TP: Travailler avec des vecteurs, des matrices et des tableaux dans NumPy

NumPy est un élément fondamental dans I'ensemble des outils Python pour | 'apprentissage profond.
Il permet d’effectuer des opérations efficaces sur les structures des données souvent utilisées dans
I'apprentissage automatique, qu’il s’agisse de vecteurs, de matrices ou de tenseurs.

1. Créer un vecteur

Creer un vecteur

utiliser NumPy pour creer un tableau a une seule dimension
Chargement de La bibliotheque
import numpy as np

Creation d'un vecteur ligne
vector_row = np.array([1, 2, 3])

Creation d'un vecteur colonne
vector_column = np.array([[1], [2

1, [311)
vector_row

array([1, 2, 3])

vector_column

array([[1],
[2],

[31D
print(vector_row)
[12 3]
print(vector_column)
(1]

[2]
[31]

2. Créer une matrice
Creer une matrice
Utiliser NumPy pour creer un tableau a deux dimensions

Chargement de lLa bibliotheque
import numpy as np

creation d'une matrice
matrix= np.array([[1, 2], [1, 2], [1, 2]1])

matrix

array([[1, 2],
1, 21,
(1, 21D

print(matrix)

({1 2]
[12]

[12]1]

3. Créer une matrice creuse

Creer une matrice creuse

Chargement des bibliotheques
import numpy as np
from scipy import sparse

creation d'une matrice
matrix = np.array([[0, @], [0, 1], [3, @]1)

creation d'une matrice au format CSR (compressed sparse row, ligne creuse compressee)
matrix_sparse = sparse.csr_matrix(matrix)

visualisation de la matrice creuse
print(matrix_sparse)

(1, 1) 1
(2, @)

w

Il existe un certain nombre de types de matrices creuses. Toutefois, dans les matrices au format CSR,
(1, 1) et (2, 0) représentent respectivement les indices (qui démarrent a partir de zéro) des valeurs non
nulles 1 et 3. Nous pouvons voir I'avantage des matrices creuses si nous creons une matrice beaucoup
plus grande avec beaucoup plus d’éléments nuls et que nous comparons ensuite cette matrice plus
grande avec notre matrice creuse d’origine :

creation d'une matrice plus grande
matrix_large = np.array([[©, 0, 0, O,
[0, 1, o, @, 0, O,
[3, 0, 0, @, 0, ©

@, 0, 0, 0, @, 9],
OJ 9) OJ 9]’
0, 8, 0, 0]])

2 2

creation d'une matrice au format CSR
matrix_large_sparse = sparse.csr_matrix(matrix_large)

visualisation de Lla matrice creuse d'origine
print(matrix_sparse)

visualisation de la matrice creuse d'origine
print(matrix_large_sparse)

(1, 1)
(2, @)
(1, 1)
(2, 0)

w = w =

Lajout d’éléments nuls n’a pas modifie la taille de la matrice creuse.

4. Preallouer des tableaux NumPy
Préallouer des tableaux d’une taille donnée avec une certaine valeur.
NumPy dispose de fonctions permettant de générer des vecteurs et des matrices de n’‘importe quelle
taille en utilisant des 0, des 1 ou des valeurs de votre choix :

Chargement de la bibliotheque
import numpy as np

Genere un vecteur de forme (1,5) ne contenant que des @
vector = np.zeros(shape=5)

#Visualisation du vecteur
print (vector)

Genere une matrice de forme (3,3) ne contenant que des 1
matrix = np.full(shape=(3,3), fill value=1)

#Visualisation de La matrice

print(matrix)

[6. 0. 0. . 0.]
[[111]
[11 1]
[111]]

5. Sélectionner des éléments :
La sélection de un ou plusieurs éléments dans un vecteur ou une matrice.

NumPy permet de sélectionner facilement des éléments dans des vecteurs ou des matrices

Chargement de la bibliotheque
import numpy as np

Creation d'un vecteur ligne
vector = np.array([1, 2, 3, 4, 5, 6])

Creation d'une matrice
matrix = np.array([[21, 2, 3], [4, 5, 6], [7, 8, 9]])

selection du troisieme element du vecteur
vector [2]

Selection de la deuxieme Lligne de la deuxieme colonne
matrix [1,1]

5

NumPy offre une grande variété de méthodes pour sélectionner (indicer et découper) des éléments
ou des groupes d’éléments dans les tableaux :

Selection de tous les elements d'un vecteur
vector[:]

array([1, 2, 3, 4, 5, 6])

Selection de la totalite jusqu'au troisieme element inclus
vector[:3]

array([1, 2, 3])

