1. Introduction

Plusieurs techniques issues de la statistique et de la probabilité ont permis d’accroitre les
connaissances sur I'analyse de données, la suppression de données aberrantes ou gérer les données
manquantes pour choisir une représentation pertinente d’'un phénomene. Une fois les données bien
préparées, se pose la question de comment tirer des informations efficaces sur des données en grande
quantité qui nécessiterait des procédures trop gourmandes en ressources informatiques et des
connaissances peu développées. C'est a ce niveau qu’intervient I'apprentissage automatique qui
permet de rendre un programme capable d’apprendre a partir d’exemple de données sans étre
programmé. Une fois I'algorithme implémenté, la machine peut apprendre et prédire des phénomeénes
précis et s’enrichir au fur et a mesure qu’il recoit de nouvelles données. L'un des concepts de base de
|"apprentissage automatique est la régression linéaire.

2. la régression linéaire

L'objectif de la régression linéaire est d'exprimer une variable de sortie y en fonction de la
variable d'entrée x de maniere linéaire, c'est a dire y=ax+b. Ce modele a donc deux paramétres A et
B, dont il faut trouver les valeurs optimales durant la phase d'apprentissage. Prédire la valeur d’une
maison en fonction de sa superficie, sa localisation, la possibilité de parking ou non, prédire le nombre
d’utilisateurs et utilisatrices d’un service en ligne a un moment donné sont deux exemples d’utilisation
du modéle de régression linéaire.

Plusieurs techniques existent pour estimer ces parameétres, les plus répandues étant la méthode des
moindres carrés, la méthode des déviations et la méthode du maximum de vraisemblance.

La régression linéaire est un algorithme d’apprentissage supervisé, on dispose alors de N couples
entrée-sortie constituant I'ensemble de données D= {xi,}i€[1,N]. L'objectif est de trouver une fonction
dite de prédiction ou une fonction colt qui décrit la relation entre X et Y c’est-a-dire qu’a partir de
valeurs connues de X, on arrive a donner une prédiction des valeurs de Y. La fonction recherchée est
de la forme :

Y= f(X) avec f(X) une fonction linéaire

A partir d’'un échantillon de population qui représente nos données, on répartit les données en deux
groupes, les données d’entrainement et les données de test. La premiére catégorie de données servira
pendant la phase d’apprentissage du modele alors que le second sera utilisé pour évaluer la qualité de
prédiction du modeéle. Le but n’est donc pas de construire une fonction qui prédira avec une précision
optimale les valeurs des variables cibles mais une fonction qui se généralisera au mieux pour prédire
des valeurs de données qui n’ont pas encore été observées. Avant de débuter une étude de régression
simple, il faut d’abord tracer les observations. (X, Yi), i=1,..., p



2.1. Représentation graphique
Le but est de savoir si le modele linéaire est oui ou non pertinent pour I'étude de notre

phénoméne. Le graphique est au départ un nuage de points et on reléve la tendance qu’a la forme de
ce nuage de points.
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Figure 1. Représentation d’un nuage de points

Au vu de ces deux graphiques, il semble approprié d’utiliser le modele linéaire pour la premiére image
et pas pour la deuxieme qui ne laisse transparaitre aucune tendance connue.Dans la suite nous
expliquerons la modélisation et I'estimation des parameétres de la fonction de prédiction pour pouvoir
tracer cette droite.

2.2. Modélisation

A. Modeéle de la régression linéaire

Modélisation Nature de la régression
Une seule variable explicative X Régression simple
Plusieurs variables explicatives X; (j=1,..., q) Régression multiple

Le modele de régression linéaire analyse les relations entre la variable dépendante ou variable cible Y
et I'ensemble des variables indépendantes ou explicatives X. Cette relation est exprimée comme une
équation qui prédit les valeurs de la variable cible comme une combinaison linéaire de paramétres.

