system resolution

December 1, 2024

[1]: import numpy as np

Définir la matrice des coeffictents (4) et le wvecteur des constantes (b)
A = np.array([[2, 1], [1, -11D)
b = np.array([3, -1])

Résoudre le systéme 4 © = b
x = np.linalg.solve(A, b)

print("Solution : ", x)
Solution : [0.66666667 1.66666667]

[3]: def gauss_jordan_elimination(A, b):
n = len(b)
Combiner 4 et b pour former une matrice augmentée
augmented_matrix = np.hstack([A, b.reshape(-1, 1)])

for i in range(n):
Normaliser la ligne actuelle
augmented_matrix[i] = augmented_matrix[i] / augmented_matrix[i, il]

Eliminer les autres coefficients dans la colonne actuelle
for j in range(n):
if 1 1= §:
factor = augmented_matrix[j, il
augmented_matrix[j] = augmented_matrix[j] - factor *
—augmented_matrix[i]

Extraire le wecteur solution

return augmented_matrix[:, -1]
Exzemple
A = np.array([[2, 1], [1, -1]1]1, dtype=float)

b = np.array([3, -1], dtype=float)

x = gauss_jordan_elimination(A, b)
print("Solution : ", x)

[5]:

Solution : [0.66666667 1.66666667]

from scipy.linalg import lu_factor, lu_solve
Définir la matrice et le vecteur
A = np.array([[2, 1], [1, -1]], dtype=float)
b = np.array([3, -1], dtype=float)

Factorisation LU
lu, piv = lu_factor(A)

Résoudre le systéme
x = lu_solve((lu, piv), b)

print("Solution : ", x)

Solution : [0.66666667 1.66666667]