Selection de tout ce qui trouve apres le troisieme element
vector[3 :]

array([4, 5, 6])

Selection du dernier element
vector[-1]

6

Inversion du vecteur
vector[::-1]

array([6, 5, 4, 3, 2, 1])

Selection des deux premieres lignes et toutes les colonnes d'une matrice
matrix|[:2, :]

array([[1, 2, 3],
[4, 5, 6]1)

Selection de toutes les Llignes et la deuxieme colonne
matrix| :,1:2]

array([[2],
[51,
[811)

6. Décrire une matrice
Décrire la forme, la taille et les dimensions d’une matrice
Utiliser les attributs shape, size et ndim d’un objet NumPy

Chargement de la bibliotheque
import numpy as np

Creation d'une matrice
matrix = np.array([[1, 2, 3, 4], [5, 6, 7 ,8], [9, 1@, 11, 12]])

Affichage du nombre de lignes et de colonnes
matrix.shape
(3, 4)

Affichage du nombre d’elements (Lignes * colonnes)
matrix.size

12

Affichage du nombre de dimensions
matrix.ndim

7. Appliquer des fonctions a chaque élément
On souhaite appliquer une fonction a tous les éléments d’un tableau.

Chargement de la bibliotheque
import numpy as np

Creation d'une matrice
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

#Ajouter 100 a tous les elements
matrix + 100

array([[1e1, 102, 103],
[104, 185, 106],
[167, 188, 189]])
8. Rechercher les valeurs maximales et minimales

Trouver la valeur maximale ou minimale d’un tableau

Utiliser les méthodes max et min de NumPy

Chargement de la bibliotheque
import numpy as np

Creation d'une matrice
matrix = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

On renvoie lLe plus grand element
np.max(matrix)

9

On renvoie le plus petit element
np.min(matrix)

On trouve L'element maximum dans chaque colonne
np.max(matrix, axis=8)

array([7, 8, 9])

On trouve L'element maximum dans chaque Ligne
np.max(matrix, axis=1)

array([3, 6, 9])
9. Calculer la moyenne, la variance et I'écart type

Probleme : Calculer des statistiques descriptives sur un tableau.
Solution : Utiliser les fonctions mean, var et std de NumPy

10

Calculer La moyenne, la variance et l'ecart type
np.mean(matrix)

5.0

np.var(matrix)

6.666666666666667

np.std(matrix)
2.581988897471611

Tout comme max et min nous pouvons facilement obtenir des statistiques descriptives sur
I'ensemble de la matrice ou effectuer des calculs le long d’un seul axe :

np.mean(matrix, axis=e)
array([4., 5., 6.])

Modifier la forme des tableaux :
On souhaite modifier la forme (nombre de lignes et de colonnes) d’un tableau sans modifier
les valeurs des éléments.
Utilisez la fonction reshape de NumPy
import numpy as np
matrix = np.array([[1, 2, 3],
4, 5, 6],
7, 8, 9],
10, 11, 12]])
#transformation de la matrice en une matrice 2%6
matrix.reshape(2, 6)

array([[1, 2, 3, 4, 5, 6],
[7, 8, 9,10, 11, 12]])

Reshape permet de restructurer un tableau de maniere a conserver les mémes données, mais
en les organisant dans un nombre différent de lignes et colonnes. La seule conditio est que la
forme de la matrice originale et celle de la nouvelle matrice contiennent le méme nombre
d’éléments (c’est a dire qu’elles aient la méme taille). La taille d une matrice peut étre visualisée
a l'aide de la fonction size (matrix.size).

Reshape posséde un argument utile : -1, qui signifie en fait " autant que nécessaire ". Ainsi
reshape (1, -1) signifie une ligne et autant de colonnes que nécessaire :

matrix.reshape(1, -1)
array([[1, 2, 3, 4, 5, 6, 7, 8, 9, 1@, 11, 12]])

Enfin, si nous fournissons un entier, reshape renverra un tableau unidimentionel de cette
longueur :

matrix.reshape(12)

array([1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12])

11. Transposer un vecteur ou une matrice :
Transposer un vecteur ou une matrice avec matrix.T

matrix.T

array([[1, 4, 7, 10],
[2) 5) 8) ll]J
[3, 6, 9, 12]])

La transposition est une opération courante dans l'algébre linéaire qui consiste a intervenir
les indices de colonne et de ligne de chaque élément.

Transposition d'un vecteur
np.array([[1, 2, 3, 4, 5, 6]]).T

array([

12. Aplatir une matrice
Transformer une matrice en un tableau a une seule dimension
Utiliser la méthode flatten

Aplatissement de la matrice
matrix.flatten()

array([1, 2, 3, 4, 5, 6, 7, 8, 9, 18, 11, 12])

Flatten est une methode simple pour transformer une matrice en un tableau unidimensionnel.
Nous pouvons utiliser reshape pour créer un vecteur ligne.

