\

Structures as Parameters

typedef struct {
double x; // x coordinate
double y; // y coordinate
} point t;

void changePoint(point t p) {
printf("x=%.11f, y=%.11f\n", p.Xx, p.y);
//
p.X = 3.4;
p.y = 4.5

J

h

void mainPoint() {
point t point = {1.2, 2.3};
changePoint(point);
printf("x=%.11f, y=%.11f\n", point.x, point.y);
//
h

x=1.2, y=2.3

x=1.2, y=2.3

©

Structures as Parameters

Disadvantage of passing structures by value:
Copying large structures onto stack

® s inefficient

® May cause stack overflow

typedef struct {
int w[1000*1000*1000]; // One billion int elements
y big t;

// Passing a varlable of type big t will cause
// 4 billion bytes to be copied on the stack

big t fourGB;
int 1;

for (i = 0; 1 < 1000000; i++) // 1,000,000 times
slow call(fourGB);

Structure Pointers as Parameters

More efficient: Pass the address of the struct

Passing an address requires that only a single word be
pushed on the stack, no matter the size
® Called function can then modify the structure.

Const Struct Parameter

What if you do not want the recipient to be able to
modify the structure?
® Use the const modifier

(const point t * p)

Return Structure

Scalar values (int, float, etc) are efficiently returned in
CPU registers

Historically, the structure assignments and the return
of structures was not supported in C

But, the return of pointers (addresses), including
pointers to structures, has always been supported

Function Return Structure Values

It is possible for a function to return a structure.

This facility depends upon the structure assignment
mechanisms which copies one complete structure to

another.

® Avoids the unsafe condition associated with
returning a pointer, but

® Incurs the possibly extreme penalty of
copying a very large structure

0

Function Return Structure Values

typedef struct {
// unsigned char will hold ©-255
unsigned char red;
unsigned char green;
unsigned char blue;
} pixel t;

pixel t getEmptyPixel() {
// empty pixel = zeros
pixel t p = {8, 8, @};

// return pointer to empty pixel
return p;

¥
pixel t ePixel;

ePixel = getEmptyPixel();

™~

o4

Arrays as Parameters & Return

Array’s address is passed as parameter
® Simulates passing by reference
Embedding array in structure

® The only way to pass an array by value
is to embed it in a structure

® The only way to return an array is
to embed it in a structure

® Both involve copying
Beware of size

QN | WINIFR|O

THE END

	Diapositive 1 Programming in C
	Diapositive 2 Structures
	Diapositive 3 1) Struct variable
	Diapositive 4 2) Tagged Structure
	Diapositive 5 3) Typedef Structure
	Diapositive 6 Dot Operator (.)
	Diapositive 8 Nested Structures
	Diapositive 9 Initializing Structures
	Diapositive 10 Dynamic Allocation of Structures
	Diapositive 11 Arrays Within Structures
	Diapositive 12 Arrays of Structures
	Diapositive 13 Arrays of Structures Containing Arrays
	Diapositive 14 Structures as Parameters
	Diapositive 15 Structures as Parameters
	Diapositive 16 Structures as Parameters
	Diapositive 17 Structure Pointers as Parameters
	Diapositive 19 Const Struct Parameter
	Diapositive 21 Return Structure
	Diapositive 24 Function Return Structure Values
	Diapositive 25 Function Return Structure Values
	Diapositive 26 Arrays as Parameters & Return
	Diapositive 27 Programming in C