B. Un modele de régression linéaire simple est de la forme :
Y=f(X) + € ou f(X)=aX+b
Donc Y=aX+b+ €

Avec :



e Y, lavariable cible, aléatoire dépendante

e aethb, les coefficients (pente et ordonnée a I'origine) a estimer
e X, lavariable explicative, indépendante

e g une variable aléatoire qui représente I'erreur

C. Un modele de régression linéaire multiple est de la forme :
Y=axi+bxz+cxs+ - +K+ €
Avec :

e Y, lavariable cible, aléatoire dépendante

e a,..Kles coefficients (pente et ordonnée a I'origine) a estimer
o X=(xy,...,Xp), la variable explicative, indépendante

e g, une variable aléatoire qui représente I'erreur

D. Sous forme matricielle, le modéle de régression linéaire simple est de la forme :

Y=AX+¢
ou
Y1 1 X, €1
Ay )
Yy = X = : ,Az( )etsz
_ a; .
Vp 1 Xp Ep
Avec :

e Y, un vecteur a expliquer de taille px 1,
e X, la matrice explicative de taille p x 2,
e g, levecteur d’erreurs de taille px 1

€ est appelé résidus c’est I'erreur commise, c’est-a-dire 'écart entre la valeur Y; observée et la
valeur a;Xi+b donnée par la relation linéaire. En effet, méme si une relation linéaire est effectivement
présente, les données mesurées ne vérifient pas en général cette relation exactement. Pour ce faire,
on tient compte dans le modele mathématique des erreurs observées.



2.3.  Principe de fonctionnement
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Figure 2. La droite de régression linéaire

Sur ce graphique, la droite de régression linéaire ou la droite des moindres carrés de Y en Xreprésente
la droite d’ajustement linéaire, celle qui résume le mieux la structure du nuage de points pendant la
phase d’apprentissage. Elle rend minimale la somme des carrés des erreurs d’ajustement.

C’est en confrontant I’équation calculée par I'algorithme de régression linéaire aux nouvelles données
de la réalité (X) que les prédictions (Y) seront réalisées par I'algorithme d’intelligence artificielle.

Le terme r(X,Y) représente le coefficient de corrélation de Bravais-Pearson. Ce coefficient mesure
I'intensité de la relation linéaire entre Y et X . Ce coefficient est calculé a partir des écarts types ox et
oy des variables et a partir de la covariance entre les variables d'entrée et de sortie. Voici sa formule :

?:1(‘]{1' - E)(Y: - }7)

R 50wy

R =

Pour simplifier :

Cov(X,Y)
T'(X, Y) = 7
x Yy

Le coefficient de corrélation est un nombre toujours compris entre -1 et 1.



e SiRestprochedel:ilya une forte liaison linéaire entre les variables et les valeurs prises par
Y ont tendance a croitre quand les valeurs de X augmentent.

e SiRestprochedeO:iln’ya pasde liaison linéaire

e SiRestprochede-1:ilya une forte liaison linéaire et les valeurs prises par Y ont tendance a
décroitre quand les valeurs de X augmentent.

2.4. Estimation des coefficients de la droite par la méthode des moindres carrés

Dans la figure suivante, deux modeles de régression linéaire : le premier modele présente des
écarts importants entre les valeurs prédites et attendues tandis que le second minimise les carrés de

ces écarts
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Figure 3. Le choix de la droite de régression linéaire.

La régression linéaire est relativement simple d’un point de vue mathématique. Ce qui fait que ce type
d’algorithme entre pleinement dans le cadre d’apprentissage automatique, est le fait que la machine
soit capable d’ajuster les parametres a et b a partir d’exemples fournis par 'utilisateur. Dans cette
partie, nous expliquons comment ces parametres sont ajustés afin d’estimer la variable de sortie Y.
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Figure 4. Principe des moindres carrés pour la régression linéaire.

Le principe des moindres carrés ordinaires consiste a choisir les valeurs de a et b qui minimisent les
erreurs de prédiction ou les résidus sur un jeu de données d’apprentissage :

£= ;(Yi — (aX; + b))2

Minimiser cette expression revient a résoudre un probleme d’optimisation, voici la forme des
estimateurs notés a et b qui sont égaux a :

_ Cov(X,Y)
© Var(X)

Ou Cov(X, Y) est la covariance entre les X; et les Y; et Var(X) est la variance des X;. L'expression de
b indique que la droite de régression linéaire passe par le centre de gravité du nuage de points (X, Y).