La méthode ravel est une autre fagon courante d’aplatir les tableaux. Contrairement a la
methode flatten, qui renvoie une copie du tableau original, la méthode ravel opere sur I'objet
original, ce qui la rend donc légérement plus rapide. Elle permet également d’aplatir des listes
de tableaux, ce que ne permet pas la méthode flatten. Cette opération est utile pour aplatir de
tres grands tableaux et accélérer le code :

import numpy as np
Creation d'une matrice
matrix_a = np.array([[1, 2], [3, 4]])

Creation de la deuxieme matrice
matrix b = np.array([[5, 6], [7, 8]])

Creation d'une Liste de matrices
matrix list = [matrix a, matrix_ b

#Aplatissement de la liste complete des matrices
np.ravel (matrix 1list)

ar‘ray([l) 2, 3, 4, 5, 6, 7, 8])

13. Obtenir la diagonale d’une matrice
Obtenir les éléments diagonaux d’une matrice.

Creation d'une matrice
matrix = np.array([[1, 2, 3], [2, 4, 6], [3, 8, 9]])

Retourne les elements diagonaux
matrix.diagonal()

array([1, 4, 9])
14. Calculer la trace d’une matrice
Calculer la trace d’une matrice.
Creation d'une matrice

matrix = np.array([[1, 2, 3], [2, 4, 6], [3, 8, 9]])

Retourne la trace
matrix.trace()

14

15. Effectuer le produit scalaire
Le produit scalaire de deux vecteurs .

Chargement de la bibliotheque
import numpy as np

Creation de deux vecteurs
vector_a = np.array([1, 2, 3])
vector b = np.array([4, 5, 6])

Calcul du produit scalaire
np.dot(vector_a, vector b)

32

Le produit scalaire de deux vecteurs, a et b, est défini comme suit :

n

Z a;b;

i=1

16. Additionner et soustraire des matrices

Additionner et soustraire deux matrices.
Utilisez la fonction add et subtract de NumPy

Creation d'une matrice
matrix_a = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 2]])

matrix b = np.array([[1, 3, 1], [1, 3, 1], [1, 3, 8]])
Ajout de deux matrices
np.add(matrix_a, matrix b)

array([[2, 4, 2],
[21 4) 2],
[2, 4, 10]])

matrix a + matrix b

array([[2, 4, 2],
[2, 4) 2],
[2, 4, 10]])

Soustraction d'une matrice
np.subtract(matrix_a, matrix b)

array([[@1 _2) O];
[9; _2) 9];
[9, -2, '6]])

matrix_a-matrix b

array([[@, _2, 6]:
[e, -2, 9];
[9, -2, '6]])

17. Multiplier des matrices :
Pour multiplier les matrices utiliser la fonction dot de NumPy.
Creation d'une matrice

matrix_a=np.array([[1, 1], [1, 2]])

Creation d'une matrice
matrix b=np.array([[1, 3], [1, 2]])

Multiplication de deux matrices
np.dot(matrix_a, matrix b)

array([[2, 5],
[3, 71D
L'operateur * effectue une multiplication au niveau des éléments :
matrix_a * matrix b
array([[1, 3],
[1, a4]])
18. Inverser une matrice :
Calculer I'inverse d’'une matrice carrée.
Creation d'une matrice

matrix = np.array([[1, 4], [2, 5]])

calcul L'inverse de lLa matrice
np.linalg.inv(matrix)

array([[-1.66666667, 1.33333333],
[©.66666667, -0.33333333]])

'inverse d’'une matrice carrée, A, est une seconde matrice A%, telle que :

AAl=|
Ou | est la matrice identité.
matrix @ np.linalg.inv(matrix)
array([[1., ©.],

[0., 1.11)

19. Générer de valeurs aléatoires :
Générer des valeurs pseudo-aléatoires.
Utiliser la fonction random de NumPy

Chargement de La bibliotheque

import numpy as np

Initialise Le generateur de nombres aleatoires
np.random. seed(@)

Genere trois valeurs en virgule flottante aleatoires entre 0,0 et 1,0
np.random.random(3)

array([©.5488135 , ©.71518937, 0.60276338])

Dans notre solution, nous avons généré des nombres en virgule flottante, mais il est également
courant de générer des nombres entiers :

Generation de trois entiers entre @ et 10
np.random.randint(e, 11, 3)

array([3, 5, 2])