3. Exemple pratique de régression linéaire

Pour rendre les choses plus claires, nous partirons d'un exemple simple et trés classique qui
est celui de la relation entre l'altitude (X) et température (Y) a l'intérieur d'une région de taille
suffisamment petite pour que I'on puisse négliger autres facteurs de variations de la température
(distance a la mer, latitude, etc.). Les données sont présentées dans le tableau suivant :

i (Xi) (Yi)
1 2000 0
2 1500 3
3 1000 6
4 500 10
5 1000 8
6 1500 5
7 2000 2
8 2500 2

A partir du tableau on calculera les paramétres caractéristiques de chaque variable.

i (Xi) (Yi) Xi2 Yi2 Xi.Yi
1 2000 0 4000000 0 0
2 1500 3 2250000 9 4500
3 1000 6 1000000 36 6000
4 500 10 250000 100 5000
5 1000 8 1000000 64 8000
6 1500 5 2250000 25 7500
7 2000 2 4000000 4 4000
8 2500 -2 6250000 4 -5000
moyenne 1500 4 2625000 30,25 3750

On déduit de la valeur de la covariance (-2250) et de celle des deux écarts-type (pour X et pour Y)
I'existence d'une tres forte corrélation linéaire négative entre les deux variables :
r(X,Y) = S0 _ 5350/ (612 * 3.8) = -0.97.

Ox .0y

La forme du nuage de point croisant les valeurs de X et de Y est par ailleurs parfaitement linéaire ce
qui justifie la recherche d'un ajustement a l'aide d'une droite.

Il reste a déterminer le sens de la relation, c'est-a-dire I'hypothese faite sur la variable explicative
(indépendante) et la variable a expliquer (dépendante). Dans I'exemple choisi, il parait assez naturel
de supposer que la température (Y) dépend de l'altitude (X) et non pas l'inverse, de sorte que I'on va
chercher a la température Y en fonction de I'altitude X.



o Détermination de la droite de régression par le critére des moindres carrés

Dans I'exemple qui est proposé, on devine facilement le tracé de la droite de régression qui
donnera le meilleur ajustement des températures en fonction de l'altitude mais il faut se munir d'un
critere objectif pour démontrer que la solution proposée est bien la solution optimale, critere que I'on
pourra ensuite appliquer a des nuages de points plus complexe ou la détermination de la droite de
régression optimale est moins évident.

En appliquant la méthode la plus souvent retenue en statistique critére des moindres carrés qui
consiste a minimiser de la somme des carrés des résidus, on aura les valeurs optimales d’ajustement
des parametres de la droite Y= aX+b:
Cov(X,Y)
~ Var(X)

b=y-ax
Appliquées aux données, ces équations permettent d'obtenir les parametres optimaux d'ajustement
de la droite de régression de la température en fonction de l'altitude :
a=-0.006 (°C/ m)
b=13(°C)
On en déduit que I'équation générale donnant la température en fonction de l'altitude dans I'exemple
étudié est la suivante :

Température (°C) = -0.006 * altitude (m) + 13
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Figure 5. Droite de régression exprimant la température en fonction de I'altitude.



e Signification des parametres de la droite de régression

Le paramétre a de la droite de régression indique de combien varie en moyenne la valeur de Y
lorsque celle de X augmente d'une unité. Dans notre exemple, la valeur de a est égale a -0.006 et
indique que la température diminue en moyenne de 6 ° C chaque fois que l'altitude augmente de 1000
metres. D'un point de vue géométrique, la valeur de a correspond a la pente de la droite de régression
par rapport a I'axe Ox.

Le parametre b de la droite de régression correspond quant a lui a la valeur théorique de Y lorsque la
valeur de X est égale a 0. Dans notre exemple, il s'agit donc de la température estimé pour une altitude
nulle. D'un point de vue géométrique, la valeur de b correspond a la coordonnée verticale de
I'intersection entre la droite de régression Y=aX+b et |'axe Oy.

L'interprétation empirique des parametres a et b dépend évidemment de la nature des variables X et
Y mises en relation, mais les principes définis précédemment demeurent valable en tout état de cause
: a est le taux de variation de Y en fonction de X et b est la valeur de Y pour X =0. Ainsi, dans le cas
d'une régression temporelle du type Y(t)=a.t+b, le parameétre a correspond au taux moyen de
croissance (variation de Y par unité de temps) et b a la valeur de Y au temps t=0.

4. conclusion

L’avantage de I'algorithme de régression linéaire est sa simplicité d’interprétation et sa facilité
de calcul. Par contre, le data scientist veillera a bien vérifier qu’il existe une relation linéaire entre les
parametres d’entrée et celle de sortie. Le modele présente quelques inconvénients comme le fait que
I'algorithme est trés sensible aux valeurs aberrantes (outliers) des données d’apprentissage d’ou la
nécessité de bien préparer ses données des le départ. Il existe des méthodes dites de régularisation
pour pallier a ce probléme. Les méthodes de régularisation permettent de pénaliser les valeurs trop
grandes des coefficients a; et b.



